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The design of this rocket and gantry structure requires a basic knowledge of
both statics and dynamics, which form the subject matter of engineering
mechanics.




General Principles

CHAPTER OBJECTIVES

* To provide an introduction to the basic quantities and idealizations
of mechanics.

* To give a statement of Newton's Laws of Motion and Gravitation.
* To review the principles for applying the Sl system of units.

® To examine the standard procedures for performing numerical
calculations.

* To present a general guide for solving problems.

1.1 Mechanics

Mechanics is a branch of the physical sciences that is concerned with the
state of rest or motion of bodies that are subjected to the action of forces.
In general, this subject can be subdivided into three branches: rigid-body
mechanics, deformable-body mechanics.and fluid mechanics. In this book
we will study rigid-body mechanics since it is a basic requirement for the
study of the mechanics of deformable bodies and the mechanics of fluids.
Furthermore, rigid-body mechanics is essential for the design and analysis
of many types of structural members, mechanical components, or electrical
devices encountered in engineering.

Rigid-body mechanics is divided into two areas: statics and dynamics.
Statics deals with the equilibrium of bodies, that is, those that are either
at rest or move with a constant velocity; whereas dynamics is concerned
with the accelerated motion of bodies. We can consider statics as a
special case of dynamics, in which the acceleration is zero; however,
statics deserves separate treatment in engineering education since many
objects are designed with the intention that they remain in equilibrium.
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Historical Development. The subject of statics developed very
carly in history because its principles can be formulated simply from
measurements of geometry and force. For example, the writings of
Archimedes (287-212 B.c.) deal with the principle of the lever. Studies of
the pulley. inclined plane, and wrench are also recorded in ancient
writings—at times when the requirements for engineering were limited
primarily to building construction.

Since the principles of dynamics depend on an accurate measurement
of time, this subject developed much later. Galileo Galilei (1564-1642)
was one of the first major contributors to this field. His work consisted of
experiments using pendulums and falling bodies. The most significant
contributions in dynamics, however, were made by Isaac Newton
(1642-1727), who is noted for his formulation of the three fundamental
laws of motion and the law of universal gravitational attraction. Shortly
after these laws were postulated, important techniques for their
application were developed by such notables as Euler, D'Alembert,
Lagrange, and others.

1.2 Fundamental Concepts

Before we begin our study of engineering mechanics, it is important to
understand the meaning of certain fundamental concepts and principles.

Basic Quantities. The following four quantities are used throughout
mechanics.

Length. Length is used to locate the position of a point in space and
thereby describe the size of a physical system. Once a standard unit of
length is defined, one can then use it to define distances and geometric
properties of a body as multiples of this unit.

Time. Time is conceived as a succession of events. Although the
principles of statics are time independent, this quantity plays an
important role in the study of dynamics.

Mass. Mass is a measure of a quantity of matter that is used to compare
the action of one body with that of another. This property manifests itself
as a gravitational attraction between two bodies and provides a measure
of the resistance of matter to a change in velocity.

Force. In general, force is considered as a “push™ or “pull” exerted by
one body on another. This interaction can occur when there is direct
contact between the bodies, such as a person pushing on a wall, or it can
occur through a distance when the bodies are physically separated.
Examples of the latter type include gravitational, electrical, and magnetic
forces. In any case, a force is completely characterized by its magnitude,
direction, and point of application,
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Idealizations. Models or idealizations are used in mechanics in
order to simplify application of the theory. Here we will consider three
important idealizations.

Particle. A particle has a mass, but a size that can be neglected. For
example, the size of the earth is insignificant compared to the size of its
orbit, and therefore the earth can be modeled as a particle when studying
its orbital motion. When a body is idealized as a particle. the principles of
mechanics reduce to a rather simplified form since the geometry of the
body will not be involved in the analysis of the problem.

Rigid Body. A rigid body can be considered as a combination of a
large number of particles in which all the particles remain at a fixed
distance from one another, both before and after applying a load. This
model is important because the material properties of any body that is
assumed to be rigid will not have to be considered when studying the
effects of forces acting on the body. In most cases the actual deformations
occurring in structures, machines, mechanisms, and the like are relatively
small, and the rigid-body assumption is suitable for analysis.

Concentrated Force. A concentrated force represents the effect of a
loading which is assumed to act at a point on a body. We can represent a
load by a concentrated force. provided the arca over which the load is
applied is very small compared to the overall size of the body. An example
would be the contact force between a wheel and the ground.

v 2 LA aas
Three forces act on the hook at A. Since these Steel is a common engineering material that does not deform
forces all meet at a point, then for any force very much under load. Therefore, we can consider this railroad
analysis, we can assume the hook to be wheel to be a rigid body acted upon by the concentrated force

represented as a particle. of the rail.
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Newton’s Three Laws of Motion. Engineering mechanics is
formulated on the basis of Newton’s three laws of motion, the validity of
which is based on experimental observation. These laws apply to the
motion of a particle as measured from a nonaccelerating reference
frame. They may be briefly stated as follows.

First Law. A particle originally at rest, or moving in a straight line with
constant velocity, tends to remain in this state provided the particle is not
subjected to an unbalanced foree, Fig. 1-la.

F. F;
55 2%
F‘
Equilibrium
(a)

Second Law. A particle acted upon by an unbalanced force F
experiences an acceleration a that has the same direction as the force
and a magnitude that is directly proportional to the foree, Fig. 1-1h.*
If F is applied 1o a particle of mass m, this law may be expressed
mathematically as

F = ma (1-1)

F—s() L

Accelerated motion
(b)

Third Law. The mutual forces of action and reaction between two
particles are equal. opposite, and collinear, Fig. 1-1c.

Morceol Aon B
P
A BN force of Bon A
Action - reaction
(<)

Fig. 1-1

*Stated another way, the unbalanced force acting on the particle is proportional to the
time rate of change of the particle’s linear momentum.
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Newton's Law of Gravitational Attraction. Shortly after

formulating his three laws of motion, Newton postulated a law governing the

gravitational attraction between any two particles. Stated mathematically,
LRy

F=G— (1-2)

r

F = force of gravitation between the two particles

G = universal constant of gravitation; according to
experimental evidence, G = 66.73(107'%) m?/(kg - s%)

my, my = mass of each of the two particles
r = distance between the two particles

Weight. According to Eq. 1-2, any two particles or bodies have a
mutual attractive (gravitational) force acting between them. In the case
of a particle located at or near the surface of the carth, however, the only
gravitational force having any sizable magnitude is that between the
carth and the particle. Consequently. this force. termed the weight, will be
the only gravitational force considered in our study of mechanics.

From Eq. 1-2, we can develop an approximate expression for finding the
weight Wof a particle having a mass m; = m. If we assume the earth to be
a nonrotating sphere of constant density and having a mass m, = M. then
if ris the distance between the earth’s center and the particle, we have

mM,
Wi=G—3 The astronaut is weightless, for all
e practical purposes, since she is far

removed from the gravitational field of

the earth.
By comparison with F = ma, we can see that g is the acceleration due to
gravity. Since it depends on r, then the weight of a body is nor an absolute
quantity. Instead, its magnitude is determined from where the measurement
was made. For most engineering calculations, however, g is determined at
sea level and at a latitude of 457, which is considered the “standard location.”

Letting g = GM,/r* yields

1.3 Units of Measurement

The four basic quantities—length, time, mass, and force—are not all
independent from one another:in fact, they are refated by Newton's second
law of motion, F = ma. Because of this, the units used to measure these
quantities cannot all be selected arbitrarily. The equality F = ma is
maintained only if three of the four units, called base units, are defined
and the fourth unit is then derived from the equation.
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S| Units. The International System of units, abbreviated SI after the
French “Systéme International d'Unités,” is a modern version of the metric
system which has received worldwide recognition. As shown in Table 1-1,
the SI system defines length in meters (m). time in seconds (s), and mass in
kilograms (kg). The unit of force, called a newton (N), is derived from
F = ma. Thus, 1 newton is equal to a force required to give 1 kilogram of
mass an aceeleration of 1 m/s* (N = kg m/s%).

If the weight of a body located at the “standard location™ is to be
determined in newtons, then Eq. 1-3 must be applied. Here measurements
give g = 9.806 65 m/s*; however, for caleulations, the value g = 9.81 m/s’
will be used. Thus,

W =mg (g = 9.81 m/s?) (1-4)

Therefore, a body of mass 1 kg has a weight of 9.81 N, a 2-kg body weighs
19.62 N, and so on, Fig. 1-2a.

U.S. Customary. Inthe US. Customary system of units (FPS) length
is measured in feet (ft), time in seconds (s). and force in pounds (Ib),
(b) Table 1-1. The unit of mass, called a slug, is derived from F = ma. Hence,
Fig. 1-2 1 slug is equal to the amount of matter accelerated at 1 fi/s* when acted
upon by a force of 11b (slug = 1b-s%/ft).
Therefore, if the measurements are made at the “standard location.”
where g = 32.2 ft/s*, then from Eq. 1-3,

"= % (g = 3221ft/s% (1-5)

And so a body weighing 32.2 Ib has a mass of 1 slug, a 64.4-1b body has a
mass of 2 slugs. and so on, Fig. 1-2b.

TABLE 1-1 Systems of Units

Name Length Time Mass Force
International meter second kilogram newton*
System of Units N
SI m s kg kg-m
(%)
U.S. Customary foot second pound
bES (“?.:.Sf)
ft 5 ft Ib

*Drerived unit.
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Conversion of Units. Table 1-2 provides a set of direct conversion
factors between FPS and SI units for the basic quantities. Also. in the
FPS system, recall that 1 ft = 12 in. (inches), 5280 ft = 1 mi (mile),
1000 1b = 1 kip (kilo-pound), and 2000 b = 1 ton.

TABLE 1-2 Conversion Factors

Unit of Unit of
Quantity Measurement (FPS) Equals Measurement (SI)
Force Ib 4448 N
Mass slug 14.59 kg
Length ft 0.304 8 m

1.4 The International System of Units

The SIsystem of units is used extensively in this book since it is intended
to become the worldwide standard for measurement. Therefore, we will
now present some of the rules for its use and some of its terminology
relevant to engineering mechanics,

Prefixes. When a numerical quantity is either very large or very
small. the units used to define its size may be modified by using a prefix.
Some of the prefixes used in the S1 system are shown in Table 1-3. Each
represents a multiple or submultiple of a unit which, if applied
successively, moves the decimal point of a numerical quantity to every
third place.* For example, 4 000 000 N =4 000 kN (kilo-newton) = 4 MN
(mega-newton), or (L0053 m = 5 mm (milli-meter). Notice that the S1
system does not include the multiple deca (10) or the submultiple centi
(0.01), which form part of the metric system. Except for some volume
and arca measurements, the use of these prefixes is to be avoided in
science and engineering.

TABLE 1-3 Prefixes

Exponential Form Prefix SI Symbol

Multiple

1.000 000 000 10° giga G

1 000 000 10 mega M

1 000 10° kilo k
Submultiple

0.001 10+ milli m
0.000 001 106 micro m
0,000 000 001 107 nano n

“ The kilogram is the only base unit that is defined with a prefis.
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Computers are often used in engineening for
advanced design and analysis.

Rules for Use. Here arc a few of the important rules that describe
the proper use of the various SI symbols:

e Quantities defined by several units which are multiples of one another
are separated by a dor to avoid confusion with prefix notation, as
indicated by N = kg-m/s* = kg-m-s 2. Also, m - s (meter-second),
whereas ms (milli-second).

* The exponential power on a unit having a prefix refers to both the
unit and its prefix. For example, uN® = (uN)* = uN - uN. Likewise,
mm’ represents (mm)® = mm - mm.

e With the exception of the base unit the kilogram, in general avoid
the use of a prefix in the denominator of composite units. For
example, do not write N/mm, but rather kN/m; also, m/mg should
be written as Mm/kg.

®  When performing calculations, represent the numbers in terms of
their base or derived units by converting all prefixes to powers of 10.
The final result should then be expressed using a single prefix. Also,
after calculation, it is best to keep numerical values between 0.1 and
1000; otherwise, a suitable prefix should be chosen. For example,

]

(50 kN)(60 nm) = [50(10*) N][60(10™") m]

=3000(10°") N m = 3(10°)N-m = 3mN-m

1.5 Numerical Calculations

Numerical work in engineering practice is most often performed by using
handheld calculators and computers. It is important, however, that the
answers to any problem be reported with both justifiable accuracy and
appropriate significant figures. In this section we will discuss these topics
together with some other important aspects involved in all engineering
calculations.

Dimensional Homogeneity. The terms of any equation used to
describe a physical process must be dimensionally homogeneous; that is,
cach term must be expressed in the same units. Provided this is the case,
all the terms of an equation can then be combined if numerical values
are substituted for the variables. Consider, for example, the equation
s = ut + jar’,where,in SI units, 5 is the position in meters, m, ¢ is time in
seconds, s, v is velocity in m/s and a is acceleration in m/s’. Regardless of
how this equation is evaluated, it maintains its dimensional homogeneity.
In the form stated, each of the three terms is expressed in meters
[m,(m/€) £ (m/&%) SJ.I or solving for a. a = 25/1* = 2v/1, the terms are
cach expressed in units of m/s* [m/s°, m/s, (m/s)/s].
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Keep in mind that problems in mechanics always involve the solution
of dimensionally homogeneous equations, and so this fact can then be
used as a partial check for algebraic manipulations of an equation.

Significant Figures. The number of significant figures contained in
any number determines the accuracy of the number. For instance, the
number 4981 contains four significant figures. However, if zeros occur at
the end of a whole number, it may be unclear as to how many significant
figures the number represents. For example, 23 400 might have three (234),
four (2340), or five (23 400) significant figures. To avoid these ambiguities,
we will use engineering notation 1o report a result. This requires that
numbers be rounded off to the appropriate number of significant digits
and then expressed in multiples of (10%). such as (10%), (10%), or (10-Y). For
instance, if 23 400 has five significant figures, it is written as 23.400(10°), but
if it has only three significant figures. it is written as 23.4(10%).

If zeros occur at the beginning of a number that is less than one, then the
zeros are not significant. For example, 0.00821 has three significant figures,
Using engineering notation, this number is expressed as 821(107).
Likewise, 0.000582 can be expressed as 0.582(10-%) or 582(10-9).

Rounding Off Numbers. Rounding off a number is necessary so
that the accuracy of the result will be the same as that of the problem
data. As a general rule, any numerical figure ending in five or greater is
rounded up and a number less than five is rounded down. The rules for
rounding off numbers are best illustrated by examples. Suppose the
number 3.5587 is to be rounded off to three significant figures. Because
the fourth digit (8) is greater than 5, the third number is rounded up to
3.56. Likewise 0.5896 becomes 0.590 and 9.3866 becomes 9.39. If we
round off 1.341 to three significant figures, because the fourth digit (1) is
less than 5, then we get 1.34. Likewise 0.3762 becomes 0.376 and 9.871
becomes 9.87. There is a special case for any number that has a 5 with
zeroes following it. As a general rule, il the digit preceding the 5 is an
even number, then this digit is nor rounded up. If the digit preceding the
5 is an odd number, then it is rounded up. For example, 75.25 rounded off
to three significant digits becomes 75.2,0.1275 becomes 0.128, and 0.2555
becomes (0.256.

Calculations. When a sequence of calculations is performed, it is
best to store the intermediate results in the calculator. In other words, do
not round off calculations until expressing the final result. This
procedure maintains precision throughout the series of steps to the final
solution. In this text we will generally round off the answers to three
significant figures since most of the data in engineering mechanics, such
as geometry and loads, may be reliably measured to this accuracy.

11
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1.6 General Procedure for Analysis

The most effective way of learning the principles of engineering mechanics
is 10 solve problems. To be successful at this. it is important to always
present the work in a logical and orderly manner, as suggested by the
following sequence of steps:
* Read the problem carefully and try to correlate the actual physical
situation with the theory studied.
Tabulate the problem data and draw any necessary diagrams.
Apply the relevant principles, generally in mathematical form. When
writing any equations, be sure they are dimensionally homogeneous.
e Solve the necessary equations, and report the answer with no more
than three significant figures.

When solving problems, do the work as  ® Study the answer with technical judgment and common sense to
neatly as possible. Being neat will stimulate determine whether or not it seems reasonable.

clear and orderly thinking, and vice versa,
Important Points

e Statics is the study of bodies that are at rest or move with
constant velocity.

e A particle has a mass but a size that can be neglected.

¢ A rigid body does not deform under load.

¢ Concentrated forces are assumed to act at a point on a body.
# Newton's three laws of motion should be memorized.

e Mass is measure of a quantity of matter that does not change
from one location to another.

¢ Weight refers to the gravitational attraction of the earth on a
body or quantity of mass. Its magnitude depends upon the
clevation at which the mass s located.

¢ In the SI system the unit of force, the newton, is a derived unit.
The meter. second, and kilogram are base units.

e Prefixes G, M.k, m, p, and n are used to represent large and small
numerical quantities. Their exponential size should be known,
along with the rules for using the SI units.

e Perform numerical calculations with several significant figures,
and then report the final answer to three significant figures.

* Algebraic manipulations of an equation can be checked in part by
verifying that the equation remains dimensionally homogeneous.

* Know the rules for rounding off numbers.
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Convert 2 km/h to m/s How many [1/s is this?

SOLUTION
Since 1 km = 1000 m and 1 h = 3600 s, the factors of conversion are
arranged in the following order. so that a cancellation of the units can

be applied:
2 km (1000 m 1 K
2 - —— — —_—
“hm="y ( ki )(3ﬁms)

2000 m
= = 3 5 5.
3600 s 0.556 m/s Ans.

From Table 1-2, 1 ft = 0.3048 m. Thus,

(u.ss&m)( 1Mt )
5 0.3048 a1

1.82 ft/s Ans.

0.556 m/s

]

NOTE: Remember (o round off the final answer to three significant
figures.

Convert the quantities 300 Ib - s and 52 slug/{t* to appropriate SI units.

SOLUTION
Using Table 1-2,11b = 44482 N.
4448 N
3 iE= 3 T iy
00 Ib-s 00 W s( L )
= 13345N-5=133kN"-s Ans.

Since 1 slug = 14593 8 kg and 1 ft = 0.304 8 m, then
525@(]4‘59 kg)( 1§ )"

e | shug 0.304 8m

26.8(10°) kg/m’

26.8 Mg/m’ Ans.

52 slug/ft =
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. EXAMPLE | 1.3

Evaluate each of the following and express with SI units having an
appropriate prefix: (a) (50 mN)(6 GN), (b) (400 mm)(0.6 MN)?2,
(c) 45 MN*/900 Gg.

SOLUTION
First convert each number to base units, perform the indicated
operations, then choose an appropriate prefix.

Part (a)

]

(50 mN)(6 GN) = [50(107%) N][6(10”) N]

300(10% N?

300(10°) Nz(l—’?i)(l—li—r"—)
1PN/ 10PN

= 300 kN? Ans.

]

.

NOTE: Keep in mind the convention kN* = (kN)* = 10° N°.

Part (b)
(400 mm)(0.6 MN)* = [400(10™%) m][0.6(10°) NJ*
[400(107%) m][0.36(10"%) N?]

= 144(10") m - N?
= 144 Gm-N? Ans.
‘We can also write
4 1 MN\/1MN
144(10") m - N? = 144(1[}")1]1-]\‘2(%)(‘—)
100K /\10° N
= (.144 m - MN? Ans.

Part (c)
45 MN®  45(10°N)?

900 Gg  900(10°) kg

= 50(10") M /kg
1kN Y 1
= 50(10” N“( ) —
03 18X/ kg

= 50 kN%/kg Ans,




PrOBLEMS 1%

“leromiews

1-1. Round off the following numbers to three significant
figures: (a) 4.65735 m. (b) 55.578 s. (c) 4555 N. and
(d) 2768 kg.

1-2. Represent each of the following combinations of units
in the correct SI form using an appropnate prefix: (a) pMN,
(b) N/um, (c) MN/ks*, and (d) kN/ms.

1-3. Represent each of the following quantities in the
correct SI form using an appropriate prefix: (a) 0.000431 ke.
(b) 35.3(10%) N. and (¢) 0.00532 km.

*1-4. Represent cach of the following combinations of
units in the correct SI form: (a) Mg/ms. (b) N/mm, and
(c) mN/(kg * ps).

1-5. Represent each of the following combinations of
units in the correct SI form using an appropriate prefix:
(a) kN/us, (b) Mg/mN, and (¢) MN/ (kg - ms).

1-6. Represent each of the following to three significant
figures and express each answer in Sl units using an
appropriate prefix: (a) 45 320 kN. (b) 568(10%) mm. and (c)
0.005 63 mg.

1-7. A rocket has a mass of 250(10°) slugs on earth.
Specify (a) its mass in SI units and (b) its weight in SI units.
If the rocket is on the moon, where the acceleration due to
gravity is g, = 530 fi/s’, determine to three significant
figures (c) its weight in SI units and (d) its mass in SI units.

*1-8. [Ifacaristraveling at 55 mi/h, determine its speed in
kilometers per hour and meters per second.

1-9. The pascal (Pa) is actually a very small unit of
pressure. To show this, convert 1 Pa = 1 N/m® to Ib/fi’.
Atmospheric pressure at sea level is 14.7 Ib/in’. How many
pascals is this?

1-10.  What is the weight in newtons of an object that has a
mass of: (a) 10 kg. (b) 0.5 g. and (c) 4.50 Mg? Express the
result to three significant figures. Use an appropriate prefix.

1-1L  Evaluate cach of the following to three significant
figures and express each answer in S| units using
an appropriate prefix: (a) 354 mg(45 km)/(0.0356 kN),
(b) (0,004 53 Mg)(201 ms), and (c) 435 MN/23.2 mm.

*1-12. The specific weight (wi./vol.) of brass is 520 Ib/ft’.
Determine its density (mass/vol.) in SI units Use an
appropriate prefix.

1-13. Convert cach of the following to three significant
figures: (a) 20 1b-ft to N-m, (b) 450 Ib/fi’ 1o kN/m’, and
(c) 15 ft/h to mm/s.

1-14. The density (mass/volume) of aluminum is
526 slug/ft’. Determine its density in SI units. Use an

appropriate prefix.

1-15. Water has a density of 1.94 slug/ft’, What is the
density expressed in SI units? Express the answer to three
significant figures.

*1-16. Two particles have a mass of 8 kg and 12 kg,
respectively. If they are 800 mm apart, determine the force
of gravity acting between them, Compare this result with
the weight of each particle.

1-17. Determine the mass in kilograms of an object that
has a weight of (a) 20 mN, (b) 150 kN, and (c) 60 MN.
Express the answer 1o three significant figures.

1-18. Evaluate each of the following to three significant
figures and express each answer in Sl units using an
appropriate prefix: (a) (200 kN)%, (b) (0.005 mm)°. and
(c) (400 m)*,

1-19. Using the base units of the SI system. show that
Eq. 1-2 is a dimensionally homogeneous equation which
gives Fin newtons. Determine to three significant figures
the gravitational force acting between two spheres that
are touching each other. The mass of each sphere is 200 kg
and the radius is 300 mm.

*1-20. Evaluate cach of the following to three significant
figures and express each answer in Sl units using an
appropriate prefix: (a) (0.631 Mm)/(8.60 kg)*. and
(b) (35 mm)*(48 kg)",

1-21. Evaluate (204 mm)(0.00457 kg)/(34.6 N) to three
significant figures and express the answer in SI units using
an appropriate prefix.



This bridge tower is stabilized by cables that exert forces at the points of connection.
In this chapter we will show how to express these forces as Cartesian vectors and then
determine the resultant force.




Force Vectors

CHAPTER OBJECTIVES

®* To show how to add forces and resolve them into components
using the Parallelogram Law.

® To express force and position in Cartesian vector form and explain
how to determine the vector's magnitude and direction.

® To introduce the dot product in order to determine the angle
between two vectors or the projection of one vector onto another.

2.1 Scalars and Vectors

All physical quantities in engineering mechanics are measured using either
scalars or vectors.

Scalar. A scalar is any positive or negative physical quantity that can
be completely specified by its magnitude. Examples of scalar quantities
include length, mass, and time.

Vector. A vector is any physical quantity that requires both a
magnitude and a direction for its complete description. Examples of
vectors encountered in statics are force, position, and moment. A vector
is shown graphically by an arrow. The length of the arrow represents the
magnitude of the vector, and the angle # between the vector and a fixed
axis defines the direction of its line of action. The head or tip of the arrow
indicates the sense of direction of the vector, Fig. 2-1.

In print, vector quantities are represented by bold face letters such as
A, and its magnitude of the vector is italicized, A. For handwritten work,
it is often convenient to denote a vector quantity by simply drawing an
arrow on top of it, A.

Magnitude

Sense

A

# Direction
N

Fig. 2-1

/
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Scalar multiplication and division

Fig. 2-2

2.2 Vector Operations

Multiplication and Division of a Vector by a Scalar. Ifa
vector is multiplied by a positive scalar, its magnitude is increased by that
amount. When multiplied by a negative scalar it will also change the
directional sense of the vector. Graphic examples of these operations are
shown in Fig. 2-2.

Vector Addition. All vector quantities obey the parallelogram law
of addition. To illustrate, the two “component™ vectors A and B in
Fig. 2-3a are added to form a “resultant” vector R = A + B using the
following procedure:
* First join the tails of the components at a point so that it makes
them concurrent, Fig. 2-3b.
® From the head of B, draw a line parallel to A. Draw another line
from the head of A that is parallel 1o B. These two lines intersect at
point P to form the adjacent sides of a parallelogram.
e The diagonal of this parallelogram that extends to P forms R, which
then represents the resultant vector R = A + B, Fig. 2-3¢.

R=A+B

Parallelogram law
(a) (b) (¢)

-}

Fig. 2-3

We can also add B to A, Fig. 2-4a, using the triangle rule, which is a
special case of the parallelogram law, whereby vector B is added 1o
vector A in a “head-to-tail” fashion, i.¢., by connecting the head of A 10
the tail of B, Fig. 2-4b. The resultant R extends from the tail of A to the
head of B. In a similar manner, R can also be obtained by adding A to B,
Fig. 2-4c. By comparison. it is seen that vector addition is commutative;
in other words, the vectors can be added in either order, ie.,
R=A+B =B +A.



2.2 Vector OPERATIONS

.

R
B A
\
R=A+B R=B+A
Triangle rule Triangle rule
(a) (b) ]
Fig. 24

As a special case, if the two vectors A and B are collinear, i.c., both
have the same line of action, the parallelogram law reduces to an
algebraic or scalar addition R = A + B, as shown in Fig. 2-5.

i
AAJ

B

A B

R=A+8B
Addition of collincar vectors

Fig. 2-5

Vector Subtraction. The resultant of the difference between two
vectors A and B of the same type may be expressed as

R'=A -B=A + (-B)
This vector sum is shown graphically in Fig. 2-6. Subtraction is therefore

defined as a special case of addition, so the rules of vector addition also
apply to vector subtraction.

-B
t\
R A e R’ A
B - h -B
Parallelogram law Triangle construction

Veetor subtraction

Fig. 2-6

19
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2.3 Vector Addition of Forces

Experimental evidence has shown that a force is a vector quantity since
it has a specified magnitude, direction, and sense and it adds according 1o
the parallelogram law. Two common problems in statics involve either
finding the resultant force, knowing its components, or resolving a known
force into two components. We will now describe how each of these
problems is solved using the parallelogram law.

Finding a Resultant Force. The two component forces Fy and F,
acting on the pin in Fig. 2-7a can be added together to form the resultant
force Fg = Fy + F5, as shown in Fig. 2-7b. From this construction, or using
The parallelogram law must be used 1o the triangle rule, Fig. 2-7¢, we can apply the law of cosines or the law of
determine the resultant of the two sines to the triangle in order to obtain the magnitude of the resultant
forces acting on the hook. force and its direction.

Fy=F, +F;
(a) (b) (<)

Finding the Components of a Force. Sometimes it is
necessary to resolve a force into two components in order to study its
pulling or pushing effect in two specific directions. For example, in
Fig. 2-8a, F is to be resolved into two components along the two
members, defined by the v and v axes. In order to determine the
magnitude of each component, a parallelogram is constructed first, by
drawing lines starting from the tip of F, one line parallel to u, and the
other line parallel to v. These lines then intersect with the v and « axes,
forming a parallelogram. The force components F, and F, are then
established by simply joining the tail of F to the intersection points on
the u and v axes, Fig. 2-8b. This parallelogram can then be reduced to a
triangle, which represents the triangle rule, Fig. 2-8¢. From this, the law of

Using the parallclogram law force F
caused by the vertical member can be x . ; :
resolved into components acting along sines can then be applied to determine the unknown magnitudes of the
the suspension cables a and b, components.
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(a) (b)

Fig. 2-8

Addition of Several Forces. If more than two forces are to be
added, successive applications of the parallelogram law can be carried
out in order to obtain the resultant force. For example, if three forces Fy,
F,. F; act at a point O, Fig. 2-9, the resultant of any two of the [orces is
found, say, F; + F.—and then this resultant is added to the third force,
yiclding the resultant of all three forces; i.c., Fg = (F; + F;)+F;. Using
the parallelogram law to add more than two forces, as shown here, often
requires extensive geometric and trigonometric calculation to determine
the numerical values for the magnitude and direction of the resultant.
Instead, problems of this type are easily solved by using the “rectangular-
component method,” which is explained in Sec. 2.4.

The resultant force Fi on the hook
requires the addition of F; + F, then this
resultant is added to Fy.

21
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Procedure for Analysis

Problems that involve the addition of two forces can be solved as
follows:

Parallelogram Law.

* Two “component” forces Fy and F, in Fig. 2-10a add according to
the parallelogram law, yielding a resultant force Fy that forms the
diagonal of the parallelogram.

» If a force F is to be resolved into components along two axes u
and v, Fig. 2-10b, then start at the head of force F and construct
lines parallel to the axes, thereby forming the parallelogram. The
sides of the parallelogram represent the components, F, and F .

e Label all the known and unknown force magnitudes and the
angles on the sketch and identify the two unknowns as the
magnitude and direction of Fy or the magnitudes of its
components.

Trigonometry.

® Redraw a hall portion of the parallelogram to illustrate the
triangular head-to-tail addition of the components.

* From this triangle, the magnitude of the resultant force can be

Cosine law: F v " i 5 P P

T determined using the law of cosines. and its direction is
C=vYA"+ B - 2ABcos¢ A s ? !
Sifie law: determined from the law of sines. The magnitudes of two force
B ] components are determined from the law of sines. The formulas
sing sinh sine are given in Fig. 2-10c.

(c)
Fig. 2-10

Important Points

® A scalar is a positive or negative number.

® A vector is a quantity that has a magnitude, direction, and sense.

& Multiplication or division of a vector by a scalar will change the
magnitude of the vector. The sense of the vector will change if the

scalar is negative.

* As a special case, if the vectors are collinear, the resultant is
formed by an algebraic or scalar addition.
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The screw eye in Fig. 2-1la is subjected to two forces, F; and F,.
Determine the magnitude and direction of the resultant force,

1360 — 2(65°
it 7 MY

-

SOLUTION

Parallelogram Law. The parallelogram is formed by drawing a line
from the head of Fy that is parallel to F». and another line from the
head of F; that is parallel to Fy. The resultant force Fy extends to where
these lines intersect at point A, Fig. 2-11h. The two unknowns are the
magnitude of Fg and the angle # (theta).

Trigonometry. From the parallelogram, the vector triangle is
constructed, Fig. 2-11¢. Using the law of cosines

Fr = V(100N)? + (150 N)> — 2(100 N)(150 N) cos 115°
= V10000 + 22500 — 30 000(—0.4226) = 212.6 N

=213N o
Applying the law of sines to determine 8, Fig. 2-11
IS0N _ 212.6N o UM 5
sin®  sin115° S = T )
= 39.8°

Thus, the direction & (phi) of Fg, measured from the horizontal, is
¢ = 39.8° + 15.0° = 54.8° Ans.

NOTE: The results seem reasonable, since Fig. 2-11b shows Fg to have
a magnitude larger than its components and a direction that is
between them.

23




24 CHarPTER 2 FORCE VECTORS

EXAMPLE |2.2

Resolve the horizontal 600-Ib foree in Fig. 2-124 into components
acting along the & and v axes and determine the magnitudes of these

- components.

600 Ib

(c)

Fig. 2-12

SOLUTION

The parallelogram is constructed by extending a line from the fiead of
the 600-1b force parallel to the v axis until it intersects the u axis at
point B, Fig. 2-12b. The arrow from A to B represents F,. Similarly,
the line extended from the head of the 600-1b force drawn parallel to
the u axis intersects the v axis at point €, which gives F,.

The vector addition using the triangle rule is shown in Fig. 2-12¢. The
two unknowns are the magnitudes of F, and F,. Applying the law of

sines,
A _ 6001b
sin 1207 sin 307
F,=10391b Ans.
F, _ 6001b
sin 30°  sin 30°
F, = 6001b Ans.

NOTE: The result for F, shows that sometimes a component can have
a greater magnitude than the resultant.
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Determine the magnitude of the component force F in Fig. 2-13a and
the magnitude of the resultant force Fj, if Fg is directed along the
positive y axis.

(b) ic)

Fig. 2-13

SOLUTION

The parallelogram law of addition is shown in Fig. 2-135h, and the
triangle rule is shown in Fig. 2-13c. The magnitudes of Fg and F are the
two unknowns. They can be determined by applying the law of sines.

~_ 2001b
sin 60°  sin 45°

-
Il

2451b Ans.

_F R 200 1b
sin 75°  sin 45°

=
Il

273 1b Ans.
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EXAMPLE | 2.4

It is required that the resultant force acting on the eyebolt in
Fig. 2-14a be directed along the positive x axis and that F, have a
minimum magnitude. Determine this magnitude. the angle €, and the
corresponding resultant force.

Fy = 800N

(a) (b) (]

Fig. 2-14

SOLUTION

The triangle rule for Fi = F; + F; is shown in Fig. 2-14b. Since the
magnitudes (lengths) of Fy and F; are not specified, then F; can actually
be any vector that has its head touching the line of action of Fy.
Fig. 2-14c. However, as shown. the magnitude of F, is a minimum or the
shortest length when its line of action is perpendicular 10 the line of
action of Fg, that is, when

= 90" Ans.

Since the vector addition now forms a right triangle, the two unknown
magnitudes can be obtained by trigonometry.

Fg = (800 N)cos 60" = 400 N Ans.

F> = (800 N)sin 60° = 693 N Ans.
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- FUNDAMENTAL PROBLEMS*

F2-1. Determine the magnitude of the resultant force F24. Resolve the 30-1b force into components along the
acting on the screw eye and its direction measured w and v axes, and determine the magnitude of each of these
clockwise from the x axis. components. g

F2—+4
F2-2. Two forces act on the hook. Determine the F2-5. 'The force F = 450 1b acts on the frame. Resolve
magnitude of the resultant force. this force into components acting along members A8 and

AC, and determine the magnitude of each component.

F2-2
F2-5
F2-3. Determine the magnitude of the resultant force F2-6. If force Fis to have a component along the i axis of
and its direction measured counterclockwise from the F, = 6kN, determine the magnitude of F and the

positive x axis. magnitude of its component F, along the » axis.

F2-6

* Partial solutions and answers to all Fundamental Problems are given in the back of the book,
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Srrosiews

o2-1. If# = 307 and T = 6 kN, determine the magnitude
of the resultant force acting on the eyebolt and its direction
measured clockwise from the positive x axis.

2-2, If# = 60° and T = 5 kN, determine the magnitude
of the resultant force acting on the eyebolt and its direction
measured clockwise from the positive x axis.

2-3. If the magnitude of the resultant force is to be 9 kN
directed along the positive v axis, determine the magnitude of
force T acting on the eyebolt and its angle 6.

Probs. 2-1/2/3

*2-4. Determine the magnitude of the resultant force
acting on the bracket and its direction measured
counterclockwise from the positive i axis.

*2-5. Resolve F; into components along the « and v axes,
and determine the magnitudes of these components.

2-6. Resolve F; into components along the 1 and v axes,
and determine the magnitudes of these components.

Fy=1501b

Probs. 2-4/5/6

2-7. If Fz = 2kN and the resultant force acts along the
positive u axis, determine the magnitude of the resultant
force and the angle 6.

“2-8. If the resultant force is required to act along the
positive i axis and have a magnitude of 5 kN, determine the
required magnitude of Fg and its direction 6.

Probs, 2-7/8

*2-9. The plate is subjected to the two forces at A and B
as shown. If @ = 60°, determine the magnitude of the
resultant of these two forces and its direction measured
clockwise from the horizontal.

2-10. Determine the angle of # for connecting member A
1o the plate so that the resultant force of F, and Fpg is
directed horizontally to the right. Also, what is the magnitude
of the resultant force?

Fy=8kN

Fp=6kN
Probs. 2-9/10
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2-11. If the tension in the cable is 400 N, determine the 2-14. Determine the design angle #(0° = 6 = 90°) for

magnitude and direction of the resultant force acting on strut AB so that the 400-lb horizontal force has a

the pulley. This angle is the same angle # of line AB on the component of 500 1b directed from A towards C. What is the

tailboard block. component of force acting along member AB? Take
& = 40°,

2-15. Determine the design angle & (0" = ¢ = 9%0°) .
between struts AR and AC so that the 400-1b horizontal

force has a component of 600 Ib which acts up to the left, in
the same direction as from B towards A. Take # = 30°.

Prob. 2-11 Probs. 2-14/15
*2-12. The device is used for surgical replacement of the *2-16. Resolve Fy into components along the i and v axes
knee joint. If the force acting along the leg is 360 N, and determine the magnitudes of these components.

determine its components along the x and v’ axes.
i * ’ #2-17. Resolve F; into components along the u and v axes

*2-13, The device is used for surgical replacement of the and determine the magnitudes of these componenis.
knee joint. If the force acting along the leg is 360 N,
determine its components along the x' and y axes.

Probs. 2-12/13 Probs. 2-16/17
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2-18. The truck is to be towed using two ropes. Determine
the magnitudes of forces F4 and Fg acting on each rope in
order to develop a resultant force of 950 N directed along
the positive x axis. Set 8 = 50°.

2-19. The truck is to be towed using two ropes. If the
resultant force is to be 950 N, directed along the positive x
axis, determine the magnitudes of forces F and Fg acting
on each rope and the angle ¢ of Fy so that the magnitude of
Fy is a minimum. F 4 acts at 207 from the x axis as shown.

v

Prob. 2-18/19

*2-20. If ¢ = 45°, F) = 5kN, and the resultant force is
6kN directed along the positive y axis. determine the required
magnitude of F; and its direction 6.

#2-21. If ¢ = 30° and the resultant force is to be 6 kN
directed along the positive y axis. determine the magnitudes
of Fy and F; and the angle # if F; is required to be a minimum.

2-22, If & = 30°, F; = 5kN. and the resultant force is to
be directed along the positive v axis, determine the
magnitude of the resultant force if F; is to be a minimum.
Also, what is F> and the angle 67

Probs. 2-20/21/22

2-23. 1f @ = 307 and F; = 6 kN, determine the magnitude
of the resultant force acting on the plate and its direction
measured clockwise from the positive x axis.

*2-24. If the resultant force Fg is directed along a
line measured 75° clockwise from the positive x axis and
the magnitude of F5 is to be a minimum, determine the
magnitudes of Fg and F; and the angle 6 = 90",

Probs. 2-23/24

#2-25. Two forces F; and F; act on the screw eve. If their
lines of action are at an angle # apart and the magnitude
of each force is Fy = F, = F. determine the magnitude of
the resultant force Fg and the angle between Fy and Fy.

Prob. 2-25



2-26. The log is being towed by two tractors A and B.
Determine the magnitudes of the two towing forces F 4 and
Fy if it is required that the resultant force have a magnitude
Fg = 10kN and be directed along the v axis. Set 0 = 15°,

2-27. The resultant Fg of the two forces acting on the log is
to be directed along the positive x axis and have a magnitude
of 10 kN, determine the angle § of the cable. attached to B such
that the magnitude of force Fy in this cable is a minimum.
What is the magnitude of the force in each cable for this
situation?

v

Probs. 2-26/27

*2-28. ‘The beam is to be hoisted using two chains. Deter-
mine the magnitudes of forces F; and Fg acting on each chain
in order to develop a resultant force of 600 N directed along
the positive y axis Set # = 45°,

#2-29. The beam is to be hoisted using two chains. If the
resultant force is to be 600 N directed along the positive y
axis, determine the magnitudes of forces F 4 and Fy acting on
each chain and the angle 8 of Fj so that the magnitude of Fg
is a minimum. F 4 acts at 30° from the y axis, as shown.

v

Fy Fy

Probs. 2-28/29
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2-30. Three chains act on the bracket such that they create
a resultant force having a magnitude of 500 Ib. If two of the
chains are subjected to known forces, as shown, determine
the angle 6 of the third chain measured clockwise from the
positive x axis, so that the magnitude of force F in this chain
is a minimum. All forces lie in the x-y plane. What is the
magnitude of F? Hine: First find the resultant of the two
known forces. Force F acts in this direction.

200 1b Prob. 2-30

2-31. Three cables pull on the pipe such that they create a
resultant force having a magnitude of 900 Ib. If two of the
cables are subjected to known forces, as shown in the figure,
determine the angle @ of the third cable so that the
magnitude of force F in this cable is a minimum. All forces
lie in the x-v plane. What is the magnitude of F? Hinr: First
find the resultant of the two known forces.

Prob, 2-31
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(b)

Fig. 2-15

2.4 Addition of a System of Coplanar
Forces

When a force is resolved into two components along the x and y axes. the
components are then called recrangular components. For analytical work
we can represent these components in one of two ways, using either scalar
notation or Cartesian vector notation.

Scalar Notation. The rectangular components of force F shown in
Fig. 2-15a are found using the parallelogram law, so that F = F, + F,.
Because these components form a right triangle, their magnitudes can be
determined from

Fe= Fcosh and F, = Fsin#

Instead of using the angle 0. however, the direction of F can also be
defined using a small “slope™ triangle, such as shown in Fig. 2-15b. Since
this triangle and the larger shaded triangle are similar, the proportional
length of the sides gives

F_a
F ¢

or
()
C

and
E_»
F ¢

or

e

Here the y component is a negative scalar since F, is directed along the
negative y axis.

It is important to keep in mind that this positive and negative scalar
notation is to be used only for computational purposes. not for graphical
representations in figures. Throughout the book, the head of a vector
arrow in any lgure indicates the sense of the vector graphically:
algebraic signs are not used for this purpose. Thus, the vectors in
Figs. 2-15a and 2-15b are designated by using boldface (vector)
notation.* Whenever italic symbols are written near vector arrows in figures,
they indicate the magnitude of the vector, which is always a positive quantity.

“Negative signs are used only in figures with boldface notation when showing equal but
opposite pairs of vectors, as in Fig. 2-2,
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Cartesian Vector Notation. [t isalso possible to represent the x ¥
and y components of a force in terms of Cartesian unit vectors i and j.
Each of these unit vectors has a dimensionless magnitude of one, and so iT
they can be used to designate the directions of the x and y axes,
respectively, Fig. 2-16. I
Since the magnitude of cach component of F is always a positive
quantity, which is represented by the (positive) scalars F, and F,, then we
can express F as a Cartesian vector, '

- f;. = —i-
F=Fi+Fj
Fig, 2-16

Coplanar Force Resultants. We can use either of the two
methods just described to determine the resultant of several coplanar
forces. To do this, each force is first resolved into its x and y components,
and then the respective components are added using scalar algebra since
they are collincar. The resultant force is then formed by adding the
resultant components using the parallelogram law. For example. consider
the three concurrent forces in Fig. 2-17a, which have x and y components ¥
shown in Fig. 2-17b. Using Cartesian vector notation, each force is first |
represented as a Cartesian vector. i.e.,

F, = F,i+ F;_yj E F,
F, —Fi+ F:_‘-j

Fs = Fyi — By j

The vector resultant is therefore

F;

Fr=F+F+F (@)
Fl.ti o Fi_rj - Fl\i + FE_\'.i ¥ F.h i_F_‘i_rj
(Fx — B + Bli + (Fy + By — By)j ¥

= (Fﬂ.l)i + {Fkt)j

Il

If scalar notation is used, then we have

(i"} Fpy = Fiy — Fiy + Fyy

("’T) FR_\ =Fl_r+F1_r_£‘_\-

These are the same results as the i and j components of Fy determined (b)
above.

Fig. 2-17

*For handwritten work, unit vectors are usually indicated using a circumflex. e.g.,  and
J - These vectors have a dimensionless magnitude of unity, and their sense (or arrowhead)
will be described analytically by a plus or minus sign, depending on whether they are
pointing along the positive or negative ¥ or y axis.
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Fr, F

(c)

Fig. 2-17

The resultant force of the four cable forces
acting on the supporting bracket can be
determined by adding algebraically the
separate x and v components of cach cable
force. This resultant Fg produces the same
pulling effect on the bracket as all four cables.

‘We can represent the components of the resultant force of any number
of coplanar forces symbolically by the algebraic sum of the x and y
components of all the forces, i.c.,

Fro = SF, _
Fry = SF, 1)

Once these components are determined. they may be sketched along
the x and y axes with their proper sense of direction, and the resultant
force can be determined from vector addition, as shown in Fig. 2-17.
From this sketch, the magnitude of Fg is then found from the
Pythagorean theorem; that is,

FR= \'F‘}\'J-FF‘}\'_\'

Also, the angle 6, which specifies the direction of the resultant force, is
determined from trigonometry:

The above concepts are illustrated numerically in the examples which
follow.

Important Points

# The resultant of several coplanar forces can easily be determined
if an x, y coordinate system is established and the forces are
resolved along the axes.

e The direction of each force is specified by the angle its line of
action makes with one of the axes, or by a sloped triangle.

» The orientation of the x and y axes is arbitrary. and their positive
direction can be specified by the Cartesian unit vectorsi and j.

® The x and y components of the resultant force are simply the
algebraic addition of the components of all the coplanar forces,

* The magnitude of the resultant force is determined from the
Pythagorean theorem, and when the components are sketched
on the x and y axes, the direction can be determined from
trigonometry.
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Determine the x and y components of F; and F; acting on the boom
shown in Fig. 2-18a. Express cach force as a Cartesian vector.

SOLUTION

Scalar Notation. By the parallelogram law. F, is resolved into x and
v components, Fig. 2-18b. Since F, acts in the —x direction, and F,, acts
in the +y direction, we have

Fiy==200sin30°N = —100N = 100N « Ans.

Fiy = 200cos30°N = 173N = 173 N1 Ans.

]

The force Fs is resolved into its x and y components as shown in
Fig. 2-17¢c. Here the slope of the line of action for the force is
indicated. From this “slope triangle” we could obtain the angle 8, e.g..
# = tan"'(;3), and then proceed to determine the magnitudes of the
components in the same manner as for F,. The casier method, how-
ever, consists of using proportional parts of similar triangles, i.e.,

By A2 ( 12)
prbn: S F, =260N|-- | =240N
260 N 13 s 13
Similarly,

i
Fyy = 26(}N(ﬁ) = 100N

Notice how the magnitude of the horizontal component, F,,, was
obtained by multiplying the force magnitude by the ratio of the
horizontal leg of the slope triangle divided by the hypotenuse:
whereas the magnitude of the vertical component, F,,, was obtained
by multiplying the force magnitude by the ratio of the vertical leg
divided by the hypotenuse. Hence,

Fy = 240N = 240N — Ans.
Fay = —100N = 100N Ans.
Cartesian Vector Notation. Having determined the magnitudes

and directions of the components of each force, we can express each
force as a Cartesian vector,

F, = {-100i + 173j} N Ans.

F, = {240i — 100j} N Ans.

F.=260N

Fi=200N

Fi, = 200 cos 30" N

Fi, = 200 sin 30° N
(b)

Fy=260N
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Force VECTORS

EXAMPLE | 2.6

F=400N Fy = 600N
\20 /
|30
: : Az
(a)
|‘I
F=400N | Fy = 600N
*_ 45 d

s )

(b)

(c)

Fig. 2-19

The link in Fig. 2-19a is subjected to two forces F, and F,. Determine
the magnitude and direction of the resultant force.

SOLUTION |

Scalar Notation. First we resolve cach force into its x and y
components, Fig. 2-19h, then we sum these components algebraically.

LoFre = 3F Fre = 600 cos 30° N — 400 sin 45° N
= 2368N —

600 sin 30° N + 400 cos 45" N
582.8N1

The resultant force. shown in Fig. 2-18¢, has a magnitude of

Fr= V(2368 N)* + (5828 N’
= 629N
From the vector addition,

5828 N
= =i = o
# = tan (236.8N) 67.9

Il

+1Fgy = ZFy; Fry

Ans.

Ans.

SOLUTION II

Cartesian Vector Notation.
expressed as a Carlesian vector.

F, = {600 cos 30%i + 600 sin 30°j} N
F> = {—400 sin 45% + 400 cos 457} N

From Fig. 2-19h, each force is first

Then,
Fp = F, + F, = (600 cos 30° N — 400 sin 45° N)i
+ (600 sin 30° N + 400 cos 45° N)j

= {236.8i + 582.8j} N
The magnitude and direction of Fy are determined in the same
manner as before.

NOTE: Comparing the two methods of solution, notice that the use of
scalar notation is more efficient since the components can be found
directly, without first having to express each force as a Cartesian vector
before adding the components. Later, however, we will show that
Cartesian vector analysis is very beneficial for solving three-dimensional
problems.
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EXAMPLE | 2.7

The end of the boom O in Fig. 2-20a is subjected to three concurrent
and coplanar forces. Determine the magnitude and direction of the
resultant force.

SOLUTION

Each force is resolved into its x and y components, Fig. 2-20b. Summing
the x components, we have

B Fpy = SF; Fge = —400N + 2505in 45° N — 200(2) N

—3832N = 3832 N«

The negative sign indicates that Fg, acts to the left, i.e., in the negative
& direction, as noted by the small arrow. Obviously, this occurs
because F| and F; in Fig. 2-20b contribute a greater pull to the left
than F; which pulls to the right. Summing the y components yields

+1Fgy = EFy; Fgy = 250 cos 45° N + 200(3) N

296.8 N1

The resultant force, shown in Fig. 2-20¢, has a magnitude of
Fr = V/(-3832N)* + (2968 N)? e ]

=485 N Ans

From the vector addition in Fig, 2-20c¢, the direction angle 0 is

_f 296.8 3832 N
=AafiT == | =37.8°
f = tan (383.2) 7.8 Ans

Q

NOTE: Application of this method is more convenient, compared to (c)
using two applications of the parallelogram law, first to add F; and F,
then adding F; to this resultant. Fig. 2-20
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- FUNDAMENTAL PROBLEMS

F2-7. Resolve each force acting on the post into its x and F2-10. [f the resultant force acting on the bracket is o be
¥ components. v 750 N directed along the positive x axis, determine the
magnitude of F and its direction 6.

I|r,=3uo~

Fy=450N

F2-7

F2-8. Determine the magnitude and direction of the
resultant force.

F2-10

400N F2-11. If the magnitude of the resultant force acting on
the bracket is to be 80 Ib directed along the u axis,
determine the magnitude of F and its direction 8.

F2-8
F2-9. Determine the magnitude of the resultant force F2-12. Determine the magnitude of the resultant force
acting on the corbel and its direction # measured and its direction # measured counterclockwise from the
counterclockwise from the x axis. positive x axis.

y

F2-12
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Cleromiems

*2-32. Determine the magnitude of the resultant force
acting on the pin and its direction measured clockwise from
the positive x axis.

Prob. 2-32

*2-33. If F,=600N and ¢ = 30°, determine the
magnitude of the resultant force acting on the eyebolt and
its direction measured clockwise from the positive x axis.

2-34. If the magnitude of the resultant force acting on
the eyebolt is 600 N and its direction measured clockwise
from the positive x axis is # = 30°, determine the magni-
tude of F, and the angle &.

Probs. 2-33/34

2-35. The contact point between the femur and tibia
bones of the leg is at A. If a vertical force of 175 Ib is applied
at this point, determine the components along the x and y
axes. Note that the v component represents the normal
force on the load-bearing region of the bones. Both the x
and y components of this force cause synovial fluid to be

squeezed out of the bearing space.
3

*2-36. Ifd = 30° and F, = 3 kN, determine the magnitude
of the resultant force acting on the plate and its direction 6
measured clockwise from the positive x axis.

*2-37. If the magnitude for the resultant force acting on
the plate is required to be 6 kN and its direction measured
clockwise from the positive x axis is # = 30°, determine the
magnitude of F; and its direction ¢.

2-38. If ¢ = 30° and the resultant force acting on the
gusset plate is directed along the positive x axis, determine
the magnitudes of F; and the resultant force.

¥ Fi=4kN

LM F=5kN
Probs, 2-36/37/38
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2-39. Determine the magnitude of F; and its direction #
so that the resultant force is directed vertically upward and
has a magnitude of 800 N.

*2-40. Determine the magnitude and direction measured
counterclockwise from the positive x axis of the resultant
force of the three forces acting on the ring A. Take
Fy =500Nand# = 20°,

Probs. 2-39/40

*2-41. Determine the magnitude and direction 6 of Fg so
that the resultant force is directed along the positive y axis
and has a magnitude of 1500 N.

2-42. Determine the magnitude and angle measured
counterclockwise from the positive y axis of the resultant
force acting on the bracket if Fy = 600 N and ¢ = 20°.

¥

Probs. 2-41/42

2-43. If &=30" and F;=2501b, determine the
magnitude of the resultant force acting on the bracket and
its direction measured clockwise from the positive x axis.

*2-44. 1f the magnitude of the resultant force acting on
the bracket is 400 Ib directed along the positive x axis,
determine the magnitude of Fy and its direction &.

#2-45. If the resultant force acting on the bracket is to be
directed along the positive x axis and the magnitude of Fy is
required to be a minimum, determine the magnitudes of the
resultant force and Fy.

Fy=3001b

Fy =260 1b

Probs. 2-43/44/45

2-46. The three concurrent forces acting on the screw eye
produce a resultant force Fp = 0.1f F, = £ F, and Fy is to
be %)° from F; as shown, determine the required magnitude
of F; expressed in terms of F; and the angle 8.

Prob. 2-46



2-47. Dectermine the magnitude of F; and its direction 6
so that the resultant force is directed along the positive x
axis and has a magnitude of 1250 N.

*2-48. Determine the magnitude and direction measured
counterclockwise from the positive x axis of the resultant
force acting on the ring at Q if F, = 750N and 0 = 45°,

Probs. 2-47/48

*2-49. Determine the magnitude of the resultant force
and its direction measured counterclockwise from the
positive x axis.

24 Apomon oF a System oF CopLanar FORCES 41

2-50, The three forces are applied to the bracket.
Determine the range of values for the magnitude of force P
so that the resultant of the three forces does not exceed
2400 N.

Prob, 2-50

2-51. It F, = 150N and ¢ = 30°, determine the magnitude
of the resultamt force acting on the bracket and its direction
measured clockwise from the positive x axis.

*2-52. If the magnitude of the resultant force acting on
the bracket is to be 450 N directed along the positive u axis,
determine the magnitude of F and its direction &.

*2-53. If the resultant force acting on the bracket is
required to be a minimum, determine the magnitudes of F;
and the resultant force. Set & = 30°.

Probs. 2-51/52/53
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2-54, Three forces act on the bracket. Determine the
magnitude and direction # of F; so that the resultant force is
directed along the positive  axis and has a magnitude of 50 Ib.

2-55, If F,=1501b and @ =355°, determine the
magnitude and direction measured clockwise from the
positive x axis of the resultant force of the three forces
acting on the bracket.

¥

Probs. 2-54/55

*2-56. ‘The three concurrent forces acting on the post
produce a resultant force Fg = 0.1f F, = ! Fy,and Fy is to
be 90° from F; as shown, determine the required magnitude
of F; expressed in terms of F; and the angle 0.

*2-57. Determine the magnitude of force F so that the
resultant force of the three forces is as small as possible.
What is the magnitude of this smallest resultant force?

14 kN F

Prob, 2-57

2-58. Express each of the three forces acting on the
bracket in Cartesian vector form with respect to the x and y
axes. Determine the magnitude and direction @ of Fy so that
the resultant force is directed along the positive x' axis and
has a magnitude of Fgp = 600 N.

Fy= 100N

Prob. 2-58



2.5 Cartesian Vectors

The operations of vector algebra, when applied to solving problems in
three dimensions, are greatly simplified if the vectors are first represented
in Cartesian vector form. In this section we will present a general method
for doing this: then in the next section we will use this method for finding
the resultant force of a system of concurrent forces.

Right-Handed Coordinate System. We will use a right-
handed coordinate system to develop the theory of vector algebra that
follows. A rectangular coordinate system is said to be right-handed if the
thumb of the right hand points in the direction of the positive z axis
when the right-hand fingers are curled about this axis and directed from
the positive x towards the positive y axis, Fig. 2-21.

Rectangular Components of a Vector. A vector A may have
one, two, or three rectangular components along the x, v, = coordinate
axes, depending on how the vector is oriented relative to the axes. In
general, though, when A is directed within an octant of the x, y, z frame,
Fig. 2-22, then by two successive applications of the parallelogram law,
we may resolve the vector into components as A = A’ + A. and then
A" = A, + A,. Combining these cquations, to climinate A', A is
represented by the vector sum of its three rectangular components,

A=A +A + A, (2-2)

Cartesian Unit Vectors. Inthree dimensions, the set of Cartesian
unit vectors, i, j, k, is used to designate the directions of the x, y, z axes,
respectively. As stated in Sec. 2.4, the sense (or arrowhead) of these
vectors will be represented analytically by a plus or minus sign,
depending on whether they are directed along the positive or negative x,
. or z axes. The positive Cartesian unit vectors are shown in Fig. 2-23.

Fig. 2-23
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Fig. 2-22
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Cartesian Vector Representation. Since the three components
of A in Eq. 2-2 act in the positive i, j, and k directions, Fig. 2-24, we can
write A in Cartesian vector form as

A=Aji+Aj+ Ak (2-3)

There is a distinet advantage to writing vectors in this manner.
Separating the magnitude and direction of each component vector will
simplify the operations of vector algebra, particularly in three
dimensions.

Magnitude of a Cartesian Vector. It is always possible to
obtain the magnitude of A provided it is expressed in Cartesian vector
form. As shown in Fig. 2-25, from the blue right triangle,
A=VA% + A2, and from the gray right triangle, A' = VAT + A7
Combining these equations to eliminate A', yields

lA=VA§ -I-Af. +A§| (2-4)

Hence, the magnitude of A is equal to the positive square root of the sum
of the squares of its components.

Direction of a Cartesian Vector. We will define the direction
of A by the coordinate direction angles o (alpha), f (beta), and
¥ (gamma). measured between the rail of A and the positive x, y, 7 axes
provided they are located at the tail of A, Fig. 2-26. Note that regardless
of where A is directed, cach of these angles will be between 07 and 180°,

To determine @, £, and y, consider the projection of A onto the x, y, =
axes, Fig. 2-27. Referring to the blue colored right triangles shown in
cach figure, we have

s

4

A
cos B = —j TRy (2-5)

(=]

2

=1

I
a >

These numbers are known as the direction cosines of A. Once they
have been obtained, the coordinate direction angles @, 4. y can then be
determined from the inverse cosines.



—_—

Fig. 2-26

An easy way of obtaining these direction cosines is to form a unit
vector u, in the direction of A, Fig. 2-26. If A is expressed in Cartesian
vector form, A = A, + A,j + A, then u, will have a magnitude of
one and be dimensionless provided A is divided by its magnitude, i.c..

=

! o
"i+ﬂj+—‘k (2-6)

=
e A A

where A = VA2 + A} + AL By comparison with Eqs. 2-7.it is seen that
the i, j. k components of u, represent the direction cosines of A i.c.,

u, = cosai + cos Bj + cos yk (2-7)

Since the magnitude of a vector is equal to the positive square rool of
the sum of the squares of the magnitudes of its components, and u,q has a
magnitude of one. then from the above equation an important relation
between the direction cosines can be formulated as

cos’a + cos’ B + cos’y = 1 (2-8)

Here we can see that if only rwe of the coordinate angles are known,
the third angle can be found using this equation.

Finally, if the magnitude and coordinate direction angles of A are
known, then A may be expressed in Cartesian vector form as

A= AIIA
Acoswai + Acos fj + Acos vk (2-9)
Ad+ Ajj+ Ak

I
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Fig. 2-29

Sometimes, the direction of A can be specified using two angles, # and
& (phi), such as shown in Fig. 2-28, The components of A can then be
determined by applying trigonometry first to the blue right triangle,
which yields

A

]

Acosd
and
A" = Asind
Now applying trigonometry to the other shaded right triangle,

Ay

I

A" cost

I

Asin ¢ cos

Il
I

Ay = A" sinf = Asinésinf
Therefore A written in Cartesian vector form becomes
A= Asindcosli+ Asindsinfj+ Acosdk

You should not memorize this equation, rather it is important to
understand how the components were determined using trigonometry.

2.6 Addition of Cartesian Vectors

The addition (or subtraction) of two or more vectors are greatly simplified
if the vectors are expressed in terms of their Cartesian components. For
example.if A = A+ A,j + AkandB = B,i + B,j + Bk, Fig.2-29,
then the resultant vector, R, has components which are the scalar sums of
the i, j, k components of A and B.i.c.,

R=A+B= (A +B)i+ (A, + B))j+ (A. + B.)k
If this is generalized and applied to a system of several concurrent

forces, then the foree resultant is the vector sum of all the forees in the
system and can be written as

Fp= ZF = ZFi + 2F,j + ZFk (2-10)

Here £F,. XF,. and XF, represent the algebraic sums of the respective x,
¥ zorij, k components of each force in the system,



2.6 Aooimon ofF CARTESIAN VECTORS 47

Important Points

» Cartesian vector analysis is often used to solve problems in three
dimensions.

= The positive directions of the x, y, z axes are defined by the
Cartesian unit veclors i, j, k, respectively.

» The magnitude of a Cartesian vectoris A = VA] + A + A%,

» ‘The direction of a Cartesian vector is specified using coordinate
direction angles «, 8, y which the tail of the vector makes with the
positive x, v £ axes, respectively. The components of the unit
vector u; = A/A represent the direction cosines of a, 8, y. Only
two of the angles a, B,y have to be specified. The third angle is
determined from the relationship cos® a + cos* B + cos® y = 1.

The resultant force acting on the bow the
ship can be determined by first
representing cach rope force as a Cartesian
# Sometimes the direction of a vector is defined using the two vector and then summing the i j, and k
angles #and ¢ as in Fig. 2-28. In this case the vector components eolponents.
are obtained by vector resolution using trigonometry.
# To find the resulrant of a concurrent force system, express each
force as a Cartesian vector and add the i, j, k components of all
the forces in the system.

EXAMPLE | 2.8

Express the force F shown in Fig. 2-30 as a Cartesian vector.
SOLUTION z

Since only two coordinate direction angles are specified. the third angle
o must be determined from Eq. 2-8:i.c.,

" A ¥ F=200N
cos“a + cos” B +costy =1

cos” & + cos? 60° + cos”45° = 1
cosa = V1 — (057 — (0.707)* = 0.5
Hence, two possibilities exist, namely,
a = cos (0.5) = 60° or a = cos (—=0.5) = 120°

By inspection it is necessary that o = 60, since F, must be in the +x
direction.
Using Eq. 2-9, with F = 200 N, we have
F = Fcosai + Fcos Bj + Fcosyk
(200 cos 60 N)i + (200 cos 60° N)j + (200 cos 457 N)k
= {100.0i + 100.0j + 1414k} N Ans.

Fig. 2-30

Show that indeed the magnitude of F = 200 N.
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EXAMPLE | 2.9

Determine the magnitude and the coordinate direction angles of the
resultant force acting on the ring in Fig. 2-31a.

- z Fj = {501 — 40§ + 180k} 1b 2
/

F, = [50i — 100§ + 100k} 16 |  F, = {60 + 80K} Ib 5

(&) (L)
Fig. 2-31

SOLUTION

Since each force is represented in Cartesian vector form, the resultant
force, shown in Fig. 2-31b,is

Fiy = 2F = F| + F, = {60j + 80k} Ib + {50i — 100j + 100k} Ib
= {50 — 40j + 180k} Ib
The magnitude of Fy is
Fg= \/(SO 1b)* + (—401b)* + (1801b)* = 191.01b
=1911b Ans.

The coordinate direction angles @, g, yare determined from the
components of the unit vector acting in the direction of Fg.

e R OO A T8
Fe = Fe 1900' 19107 T 1910

= 0.2617i — 0.2094j + 0.9422k

so that
cos o = (.2617 a = T4.8° Ans.
cos B = —0.2094 B = 102° Ans.
cos y = 0.9422 y = 19.6° Ans.

These angles are shown in Fig. 2-315b.

NOTE: In particular, notice that g > 90° since the j component of
ug is negative. This seems reasonable considering how Fy and F> add
according to the parallelogram law.
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Express the force F shown in Fig. 2-324 as a Cartesian vector.

SOLUTION

The angles of 60° and 45 defining the direction of F are not coordinate
direction angles. Two successive applications of the parallelogram law
are needed to resolve F into its x, v, z components First F = F' + F.,
then F' = F, + F, Fig. 2-32b. By trigonometry, the magnitudes of the
components are

=
Il

100 sin 60° Ib = 86.6 Ib
F' = 100 cos 60° Ib = 50 1b
F, = F' cos 45° = 50 cos 45" 1b = 354 1b
F, = F'sin45° = 50sin45° b = 354 1b
Realizing that F, has a direction defined by —j, we have
F = {354i — 354j + 86.6k} Ib Ans.

To show that the magnitude of this vector is indeed 100 b, apply

Eq.2-4,
F=VF:+F;+F:

= V(35.4)" + (—35.4)% + (86.6)° = 1001b

If needed, the coordinate direction angles of F can be determined
from the components of the unit vector acting in the direction of F.
Hence,

354, 354, 866
“ 100" 1007 T 100
= (.354i — 0.354j + 0.866k
so that
a = cos '(0.354) = 69.3°
= cos™(—0.354) = 111°
y = cos '(0.866) = 30.0°

These results are shown in Fig. 2-31¢.

F=1001b e

F=1001b

¥ig. 2-32
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EXAMPLE | 2.11

Two forces act on the hook shown in Fig. 2-32a. Specify the magnitude
of F; and its coordinate direction angles of F, that the resultant force
Fy acts along the positive y axis and has a magnitude of 800 N.

, SOLUTION
To solve this problem, the resultant force Fy and its two components,
F; and F, will each be expressed in Cartesian vector form. Then, as
shown in Fig. 2-33a. it is necessary that Fz = F; + F,.

Applying Eq. 2-9,
(a) F; = Fcos ayi + Fjcos B,j + F;cosyk
300 cos 457 i + 300 cos 60” j + 300 cos 1207 k
{212.1i + 150j — 150k} N
F, = B+ Fyj+ Rk

Since Fg has a magnitude of 800 N and acts in the +j direction,
Fp = (BOON)(+j) = {8005} N
We require
Fy=T700N Fr=F +F,
: 800j = 212.1i + 150j — 150k + Foi + Fyj + Bk
28 S Fe=80N  gooi = (2121 + Byi + (150 + Byj + (-150 + Bk

oy = 108°

To satisfy this equation the i, j, k components of Fp must be equal to

£ - 300N the corresponding i, j, k components of (F, + F,). Hence.

X 0=2121 + F,, Fa, = -2121N
(b) 800 = 150 + Fy, Fy, = 650N
Fig. 2-33 0=-150 + Fy.  Fy. = 150N

The magnitude of F; is thus
Fy = V(=2121 N)? + (650 N)? + (150 N)2
= 700N Ans.

We can use Eq. 2-9 to determine e 5, 8 5, ¥ 5.

—212.1 3

COS oy = 200 a; = 108 Ans.
650 .

cos B; = 200" B> = 218 Ans.
150 x

o5 y2 = o5 ¥, = T7.6 Ans.

These results are shown in Fig. 2-325.
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| | FUNDAMENTAL PROBLEMS

F2-13. Determine its coordinate direction angles of the F2-16. Express the force as a Cartesian vector,
force.

F=T75
F2-13
F2-14. Express the force as a Cartesian vector.

< F=3500N

F2-14

F2-15. Express the force as a Cartesian vector,
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_|pROBLEMS |

express each force acting on the bracket as a Cartesian

vector.

. 2-59. Determine the coordinate angle y for F> and then

*2-60. Determine the magnitude and coordinate direction

angles of the resultant force acting on the bracket.

Fi=450N

Fo= 600N

Probs. 2-59/60

*2-61. Express each force acting on the pipe assembly in

Cartesian vector form.

2-62. Determine the magnitude and direction of the

resultant force acting on the pipe assembly.

Fy= 4001h

Probs. 2-61/62

2-63. The force F acts on the bracket within the octant
shown. If F = 400N, 8 = 60°,and y = 45° determine the
x.y.z components of F,

*2-64. The force F acts on the bracket within the octant
shown. If the magnitudes of the x and z components of F
are F, = 300 N and F. = 600 N, respectively, and g = 60°,
determine the magnitude of F and its y component. Also,
find the coordinate direction angles « and y.

Probs. 2-63/64

*2-65. The two forces F; and F, acting at A have a
resultant force of Fg = {—100k}Ib. Determine the
magnitude and coordinate direction angles of F».

2-66. Determine the coordinate direction angles of the
force Fy and indicate them on the figure.

Prohs. 2-65/66



2-67. The spur gear is subjected to the two forces caused
by contact with other gears. Express each force as a
Cartesian vector.,

*2-68. ‘'The spur gear is subjected to the two forces caused
by contact with other gears. Determine the resultant of the
two forces and express the result as a Cartesian vector,

TR =301

Probs. 2-67/68

*2-69. If the resultant force acting on the bracket is
Fgp = {=300i + 650 + 250k} N, determine the magnitude
and coordinate direction angles of F.

2-70. 1f the resultant force acting on the bracket is to be
Fy = {800j} N, determine the magnitude and coordinate
direction angles of F.
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2-7L If a=120°, B < 90°, y =60°, and F = 400 Ib,
determine the magnitude and coordinate direction angles
of the resultant force acting on the hook.

*2-72. If the resultant force acting on the hook is
Fg = {-200i + 800j + 150k} Ib.determine the magnitude
and coordinate direction angles of F.

Probs. 2-71/72

*2-73, The shaft S exerts three force components on the
die D. Find the magnitude and coordinate direction angles
of the resultant force. Force F5 acts within the octant shown.

Probs. 2-69/70

Prob, 2-73
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2-74. The mast is subjected to the three forces shown.
Determine the coordinate direction angles ay. By, y; of
F, so that the resultant force acting on the mast is
Fr = {350i} N.

2-75. The mast is subjected to the three forces shown.
Determine the coordinate direction angles a, B8y, y; of
F, so that the resultant force acting on the mast is zero.

Probs. 2-74/75

*2-76. Determine the magnitude and coordinate
direction angles of F; so that the resultant of the two forces
acts along the positive x axis and has a magnitude of 500 N.

#2-77. Determine the magnitude and coordinate direction
angles of F so that the resultant of the two forces is zero,

Probs. 2-76/77

2-78. Ifthe resultant force acting on the bracket is directed
along the positive y axis, determine the magnitude of the
resultant force and the coordinate direction angles of F so
that B < 90°.

Prob, 2-78

2-79. Specify the magnitude of F; and its coordinate
direction angles as, B3 ¥; so that the resultant force
Fr = {9} kN.

e

Prob. 2-79
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*2-80. If 5= 9kN,0 = 30° and ¢ = 45", determine the 2-83. Three forces act on the ring. If the resultant force Fg
magnitude and coordinate direction angles of the resultant has a magnitude and direction as shown, determine the
force acting on the ball-and-socket joint. magnitude and the coordinate direction angles of force Fs.

*2-84. Determine the coordinate direction angles of F,

]

F,
5 Fr=120N
Fy=110N ;
Fy = 80 Negess 45° :
WA 7 ¥
Prob. 2-80
*2-81. The pole is subjected to the force F. which has ]
components acting along the x, y. z axes as shown. If the Probs. 2-83/84

magnitude of Fis 3 kN, g = 30°, and y = 75°, determine
the magnitudes of its three components.

2-82. The pole is subjected to the force F which has #2-85. Two forces Fy and F: act on the bolt. If the resultant

components F, = L5kN and F. = 1.25kN. If g = 75°, force Fg has a magnitude of 50 Ib and coordinate direction

determine the magnitudes of F and F,. angles « = 110 and B = 80°, as shown, determine the
magnitude of F; and its coordinate direction angles.

"

Probs. 2-81/82 Prob. 2-85
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2.7 Position Vectors

In this section we will introduce the concept of a position vector. It will be
shown that this vector is of importance in formulating a Cartesian force
vector directed between two points in space.

X, ¥, z Coordinates. Throughout the book we will use a right-
handed coordinate system to reference the location of points in space. We
will also use the convention followed in many technical books, which
requires the positive z axis to be directed upward (the zenith direction) so
that it measures the height of an object or the altitude of a point. The x, ¥
axes then lie in the horizontal plane, Fig. 2-34. Points in space are located
relative to the origin of coordinates, O, by successive measurements along
the x, v, z axes. For example, the coordinates of point A are obtained by
starting at O and measuring x, = +4 m along the x axis, then y, = +2 m
along the y axis, and finally z,; = -6 m along the z axis. Thus, A(4 m,2 m,
-6 m). In a similar manner, measurements along the x, y, z axes from O
1o B vield the coordinates of B.i.e.. B(6 m.—1 m, 4 m).

Position Vector. A position vector r is defined as a fixed vector
which locates a point in space relative to another point. For example,if r
extends from the origin of coordinates, O, to point P(x, y, z). Fig. 2-35a,
then r can be expressed in Cartesian vector form as

r=uxi+y+zk

Note how the head-to-tail vector addition of the three components
vields vector r, Fig. 2-35b. Starting at the origin O, one “travels” x in the
+i direction, then y in the +j direction, and finally z in the +k direction to
arrive at point P(x, y, z).

f— 7 Py, )
:k

M. O Q) [
i ¥ vi ¥

(b)

Fig. 2-35
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In the more general case. the position vector may be directed from
point A to point B in space, Fig. 2-36a. This vector is also designated by
the symbol r. As a matter of convention, we will sometimes refer to this
vector with two subscripts to indicate from and to the point where it is
directed. Thus, r can also be designated asr 5. Also, note thatry and ryz in z
Fig. 2-36a are referenced with only one subscript since they extend from '
the origin of coordinates.

From Fig. 2-36a, by the head-to-tail vector addition, using the triangle
rule. we require

Blxy. yp.zy)

Al a 24) %
ratr=rg A

Solving for r and expressing r, and ry in Cartesian vector form yields

- = X
r=rg— 1y = (xgi + ygj + 25k) — (xai + yaj + 2ak) ()
or
£ = (xg— xp)i + (vg — )i + (28 — 24)K (2-11)
Thus, the i, j, k components of the position vector v may be formed by
taking the coordinates of the tail of the vector Alx,, vy.z,4) and
subtracting them from the corresponding coordinates of the head z
B(xp, vg, zp). We can also form these components directly, Fig. 2-36b, by |
starting at A and moving through a distance of (vz — x,) along the : "
positive x axis (+i), then (vz - v4) along the positive v axis (+j). and ¢ —18
finally (z5 - z,1) along the positive z axis (+k) to get to B. | " (za = za)k
| -
Al T =
(x5 = x40 | 3
| ——
/— (vu = yali
X
(b)
Fig. 2-36

-
e

Ifan x, y, z coordinate system is established, then the coordinates
of points A and B can be determinded. From this the position
vector r acting along the cable can be formulated. Its magnitude
represents the length of the cable, and its unit vector.u = r/r,
gives the direction defined by o, 8, y.
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EXAMPLE |2.12

An elastic rubber band is attached to points A and B as shown in
Fig. 2-37a. Determine its length and its direction measured from A
toward B.

SOLUTION

We first establish a position vector from A to B, Fig. 2-37b. In
accordance with Eq. 2-11, the coordinates of the tail A(1 m.0,-3 m) are
subtracted [rom the coordinates of the head B(-2 m, 2 m, 3 m), which
yields

r=[-2m—Imli+[2m—0Jj + [3m - (-3 m)]k
= {=3i + 2j + 6k} m

These components of r can also be determined directly by realizing
that they represent the direction and distance one must travel along
each axis in order to move from A to B, i.e., along the x axis [-3i] m,
along the y axis {2j} m, and finally along the z axis {6k} m.

The length of the rubber band is therefore

r=V(=-3mP+ (2m)P + (6m)=7m Ans,

Formulating a unit vector in the direction of r, we have

The components of this unit vector give the coordinate direction

angles
3
o = s:as_'(—;‘r;) = 115° Ans.
2
B= cos"($) = 73.4° Ans.
6
= Cos_l(?) = 31.0° Ans.

NOTE: These angles are measured from the positive axes of a localized
coordinate system placed at the tail of r, as shown in Fig. 2-37c.
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2.8 Force Vector Directed Along a Line 1

Quite often in three-dimensional statics problems, the direction of a force
is specified by two points through which its line of action passes. Such a
situation is shown in Fig. 2-38, where the force F is directed along the cord
AB.We can formulate F as a Cartesian vector by realizing that it has the @
A

same direction and sense as the position vector rdirected from point A to
point B on the cord. This common direction is specified by the unit vector
u = r/r. Hence, y

F=Fu= F(f) = F( (xg = xyi :‘ (ve — ¥ai j’ (zp — Zf-.)k’)
f: Vixg = xa + (v8 — ya) + (25 — z4)°

Although we have represented F symbolically in Fig. 2-38, note that it

Fig. 2-38
has units of force, unlike r, which has units of length. "

The force F acting along the chain can be represented as a Cartesian vector by establishing
x, ¥, 7 axes and first forming a position vector r along the length of the chain. Then the
corresponding unit vector u = ¢ir that defines the direction of both the chain and the force
can be determined. Finally, the magnitude of the force is combined with its direction,
F = Fu.

Important Points

* A position vector locates one point in space relative to another
point.

@ The casiest way to formulate the components of a position vector is
to determine the distance and direction that must be traveled along
the x, y, z directions—going from the tail to the head of the vector.

& A force F acting in the direction of a position vector r can be
represented in Cartesian form if the unit vector u of the position
vector is determined and it is multiplied by the magnitude of the
force, i.e., F = Fu = F(r/r).
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EXAMPLE | 2.13

The man shown in Fig. 2-3% pulls on the cord with a force of 70 Ib.
Represent this force acting on the support A as a Cartesian vector and
determine its direction.

SOLUTION

Force F is shown in Fig. 2-39b. The direction of this vector, u, is
determined from the position vector r, which extends from A to B.
Rather than using the coordinates of the end points of the cord, r can
be determined directly by noting in Fig. 2-39a that one must travel from
A (-24k] ft, then [-8j] ft, and finally {12i} ft to gel to B. Thus,

r= {12i — 8 — 24k} ft

The magnitude of r, which represents the length of cord AB.is

r=V(20) + (=8 1) + (—2411)° = 281

(@) Forming the unit vector that defines the direction and sense of both
rand F, we have
~x 12, 5. &
ST s o8

Since F, has a magnitude of 70 Ib and a direction specified by v, then

2. 8. A
F=Fu= 'H.Hb(zsl 2gd 28k)

= {30i — 20j — 60k} Ib Ans.
The coordinate direction angles are measured between r (or F) and

the positive axes of a localized coordinate system with origin placed at
A, Fig. 2-39b. From the components of the unit vector:

12
{b) a = 005_1( 2._8) = 64.6° Ans,
Fig. 2-39 5
B= cos'i(-_)g) = 107° Ans.
—24
y = cos"i(-ﬁ*) = 149° Ans,

NOTE: These results make sense when compared with the angles
identified in Fig. 2-39b.
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The force in Fig. 2-40a acts on the hook. Express it as a Cartesian vector.

B(-2m. 3464 m. 3 m)

(a) (b)
Fig. 2-40
SOLUTION
As shown in Fig. 2-40b, the coordinates for points A and B are
A2m,0,2m)
and

4 4 3
—| = 15 =1 = 2= - o i
B[ (5) sin 30 m.(s)iwﬂﬂ m.(S)Sm]

B(—2m, 3.464 m, 3 m)

or

Therefore. to go from A to B, one must travel [4i] m, then [3.464 j} m.
and finally {1 k] m. Thus,

C V(—4m)® + (3464 m)’ + (I m)’

(rﬂ) {—4i + 3.464j + 1k} m
Ui =

g
= —0.7428i + 0.6433j + L1857k
Force Fy expressed as a Cartesian vector becomes
Fy = Fyug = (750 N)(—0.74281i + 0.6433j + 0.1857k)

= (—S57i + 482 + 139k} N Ans.
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EXAMPLE | 2.15

The roof is supported by cables as shown in the photo. If the cables
exert forces Fup = 100N and Fye = 120N on the wall hook at A as
shown in Fig. 2-40a, determine the resultant foree acting at A. Express
the result as a Cartesian vector.

SOLUTION

The resultant force Fy is shown graphically in Fig. 2-41h, We can express
this force as a Cartesian vector by first formulating F 5 and F - as
Cartesian vectors and then adding their components. The directions of
F ,p and F 4 are specified by forming unit vectors u,z and u,c along
the cables. These unit vectors are obtained from the associated position
vectors ryg and r . With reference to Fig. 2-41a. to go from A to B, we
must travel { —4k} mand, then {—4i} m . Thus,

ras = {4 — 4k} m

ras = V@dm) + (—4m)? = 5.66m

, % = 4
Fip=Fay G-:i) = (100N) (%: - qﬁék)

Fag = {70.7i — 70.7k} N

To go from A to C, we must travel {—4k} m , then {2j} m, and finally
{4j}. Thus,

fic = {4i+2j — 4k} m

fac = ‘\/(4 m): + (2 m)z + (-4 m)} = 6m

Tac 4. 2, 4 )
Faic(=2) =(20N) (Zi+ Zj - =k
G (-"’A(‘) waR (6' 6' 6

[80i + 40j — 80k} N

F/'l{'

g
The resultant force is therefore

Fp = Fap + Fac = {70.7i — 707k} N + {80i + 40j — 80k} N

= {151i + 40j — 151k} N Ans.

(b)

Fig, 2-41
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. FUNDAMENTAL PROBLEMS

F2-19. Express the position vector r ;5 in Cartesian vector F2-22, Express the force as a Cartesian vector.

form. then determine its magnitude and coordinate
direction angles.

Nmm

- — B

M) } I/'— : 77‘5,,
& P i
[ L~ ﬁ’lm P

/ e v 4

F2-22

¥2-20. Determine the length of the rod and the position F2-23, Determine the magnitude of the resultant force
vector directed from A to B. What is the angle 67 at A,

¥2-20 F2-23

F2-21. Express the force as a Cartesian vector. F2-24. Determine the resultant force at A.
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Sleromiems

2-86. Determine the position vector r directed from point
A to point B and the length of cord AB. Take z = 4 m.

coordinate position +z of point B

Probs. 2-86/87

*2-88. Determine the distance between the end points A
and B on the wire by first formulating a position vector

from A to B and then determining its magnitude.

e

2-87. If the cord AB is 7.5 m long, determine the

Prob. 2-88

*2-89. Determine the magnitude and coordinate
direction angles of the resultant force acting at A.

r

Fo=T7501b

Prob. 2-89

2-90. Determine the magnitude and coordinate direction
angles of the resultant force.

Prob. 2-90



2-91. Determine the magnitude and coordinate direction

angles of the resultant force acting at A.

Prob, 2-91

#2-92. Determine the magnitude and coordinate direction

angles of the resultant force.

Fo=811h_
-

\ I N
// e

T

2.8 Force VeEcTOr DIRECTED ALONG A LINE 65

*2-93. 'The chandelier is supported by three chains which
are concurrent at point . If the force in each chain has a
magnitude of 60 1b, express each force as a Cartesian vector
and determine the magnitude and coordinate direction
angles of the resultant force.

2-94. The chandelier is supported by three chains which .
are concurrent at point . If the resultant force at @ has a
magnitude of 130 [b and is directed along the negative 7 axis.
determine the force in each chain.

Probs. 2-93/94

2-95. Express force F as a Cartesian vector: then
determine its coordinate direction angles.

P

A

F=1351b/
7| 101t

Prob. 2-95
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*2-96. The tower is held in place by three cables. If the 2-98. The guy wires are used to support the telephone
force of each cable acting on the tower is shown, determine pole. Represent the force in each wire in Cartesian vector
the magnitude and coordinate direction angles a. 8. y of form. Neglect the diameter of the pole.

the resultant force. Take x = 20m, vy = 15 m.

4

Fg=175N

Prob. 2-98

e 2-99. Two cables are used to secure the overhang boom in

" _ position and support the 1500-N load. If the resultant force
*2-97. The door is held opened by means of two chains 1f is directed along the boom from point A towards O,
the tension in AB and CD is F, = 300N and F = 250N, determine the magnitudes of the resultant force and forces
respectively, express cach of these forces in Cartesian Fgand Fe.Setx = 3mandz = 2m.
vector form.
*2-100. Two cables are used to secure the overhang boom
in position and support the 1500-N load. If the resultant
force is directed along the boom from point A towards O,
determine the values of x and z for the coordinates of point
C and the magnitude of the resultant force. Set
Fg=1610N and Fe = 400N,

Prob. 2-97 Probs. 2-99/100



*2-101. The cable A exeris a force on the top of the pole
of F = {—120i — 90j — 80k} Ib. If the cable has a length of
34 ft, determine the height z of the pole and the location
(x.v) of its base.

=

X
Prob. 2-101

2-102. If the force in each chain has a magnitude of 450 Ib,
determine the magnitude and coordinate direction angles
of the resultant force.

2-103. If the resultant of the three [forces is
Fy = {900k} Ib, determine the magnitude of the force in
cach chain.

Probs. 2-102/103

2.8 Force VecTor DIRECTED ALONG A LINE 67

*2-104. The antenna tower is supported by three cables. If
the forces of these cables acting on the antenna are
Fg=3520N, Fe = 680N, and Fp = 560 N, determine the
magnitude and coordinate direction angles of the resultant
force acting at A.

Prob. 2-104

*2-105. If the force in each cable tied to the bin is 70 b,
determine the magnitude and coordinate direction angles
of the resultant force.

2-106. If the vresultant of the four forces is
Fy = {360k} lb, determine the tension developed in each
cable. Due to symmetry, the tension in the four cables is the
same.

Probs. 2-105/106
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2-107. The pipe is supported at its end by a cord AB. If the *2-109. The cylindrical plate is subjected to the three cable
cord exerts a force of F = 121b on the pipe at A, express forces which are concurrent at point D. Express each force
this force as a Cartesian vector. which the cables exert on the plate as a Cartesian vector,
and determine the magnitude and coordinate direction
angles of the resultant force.

)
gl Prob. 2-109

*2-108. The load at A creates a force of 200 N in wire AB. 2-110. The cable attached to the shear-leg derrick exerts a
Express this force as a Cartesian vector, acting on A and force on the derrick of F = 350 Ib. Express this force as a
directed towards B, Cartesian vector.

n

Prob. 2-108 Prob. 2-110



2.9 Dot Product

Occasionally in statics one has to find the angle between two lines or the
components of a force parallel and perpendicular to a line. In two dimensions,
these problems can readily be solved by trigonometry since the geometry is
easy 1o visualize. In three dimensions, however, this is often difficult, and
consequently vector methods should be employed for the solution. The dot
product, which defines a particular method for “multiplying” two vectors,
will be is used to solve the above-mentioned problems.

The dot product of vectors A and B, written A + B, and read A dot B”
is defined as the product of the magnitudes of A and B and the cosine of
the angle 0 between their tails, Fig. 2-41. Expressed in equation form,

A-B = ABcos# (2-12)

where 07 = 0 = [80°. The dot product is often referred to as the scalar
product of vectors since the result is a scalar and not a vector.

Laws of Operation.

1. Commutative law: A-B = B-A
2. Multiplication by a scalar: a(A-B) = (¢A)-B = A-(aB)
3. Distributive law: A-(B + D) = (A-B) + (A-D)

It is easy to prove the first and second laws by using Eq. 2-12. The proof of
the distributive law is left as an exercise (see Prob. 2-111).

Cartesian Vector Formulation. Equation 2-12 must be used to
find the dot product for any two Cartesian unit vectors. For example,
iti=(I)(1)cos0” = 1landi-j= (1)(1)cos 90" = 0. If we want to find
the dot product of two general vectors A and B that are expressed in
Cartesian vector form, then we have
AB=(Aji+ A,j+ AK)-(Bi+ B,jj+ Bk)

= AB(i-i) + AB,(i-j) + ABi-k)

+ AB(ji) + (AB(jj) + AB.(j-k)

+ AB(k+i) + AB\(k+j) + A.B.(k-k)

Carrying out the dot-product operations, the final result becomes

A-B=AB, + AB,+ AB. ] (2-13)

Thus, to determine the dot product of two Cartesian vectors, multiply their
corresponding x, v, z components and sum these products algebraically.
Note that the result will be either a positive or negative scalar.

29

Dor Proouct

69
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Applications. The dot product has two important applications in
mechanics.

e The angle formed between two vectors or intersecting lines. The
angle # between the tails of vectors A and B in Fig. 2-41 can be
determined from Eq. 2-12 and written as

8 = cos’ ‘(:;) 0° =0 = 180°

Here A-B is found from Eq. 2-13. In particular, notice that if
A-B = 0,0 = cos” 0 = 90° so that A will be perpendicular 10 B,
e The components of a vector parallel and perpendicular to a
line. The component of vector A parallel to or collinear with the line
aa’ in Fig. 2-43 is defined by A, where A, = A cos 6. This component
is sometimes referred to as the projection of A onto the line, since a

The angle # between the rope and the

connecting beam can be determined by right angle is formed in the construction. If the direction of the line is
formulating unit vectors along the beam and specified by the unit vector u,, then since 1, = 1, we can determine the
rope and then using the dot product magnitude of A, directly from the dot product (Eq.2-12);i.e.,

u,cu, = (1)(1)cos @,
A, = Acostl = A-u,

Hence, the scalar projection of A along a line is determined from the
dot product of A and the unit vector u, which defines the direction of
the line. Notice that if this result is positive, then A, has a directional
sense which is the same as u,, whereas if A, is a negative scalar, then
A, has the opposite sense of direction 1o u,

The component A, represented as a vector is therefore

A, = A,

The component of A that is perpendicular to line aa can also be
obtained, Fig. 2-43. Since A=A, + A, then A, = A - A,
There are two possible ways of obtaining A | . One way would be to
determine 6 from the dot product, # = cos"tAm__l./A]. then
A, = Asin 0. Alternatively, if A, is known, then by Pythagorean's
theorem we can also write A, = VA> — A7

The projection of the cable force F along the a
beam can be determined by first finding the
unit vector U, that defines this direction. Then
apply the dot product, F, = F-uy,. Fig, 2-43

A, =Acostu, u,
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Important Points

# The dot product is used to determine the angle between two
vectors or the projection of a vector in a specified direction.

® If vectors A and B are expressed in Cartesian vector form, the
dot product is determined by multiplying the respective x, v z
scalar components and algebraically adding the results, ic.
A'B=AB,+ AB, + A.B..

& From the definition of the dot product. the angle formed between
the tails of vectors A and Bis f = cos (A -B/AB).

# The magnitude of the projection of vector A along a line aa
whose direction is specified by u, is determined from the dot
product A, = A-u,

N T —

Determine the magnitudes of the projection of the force Fin Fig, 2—44
onto the « and » axes,

L F=100N

(Eproy

Fig. 2-44
SOLUTION
Projections of Force. The graphical representation of the projections
is shown in Fig. 2-44. From this ligure, the magnitudes of the projections
of F onto the u and v axes can be obtained by trigonometry:

(Fu)proj = (100 N)cos 457 = 70.7 N Ans.
(F\)proj = (100 N)cos 15° = 96.6 N Ans.
NOTE: These projections are not equal to the magnitudes of the
components of force F along the v and v axes found from the

parallelogram law. They will only be equal if the u and v axes are
perpendicular to one another.
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EXAMPLE | 2.17

The frame shown in Fig. 2-454 is subjected to a horizontal force
F = {300j}). Determine the magnitude of the components of this

- force parallel and perpendicular to member AB.

SOLUTION

The magnitude of the component of F along AB is equal to the dot
product of F and the unit vector ug, which defines the direction of AB,
Fig. 2-44b. Since

20 + 6 + 3k
up= 2= =TT _ (286i + 0.857] + 0.429k
8 VQP+(6)+ ()
then
Fag= Fcos0 = Frug = (300§) - (0286 + 0.857j + 0.429K)

= (0)(0.286) + (300)(0.857) + (0)(0.429)
=257.1 N Ans.

Since the result is a positive scalar, F 45 has the same sense of direction
as uy. Fig, 2-45b.
Expressing F 5 in Cartesian vector form, we have

F.is = Fagug = (257.1 N)(0.286i + 0.857j + 0.429k)
= {73.5i + 220j + 110k}N Ans.
The perpendicular component. Fig. 2-455, is therefore
F, = F — Fu5 = 300j — (7351 + 220j + 110k)
= {—73.5i + 80j — 110k} N

Its magnitude can be determined either from this vector or by using
the Pythagorean theorem, Fig. 2-45b:
F, = VF* - Fig = V(300N) — (257.1 Ny’
=155N Ans.




2.9 Dor Propuct 73

EXAMPLE

The pipe in Fig. 2-46a 1s subjected to the force of F =80 lb. Determine
the angle # between F and the pipe segment BA and the projection of
F along this segment.

(a)

SOLUTION
Angle #. First we will establish position vectors from B to A and B
to C; Fig. 2-46b. Then we will determine the angle # between the tails
of these two vectors.
fpa = {—2i — 2§ + 1k} ft, rgq =31t
ric = {—3j + 1k} ft, rge = V10M
Thus,
_teactpe _ (52)0) + (-2)(=3) + (D) _
cos = = =
TaArBC IvVi1o
# = 42.5° Ans.

0.7379

Components of F. The component of F along BA is shown in
Fig. 2-46b. We must first formulate the unit vector along BA and force
F as Cartesian vectors,

e _(CA-J+IK) 2. 2. .1
uﬂ'*_r;;,l_ 3 = 3: 3]+3k
e =3j + 1k J
F=280 lh(--“--) - 80( ——"—) = —75.89j + 25.30k
r'pe w/ﬁ ?
Thus, :
L . D el ¢
ng = F'“.BA = (-—73.89_' + 25.30k) - | — ;l = 3‘ -+ gk
2 2 1
=10 (—;) + {—?5.89)(— 3:) + (25.30) (:—‘)
= 59.01b Ans.

NOTE: Since # is known, then also, Fgy = F cos 6 = 80 1b cos 42.5° = 59.0 1b.

(b}

(c)

Fig. 2-46
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. FUNDAMENTAL PROBLEMS

F2-25. Determine the angle # between the force and

- the line AO.

F=(-6i+9j+3KKkN

F2-25

F2-26. Determine the angle # between the force and the
line AB.

F2-26

F2-27. Determine the angle # between the force and
the line OA.

F2-28. Determine the component of projection of the
force along the line 0A.

F2-29. Find the magnitude of the projected component of
the force along the pipe.

F2-29

F2-30. Determine the components of the force acting
parallel and perpendicular to the axis of the pole.
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Sleromems

2-111. Given the three vectors A, B, and D, show that
A-(B+D)=(A"B)+ (A-D).

*2-112. Determine the projected component of the force
F oz = 560 N acting along cable AC. Express the result as a
Cartesian vector.

Prob. 2-112

*2-113. Determine the magnitudes of the components of
force F = 56 N acting along and perpendicular to line AQ.

Prob. 2-113

2-114. Determine the length of side BC of the triangular
plate. Solve the problem by finding the magnitude of rg¢:
then check the result by first finding @, ryp, and rye and
then using the cosine law.

I
1 mi_ |
im
—5m —
x
Prob. 2-114

2-115. Determine the magnitudes of the components of
F = 600 N acting along and perpendicular to segment DE
of the pipe assembly.

Prob. 2-115
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*2-116. Two forces act on the hook. Determine the angle 2-119. The clamp is used on a jig. If the vertical force
# between them. Also, what are the projections of Fy and F; acting on the bolt is F = [-500k] N, determine the
along the v axis? magnitudes of its components Fy and F> which act along the

A axis and ndicular to it.
*2-117. Two forces act on the hook. Determine the pefpe

magnitude of the projection of F, along F;.

™ 40 mm
Y
F=|-500k|N
Prob. 2-119
X Fy = [120§ + 90j - BOK|N
Probs. 2-116/117

*2-120. Determine the magnitude of the projected
component of force F 5 acting along the 7 axis.

2-118. Determine the projection of force F' = 80 N along #2-121. Determine the magnitude of the projected
line BC. Express the result as a Cartesian vector. component of force F - acting along the = axis.

Prob, 2-118 Probs, 2-120/121
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2-122. Determine the projection of force F = 400N 2-126. The cables each exert a force of 400 N on the post.

acting along line AC of the pipe assembly. Express the result Determine the magnitude of the projected component of Fy
as a Cartesian vector, along the line of action of F,.
2-123. Determine the magnitudes of the components of 2-127. Determine the angle 6 between the two cables

force F = 400 N acting parallel and perpendicular to attached to the post.
segment BC of the pipe assembly.

Probs, 2-122/123
Probs. 2-126/127

*2-124. Cable OA is used to support column OB. *2-128. A force of F = 80N is applied to the handle of
Determine the angle # it makes with beam OC. the wrench. Determine the angle # between the tail of the

fi d the handle AB.
*2-125. Cable ©OA is used to support column OB. i i

Determine the angle ¢ it makes with beam 0D,

Probs. 2-124/125 Prob. 2-128
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*2-129. Determine the angle # between cables AB and AC.

2-130. If F has a magnitude of 55 Ib. determine the
magnitude of its projected components acting along the x
axis and along cable AC.

Probs. 2-129/130

2-131. Determine the magnitudes of the projected
components of the force F = 300 N acting along the x and

¥ axes.

Prob. 2-131

*2-132. Determine the magnitude of the projected
component of the force ' = 300 N acting along line OA,

Prob. 2-132

*2-133. Two cables exert forces on the pipe. Determine
the magnitude of the projected component of F; along the
line of action of F».

2-134. Determine the angle 6 between the two cables
attached to the pipe.
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. CHAPTER REVIEW

A scalar is a positive or negative
number: e.g., mass and temperature.

A vector has a magnitude and direction,
where the arrowhead represents the
sense of the vector.

Multiplication or division of a vector by
a scalar will change only the magnitude
of the vector. If the scalar is negative.
the sense of the vector will change so
that it acts in the opposite sense.

If vectors are collinear. the resultant
is simply the algebraic or scalar
addition,

R=A+8B

Parallelogram Law

Two forces add according to the
parallelogram law. The components
form the sides of the parallelogram and
the residtant is the diagonal.

To find the components of a force along
any two axes, extend lines from the head
of the force. parallel to the axes. to form
the components.

To obtain the components or the
resultant, show how the forces add by
tip-to-tail using the triangle rule, and
then use the law of cosines and the law
of sines to calculate their values.

Frp= VF®+ F,® —2FF;cos6;

T N
sinf)y sinf; sinfy

-~ Resultant
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Rectangular Components: Two Dimensions

Vectors F, and F, are rectangular components
of F.

The resultant force is determined from the
algebraic sum of its components.

The unit vector u has a length of one. no units,
and it points in the direction of the vector F.

A force can be resolved into its Cartesian
components along the x, y, ¢ axes so that
F=Fi+Fj+Fk

The magnitude of F is determined from the
positive square root of the sum of the squares of
its components.

The coordinate direction angles a. 8.y are
determined by formulating a unit vector in the
direction of F. The x. y. z components of u
represent cos a, cos f3.¢os y.

=
i
==

_E_EE-.,,Q-.,_E’."
SR T R R

F Ry = EFI ¥
Fgy = XF, v kA
Fr=V{Fr)® + (Fo)? S
FN.!
o] e
S F.R.l.'
Cartesian Vectors
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The coordinate direction angles are
related so that only two of the three cos’a +cos’ B +costy =1
angles are independent of one another.

To find the resultant of a concurrent force
system, express each force as a Cartesian Fp = EF = ZF,i + Zfj + ZFk
vector and add the i, j, k components of
all the forces in the system.

Position and Force Vectors z
A position vector locates one point in y
space relative to another. The easiest way r= (x5 — 2
to formulate the components of a position

(zn— th)k
= 1)
5 |

vector is to determine the distance and + 0 = yall !A . J
direction that one must travel along the x, + (2 - za)k / e e

¥ and z directions— going from the tail to R e ey 04
the head of the vector. * / o — ¥l

If the line of action of a force passes
through points A and B, then the force
acts in the same direction as the position F—Fa= F(E)
vector r, which is defined by the unit e
vector w. The force can then be
expressed as a Cartesian vector.

Dot Product

The dot product between two vectors A
and B yields a scalar. If A and B are A'B = ABcost

expressed in Cartesian vector form, then A.B, + AB, + A.B.
the dot product is the sum of the i 3
products of their x, v, and z components

The dot product can be used to JAB
determine the angle between A and B. f# = cos (—A B )

The dot product is also used to
determine the projected component of a A, = Acostiu, = (A u)u,
vector A onto an axis aa defined by its
unit vector u,.
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. REVIEW PROBLEMS

2-135. Determine the x and y components of the 700-Ib 2-138. Determine the magnitude and direction of the
. force. resultant Fy = F, + F, + F; of the three forces by first
finding the resultamt F' = F;, + F; and then forming
Fg = F' + F,. Specify its direction measured counter-
clockwise from the positive v axis.

700 Ib

=TSN

Prob. 2-135
#2-136. Determine the magnitude of the projected Prob. 2-138
component of the 100-Ib force acting along the axis BC of
the pipe. 2-139. Determine the design angle # (6 < 90%) between

the two struts so that the 500-Ib horizontal force has a
component of 600 Ib directed from A toward C. What is the
component of force acting along member BA?

#2-137. Determine the angle # between pipe segments
BA and BC.

500 Ib
-—

Probs. 2-136/137 Prob. 2-139
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*2-140. Determine the magnitude and direction of the 2-142. Cable AB exerts a force of 80 N on the end of the
smallest force F; so that the resultant force of all three 3-m-long boom OA. Determine the magnitude of the
forces has a magnitude of 20 Ib. projection of this force along the boom.

Fo=101b

Prob. 2-140
Prob. 2-142

*2-141. Resolve the 250-N force into components acting 2-143. The three supporting cables exert the forces shown
along the u and v axes and determine the magnitudes of on the sign. Represent each force as a Cartesian vector.
these components.

Prob. 2-141 Prob. 2-143



Whenever cables are used for hoisting loads, they must be selected so that they do
not fail when they are placed at their points of attachment. In this chapter, we will
show how to calculate cable loadings for such cases.



Equilibrium of a
Particle

CHAPTER OBJECTIVES

* To introduce the concept of the free-body diagram for a particle.

®* To show how to solve particle equilibrium problems using the
equations of equilibrium.

3.1 Condition for the Equilibrium
of a Particle

A particle is said to be in equalibrinm if it remains at rest if originally at rest,
or has a constant velocity if originally in motion. Most often, however, the
term “equilibrium™ or, more specifically, “static equilibrium™ is used to
describe an object at rest. To maintain equilibrium, it is necessary to satisfy
Newton's first law of motion, which requires the resultant force acting on a
particle to be equal to zero. This condition may be stated mathematically as

IF =0 (3-1)

where XF is the vector sum of all the forces acting on the particle.

Not only is Eq. 3-1 a necessary condition for equilibrium. it is also a
sufficient condition. This follows from Newton’s second law of motion,
which can be written as £F = ma. Since the force system satisfies Eq. 3-1,
then ma =0, and therefore the particle’s acceleration a = 0.
Consequently, the particle indeed moves with constant velocity or
remains at rest.
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CHAPTER 3

EcuiLiBriuM OF A PARTICLE

3.2 The Free-Body Diagram

To apply the equation of equilibrium, we must account for @/l the known
and unknown forces ( £F) which act on the particle. The best way to do
this is to think of the particle as isolated and “free” from its surroundings.
A drawing that shows the particle with all the forces that act on it is called
a free-body diagram (FBD).

Before presenting a formal procedure as to how to draw a free-body
diagram, we will first consider two types of connections often
encountered in particle equilibrium problems.

Springs. If a linearly elastic spring (or cord) of undeformed length /,
is used to support a particle, the length of the spring will change in direct
proportion to the force F acting on it, Fig. 3-1. A characteristic that
defines the “clasticity” of a spring is the spring constant or stiffness k.

The magnitude of force exerted on a linearly elastic spring which has a
stiffness & and is deformed (clongated or compressed) a distance
s = | — I,,measured from its unloaded position, is

If s is positive, causing an clongation, then F must pull on the spring:
whereas if 5 is negative, causing a shortening, then F must push on it. For
example, if the spring in Fig. 3-1 has an unstretched length of 0.8 m and a
stiffness k = 500 N/m and it is stretched to a length of 1 m. so
that s=/-l,=1m —08m=02m, then a force F =ks=
500 N/m(0.2 m) = 100 N is needed.

Cables and Pulleys. Unless otherwise stated, throughout this
book, except in Sec. 7.4, all cables (or cords) will be assumed to have
negligible weight and they cannot stretch. Also, a cable can support only
a tension or “pulling” force, and this force always acts in the direction of
the cable. In Chapter 5. it will be shown that the tension force developed
in a continuous cable which passes over a frictionless pulley must have a
constant magnitude to keep the cable in equilibrium. Hence, for any
angle @, shown in Fig. 3-2, the cable is subjected to a constant tension 7
throughout its length,

Cable is in tension

Fig. 3-2
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Procedure for Drawing a Free-Body Diagram P

Since we must account for all the forces acting on the particle when
applying the equations of equilibrium, the importance of first drawing
a free-body diagram cannot be overemphasized. To construct a free-
body diagram, the following three steps are necessary.

Draw Outlined Shape,

Imagine the particle to be isolared or cut “free” from its surroundings
by drawing its outlined shape.

Show All Forces.

Indicate on this sketch all the forces that act on the particle. These
forces can be active forces, which tend to set the particle in motion,
or they can be reactive forces which are the result of the constraints
or supports that tend to prevent motion. To account for all these
forces, it may be helpful to trace around the particle’s boundary,
carefully noting each force acting on il.

Identify Each Force.

The forces that are known should be labeled with their proper
magnitudes and directions. Letters are used to represent the
magnitudes and directions of forces that are unknown.

T

6“,
The bucket is held in equilibrium by
the cable, and instinctively we know
that the force in the cable must equal
the weight of the bucket. By drawing
a free-body diagram of the bucket we
can understand why this is so, This
diagram shows that there are only
two forces acting on the bucket,
namely, its weight W and the force T
of the cable. For equilibrium, the

resultant of these forces must be
equal to zero,and so T = W.

Ty T

The spool has a weight W and is suspended from
the crane boon. If we wish to abtain the forces in
cables AB and AC, then we should consider the
free-body diagram of the ring at A. Here the cables
AD exert a resultant force of W on the ring and
the condition of equilibrium is used to obtain Ty
and T,
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EXAMPLE | 3.1

The sphere in Fig. 3-3a has a mass of 6 kg and is supported as shown.
Draw a free-body diagram of the sphere, the cord CE, and the knot at C.

Fep: (Force of cord CE acting on spherc)

58.9 N (Weight or gravity acting on sphere) SOLUTION
(b) Sphere. By inspection, there are only two forces acting on the
sphere, namely. its weight. 6 kg (9.81 m/s?) = 58.9 N, and the force of
cord CE. The free-body diagram is shown in Fig. 3-3b.

Fyc (Force of knot acting on cord CE) Cord CE. When the cord CE is isolated from its surroundings, its
4 free-body diagram shows only two forces acting on i1, namely, the
force of the sphere and the force of the knot, Fig. 3-3¢. Notice that
Fcp shown here is equal but opposite to that shown in Fig. 3-3b, a
consequence of Newton's third law of action-reaction. Also. F-p and
F ¢ pull on the cord and keep it in tension so that it doesn’t collapse.
For equilibrium, Fep = Fge.

¥ Knot. The knot at C is subjected to three forces, Fig. 3-3d. They are

Fo (Force of sphere acting on cord CE) caused by the cords CBA and CE and the spring CD. As required,
the free-body diagram shows all these forces labeled with their

(c) magnitudes and directions. It is important to recognize that the weight

of the sphere does not directly act on the knot, Instead, the cord CE
subjects the knot to this force.

Feps (Force of cord CBA acting on knot)

Fp (Force of spring acting on knot)

F¢r (Force of cord CE acting on knot)
(d)

Fig. 3-3
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3.3 Coplanar Force Systems

If a particle is subjected to a system of coplanar forces that lie in the x—y y
plane as in Fig. 34, then ecach force can be resolved into its i and j
components. For equilibrium, these forces must sum to produce a zero
force resultant, i.c.,

SF =0
SFi+ SFj=0

For this vector equation to be satisfied, the force’s x and y components
must both be equal to zero. Hence,

SF =0

SF, =0 (=2

These two equations can be solved for at most two unknowns, generally
represented as angles and magnitudes of forces shown on the particle’s
free-body diagram.

When applying each of the two equations of equilibrium, we must
account for the sense of direction of any component by using an
algebraic sign which corresponds to the arrowhead direction of the
component along the x or y axis. [t is important to note that if a force has
an unknown magnitude, then the arrowhead sense of the force on the
free-body diagram can be asswmed. Then if the soflution yiclds a negative
scalar, this indicates that the sense of the force is opposite to that which
was assumed.

For example, consider the free-body diagram of the particle subjected
to the two forces shown in Fig. 3-5. Here it is assumed that the unknown
Jorce F acts to the right to maintain equilibrium. Applving the equation
of equilibrium along the x axis, we have

SIF, =0, +F + 10N =0

Both terms are “positive” since both forces act in the positive x direction.

When this equation is solved, F = —10N. Here the negative sign > > -
indicates that F must act to the left to hold the particle in equilibrium, E 10N

Fig. 3-5. Notice that if the +x axis in Fig. 3-5 were directed to the left,
both terms in the above equation would be negative, but again, after
solving, F = —10 N. indicating that F would be directed to the left.
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. Procedure for Analysis

Coplanar force equilibrium problems for a particle can be solved using
the following procedure.

Free-Body Diagram.

e Establish the x, y axes in any suitable orientation.

e Label all the known and unknown force magnitudes and directions
on the diagram.

® The sense of a force having an unknown magnitude can be
assumed.

Equations of Equilibrium.

® Apply the equations of equilibrium, 2F, = Oand £F, = 0.

e Components are positive if they are directed along a positive axis,
and negative if they are directed along a negative axis.

* [f more than two unknowns exist and the problem involves a spring,
apply F = ks torelate the spring force to the deformation s of the

spring.

® Since the magnitude of a force is always a positive quantity, then
if the solution for a force yields a negative result, this indicates its
sense is the reverse of that shown on the free-body diagram.

Ty

A *  The chains exert three forces on the ring at A,

as shown on its free-body diagram. The ring

Ts T will not move. or will move with constant
‘.

velocity, provided the summation of these
forces along the x and along the v axis is zero.
If one of the three forces is known. the
magnitudes of the other two forces can be
obtained from the two equations of
equilibrium.
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EXAMPLE | 3.2

Determine the tension in cables BA and BC necessary to support the
60-kg cylinder in Fig. 3-6a.

Typ =60 (981) N

60 (9.81) N
(b)

(a)

SOLUTION

Free-Body Diagram. Due to equilibrium, the weight of the cylinder
causes the tension in cable BD to be Ty, = 60(9.81) N, Fig. 3-6b. The
forces in cables BA and BC can be determined by investigating
the equilibrium of ring B. Its [ree-body diagram is shown in Fig. 3-6¢. The
magnitudes of T, and T are unknown, but their directions are known.

Equations of Equilibrium. Applying the equations of equilibrium
along the x and y axes, we have ¥

BIF =0; Teeosds® — (3)T,=0 (1)
+ 13F, = 0; Tesind5® + (2)T, — 60(981)N =0 (2)

Equation (1) can be written as T4 = 0.88397 . Substituting this into
Eq.(2) yields

Tesinds® + (2)(0.88397;) — 60(9.81) N = 0
So that (©)
T =475.66 N = 476 N Ans.

Typ= 60 (981N

Fig. 36
Substituting this result into either Eq. (1) or Eq. (2), we get
T, =420N Ans,

NOTE: The accuracy of these results, of course, depends on the
accuracy of the data, i.e., measurements of geometry and loads. For
most engineering work involving a problem such as this, the data as
measured to three significant figures would be sufficient.




92 CHarPTER 3 EcuiLiBRIUM OF A PARTICLE

EXAMPLE | 3.3

The 200-kg crate in Fig. 3-Ta is suspended using the ropes AB and AC.
Each rope can withstand a maximum force of 10 kN before it breaks. If
AB always remains horizontal. determine the smallest angle # to which
the crate can be suspended before one of the ropes breaks.

F"- S
R Fy
=3 *
Fp=1962N
(b)
Fig. 3-7 i

SOLUTION

Free-Body Diagram. We will study the equilibrium of ring A. There
are three forees acting on it, Fig. 3-7b. The magnitude of Fj, is equal to
the weight of the crate. i.e., Fp = 200 (9.81) N = 1962 N < 10 KkN.
Equations of Equilibrium. Applying the equations of equilibrium
along the x and y axes,

F

d-‘) 3 =k =— - 3 t = ) o= s

EF, =0; Fecos9+ Fy=0: Fe=—" (1)
+15F, =0 Fesing — 1962N = 0 2)

From Eq. (1), F¢ is always greater than Fy since cosfl = 1.
Therefore, rope AC will reach the maximum tensile force of 10 kN
before rope AB. Substituting F- = 10 kN into Eq. (2). we get

[10(10°*)N]sin@ — 1962 N = 0
8 = sin'(0.1962) = 11.31° = 11.3° Ans,

The force developed in rope AB can be obtained by substituting the
values for # and F into Eq. (1).

F,
WU0YN = cosllu‘%]“
Fp = 981 kN
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Determine the required length of cord AC in Fig. 3-8a so that the
8-kg lamp can be suspended in the position shown. The undeformed
length of spring AB is /!5 = 0.4 m, and the spring has a stiffness of
k 45 = 300 N/m.

Tac
307
P . ¥
A T_“‘
W="785N
(b)
(a)
Fig. 3-8

SOLUTION

If the force in spring AB is known, the stretch of the spring can be
found using F = ks. From the problem geometry, it is then possible to
calculate the required length of AC.

Free-Body Diagram. The lamp has a weight W = 8(9.81) = 785N
and so the free-body diagram of the ring at A is shown in Fig. 3-8b.

Equations of Equilibrium. Using the x, v axes,

SIF =0 Tag— Taccos30° =0
+13F, = 0; Tacsin30° — 785N =0
Solving, we obtain
T.c= 1570N
T = 1359N
The stretch of spring AB is therefore
T s = KapSan 1359 N = 300 N/m(s,5)
sap = 0453 m

so the stretched length is
Lag = g + Sas
lus = 04m + 0453 m = 0.853m
The horizental distance from C to B, Fig. 3-8a, requires
2m = {, - cos30° + 0853 m

lac=132m Ans.

93
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. FUNDAMENTAL PROBLEMS

All problem solutions must include an FBD. F3-4. The block has a mass of 5 kg and rests on the smooth
lane. Determi tretched length of the spri

D55 - Tho conte hissio weleht o S50 % Dotpnion thy: <7 L DEREINS IS TS IeRr as e S

force in each supporting cable.

F3-2, The beam has a weight of 700 Ib, Determine the F3-5, If the mass of cylinder C is 40 kg. determine the

shortest cable ABC that can be used to lift it if the mass of cylinder A in order to hold the assembly in the
maximum force the cable can sustain is 1500 Ib. position shown.

B
&7 3 _Lw
D E
| I Yok
p— 10t -‘ A
F3-2

F3-3. If the 5-kg block is suspended from the pulley 5 and F3-5
the sag of the cord is d = 0.15 m, determine the force in cord
ABC. Neglect the size of the pulley. F3-6. Determine the tension in cables AB. BC, and €D,

necessary to support the 10-kg and 15-kg traffic lights at B
and C, respectively. Also, find the angle .

F3-3 Fi-6
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Sleromiems

All problem solutions must include an FBD,

*3-1. Determine the force in each cord for equilibrium of
the 200-kg crate. Cord BC remains horizontal due to the
roller at C.and AB has a lengthof LS m.Set y = 0.75m.

3-2. [Ifthe 1.5-m-long cord AB can withstand a maximum
force of 3500 N. determine the force in cord BC and the
distance y so that the 200-kg crate can be supported,

B 2m -

Probs, 3-1/2

3-3. Ifthe mass of the girder is 3 Mg and its center of mass
is located at point G, determine the tension developed in
cables AB. BC, and BD for equilibrium.

*3-4, If cables BD and BC can withstand a maximum
tensile force of 20 kN, determine the maximum mass of the
girder that can be suspended from cable AB so that neither
cable will fail. The center of mass of the girder is located at
point G.

Probs. 3-3/4

#3-5. The members of a truss are connected to the gusset
plate. If the forces are concurrent at point O. determine the
magnitudes of F and T for equilibrium, Take ¢ = 30",

3-6. The gusset plate is subjected to the forces of four
members. Determine the force in member B and its proper
orientation ¢ for equilibrium, The forces are concurrent at
point . Take F = 12 kN.

Probs, 3-5/6

3-7. The towing pendant A8 is subjected to the force of
50 kN exerted by a tugboat. Determine the force in each of
the bridles, BC and BD, if the ship is moving forward with
constant velocity.

S0 kN

Prob. 3-7
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*3-8. Members AC and AB support the 300-Ib crate.
Determine the tensile force developed in each member.

*3-9, If members AC and AB can support a maximum
tension of 3001b and 250 Ib, respectively, determine the
largest weight of the crate that can be safely supported.

I* in ; an

Probs. 3-89

3-10. The members of a truss are connected to the gusset
plate. If the forces are concurrent at point O, determine the
magnitudes of F and T for equilibrium. Take # = 90°,

3-11. The gusset plate is subjected to the forces of three
members. Determine the tension force in member C and its
angle # for equilibrium. The forces are concurrent at point @,
Take F = 8 kN.

Probs. 3-10/11

*3-12. If block B weighs 200 Ib and block C weighs 100 Ib,
determine the required weight of block D and the angle ¢
for equilibrium.

*3-13. If block D weighs 300 Ib and block B weighs 275 Ib,
determine the required weight of block € and the angle #
for equilibrium.

Probs. 3-12/13

3-14. Determine the stretch in springs AC and AB for
equilibrium of the 2-kg block. The springs are shown in
the equilibrium position.

3-15. The unstretched length of spring AB is 3 m. If the
block is held in the equilibrium position shown. determine
the mass of the block at D.

i— 3m -

kdp =30 me

D

Probs. 3-14/15



*3-16. Determine the tension developed in wires CA and
CB required for equilibrium of the 10-kg cylinder. Take
0 = 407,

*3-17. If cable CB is subjected to a tension that is twice
that of cable CA, determine the angle @ for equilibrium of

the 10-kg cylinder. Also, what are the tensions in wires CA
and CB?

Probs. 3-16/17

3-18. Determine the forces in cables AC and AB needed
to hold the 20-kg ball D in equilibrium. Take F = 300N
andd = I m.

3-19. The ball D has amass of 20 kg. If a force of F = 100 N
is applied honzontally to the rning at A, determine the
dimension d so that the force in cable AC is zero.

Probs. 3-18/19
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*3-20. Determine the tension developed in each wire
used to support the 50-kg chandelier.

*3-21. If the tension developed in each of the four wires is
not allowed to exceed 600 N, determine the maximum mass
of the chandelier that can be supported.

Prob. 3-20/21

®3-22. A vertical force P = 10 Ibis applied to the ends of
the 2-ft cord AB and spring AC. If the spring has an
unstretched length of 2 ft. determine the angle 6 for
equilibrium. Take k& = 15 Ib/f1.

3-23. Determine the unstretched length of spring AC if a
force P = 80 Ib causes the angle f# = 60° for equilibrium.
Cord ABis 2 ft long. Take k = 50 Ib/ft.

Probs. 3-22/23
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*3-24. If the bucket weighs 50 Ib, determine the tension
developed in each of the wires.

*3-25. Determine the maximum weight of the bucket that
the wire system can support so that no single wire develops
a tension exceeding 100 Ib.

*3-28. Two spheres A and B have an equal mass and are
electrostatically charged such that the repulsive force acting
between them has a magnitude of 20 mN and is directed
along line AB. Determine the angle 6. the tension in cords
AC and BC. and the mass m of each sphere.

3-26. Determine the tensions developed in wires CD. CB,
and BA and the angle ¢ required for equilibrium of the
30-1b eylinder E and the 60-1b cylinder F.

3-27. If cylinder E weighs 30 Ib and ¢ = 15°, determine
the weight of cylinder F,

Probs. 3-26/27

Prob. 3-28

#3-29., The cords BCA and €D can each support a
maximum load of 100 Ib. Determine the maximum weight
of the crate that can be hoisted at constant velocity and the
angle # for equilibrium. Neglect the size of the smooth
pulley at C.




*3-30. The springs on the rope assembly are originally
unstretched when @ = 0°. Determine the tension in each
rope when F = 90 lb. Neglect the size of the pulleys at B
and D.

3-31. 'The springs on the rope assembly are originally
stretched 1 ft when 6 = 0°, Determine the vertical force F
that must be applied so that 6 = 30°.

Probs. 3-30/31

*3-32. Determine the magnitude and direction @ of the
equilibrium force F 5 exerted along link AB by the tractive
apparatus shown. The suspended mass is 10 kg. Neglect the
size of the pulley at A.
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*3-33. The wire forms a loop and passes over the small
pulleys at A, B, C.and D. If its end is subjected to a force of
P =50 N, determine the force in the wire and the
magnitude of the resultant force that the wire exerts on
cach of the pulleys.

3-34. The wire forms a loop and passes over the small
pulleys at A, B, €, and D. If the maximum resultant force that
the wire can exert on each pulley is 120 N. determine the
greatest force P that can be applied to the wire as shown.

Probs. 3-33/34

3-35. The picture has a weight of 10 Ib and is to be hung
over the smooth pin B. If a string is attached to the frame at
points A and C, and the maximum force the string can
support is 15 Ib, determine the shortest string that can be
safely used.
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*3-36. The 200-Ib uniform tank is suspended by means of
a 6-ft-long cable, which is attached to the sides of the tank
and passes over the small pulley located at O, If the cable
can be attached at either points A and B or C and D,
determine which attachment produces the least amount of
tension in the cable. What is this tension?

Prob. 3-36

#3-37. The 10-1b weight is supported by the cord AC and
roller and by the spring that has a stiffness of & = 10 Ib/in,
and an unstretched length of 12 in. Determine the distance
d to where the weight is located when it is in equilibrium.

3-38. The 10-1b weight is supported by the cord AC and
roller and by a spring. If the spring has an unstretched
length of 8 in. and the weight is in equilibrium when
d = 4in.. determine the stiffness & of the spring.

i
g
75

Probs. 3-37/38

*3-39. A “scale” 1s constructed with a 4-ft-long cord and
the 10-1b block . The cord is fixed to a pin at A and passes
over two small pulleys at 8 and €. Determine the weight of
the suspended block at B if the system is in equilibrium.

Prob. 3-39

**3-40. The spring has a stiffness of &k = 800 N/m and an
unstretched length of 200 mm. Determine the force in cables
BC and BD when the spring is held in the position shown.

=500 mm ——=——400 mm—

Prob. 340



*3-41. A continuous cable of total length 4 m is wrapped
around the small pulleys at A, B, C. and D. If each spring is
stretched 300 mm, determine the mass m of each block.
Neglect the weight of the pulleys and cords. The springs are
unstretched whend = 2 m.

Prob. 341

342, Determine the mass of each of the two cylinders if
they cause a sag of 5 = (.5m when suspended from the
rings at A and B. Note that 5 = 0 when the cylinders are
removed.
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*3-43. The pail and its contents have a mass of 60 kg. If the
cable BAL is 15 m long, determine the distance y of the
pulley at A for equilibrium. Neglect the size of the pulley.

10m

**3-44. A scale is constructed using the 10-kg mass, the
2-kg pan P, and the pulley and cord arrangement. Cord
BCAis2mlong. If s = 0.75 m, determine the mass [ in the
pan. Neglect the size of the pulley.

Prob, 3-42

Prob. 344
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| | CONCEPTUAL PROBLEMS

P3-1. The concrete wall panel is hoisted into position using P3-3. The device DB is used to pull on the chain ABC so
the two cables AB and AC of equal length. Establish as to hold a door closed on the bin. If the angle between AB
appropriate dimensions and use an equilibrium analysis to and the horizontal segment BC is 30°, determine the angle
show that the longer the cables the less the force in each cable. between DB and the horizontal for equilibrium.

P34, The two chains AB and AC have equal lengths and
are subjected to the vertical force F. If AB is replaced by a
shorter chain AB’, show that this chain would have to
support a larger tensile force than AB in order to maintain
equilibrium.

P3-2. The truss is hoisted using cable ABC that passes
through a very small pulley at B. If the truss is placed in a
tipped position, show that it will always return to the
horizental position to maintain equilibrium.

"‘i

L7
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3.4 Three-Dimensional Force Systems

In Section 3.1 we stated that the necessary and sufficient condition for
particle equilibrium is

IF=0 (3-4)

In the case of a three-dimensional force system, as in Fig. 3-9, we can
resolve the forces into their respective i, j. k components, so that
IFi+ ZFj+ ZFk = 0.Tosatisly this equation we require

XF =0
SF, =0 (3-5)
$F, =0

These three equations state that the algebraic sum of the components of
all the forces acting on the particle along each of the coordinate axes
must be zero. Using them we can solve for at most three unknowns,
generally represented as coordinate direction angles or magnitudes of
forces shown on the particle’s free-body diagram.

. Procedure for Analysis

Three-dimensional force equilibrium problems for a particle can be
solved using the following procedure.

Free-Body Diagram.

e Establish the x, y, z axes in any suitable orientation.

® Label all the known and unknown force magnitudes and
directions on the diagram.

® The sense of a force having an unknown magnitude can be
assumed.

Equations of Equilibrium.

® Use the scalar equations of equilibrium, £F, =0, £F, = (.
2F. = 0, in cases where il is easy to resolve each force into its
X, ¥, Z components.

® If the three-dimensional geometry appears difficult, then first
express each force on the free-body diagram as a Cartesian vector,
substitute these vectors into XF = 0. and then set the i, j. k
components equal to zero.

o If the solution for a force yields a negative result, this indicates
that its sense is the reverse of that shown on the free-body
diagram.

Fig. 3-9

The ring at A is subjected to the force from
the hook as well as forces from cach of the
three chains. If the electromagnet and its load
have a weight W, then the force at the hook
will be W, and the three scalar equations of
equilibrium can be applied to the free-body
diagram of the ring in order to determine the
chain forces, Fyy, Fee, and Fp.
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EXAMPLE | 3.5

z A 90-Ib load is suspended from the hook shown in Fig, 3-10a. If the
load is supported by two cables and a spring having a stiffness
k = 500 Ib/ft, determine the force in the cables and the stretch of the
spring for equilibrium. Cable AD lies in the x—y plane and cable AC
lies in the x—z plane.

SOLUTION

The stretch of the spring can be determined once the force in the spring
is determined.

Free-Body Diagram. The connection at A is chosen for the
equilibrium analysis since the cable forces are concurrent at this
(a) point. The free-body diagram is shown in Fig. 3-10b.

Equations of Equilibrium. By inspection. each force can easily be
z resolved into its x, ¥, z components, and therefore the three scalar
equations of equilibrium can be used. Considering components
directed along each positive axis as “positive.” we have

EF, =0; Fpsin30° = (})F-=0 (1
SE=0 —Fpeos30° + Fz =0 @)
. SE=0 (3)Fe -9 =0 (3)
Solving Eq. (3) for F¢. then Eq. (1) for Fp. and finally Eq. (2) for Fpg.
vields
& Fe=1501b Ans
' Fp = 240 1b A,
b)
‘ Fy = 207.81b Ans.
Fig. 3-10
The stretch of the spring is therefore
Fg=ksag
207.81b = (500 1b/1t)(s45)
sap = 0416 ft Ans

NOTE: Since the results for all the cable forces are positive, each
cable is in tension; that is, it pulls on point A as expected, Fig. 3-10b.
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The 10-kg lamp in Fig. 3-11a is suspended (rom the three equal-length
cords. Determine its smallest vertical distance s from the ceiling if the
force developed in any cord is not allowed to exceed 50 N.

Fig. 3-11

SOLUTION

Free-Body Diagram. Due to symmetry, Fig. 3-115, the distance
DA = DB = DC = 600 mm. It follows that from XF, =0 and
2 F, = 0, the tension 7'in each cord will be the same. Also, the angle
between cach cord and the z axis is .

Equation of Equilibrium. Applying the equilibrium equation along
the 7 axis, with 7' = 50 N, we have

SF.=0; 3[(S0N) cos y] — 10(981)N =0

From the shaded triangle shown in Fig. 3-11h,

e = 0
=

s = 519 mm Ans.

10(9.81) N

(b}
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EXAMPLE | 3.7

Determine the force in each cable used to support the 40-1b crate
5 shown in Fig. 3-12a.
(‘\{ SOLUTION

Free-Body Diagram. Asshown in Fig. 3-12b, the free-body diagram
of point A is considered in order to“expose” the three unknown forces
in the cables.

F

{41
N N
-

Equations of Equilibrium. First we will express each force in
Cartesian vector form. Since the coordinates of points B and C are
B(—3ft, —4 f1, 8 ft) and C(—3 1, 4 ft, 8 ft), we have

~3i — 4j + 8k ]
2/(=3)2 + (—4)*+ (8)
—0.318F5i — 0.424F4j + 0.848Fk
e F{{ —3s1+ 4 4;8k }

2 (3 + (4)+(8)y
—0.318Fi + 0.424Fcj + 0.848Fck

Fg = FB[

]

]

(a)
Fp = Fpi
W = {—40k} Ib
Equilibrium requires
Fs SF =0 Fp+Fo+Fp+W=0
—0318F 5i — 0.424F 4j + 0.848F gk
- — 0318Fci + 0.424F ¢j + 0.848Fck + Fpi — 40k = 0
Equating the respective i, j, k components to zero yields
i A SF, = ~0.318F — 0.318F. + Fp =0 (1)
!} ZF=10 —0424Fy + 0424F- = 0 (2)
e % SE =0 0.848F5 + 0.848F — 40 = 0 (3)
(b) Equation (2) states that Fg = Fe. Thus, solving Eq. (3) for Fgand F
Fig. 3-12 and substituting the result into Eq. (1) to obtain F, we have

Fg=F-=2361b Ans.
Fp =15.01b Ans.
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EXAMPLE | 3.8

Determine the tension in each cord used to support the 100-kg crate
shown in Fig. 3-13a.

SOLUTION
Free-Body Diagram. The force in each of the cords can be
determined by investigating the equilibrium of point A. The free-body .
diagram is shown in Fig. 3-13h. The weight of the crate is B ) i
W = 100(9.81) = 981 N. A = 15kN/m
X
Equations of Equilibrium. Each force on the free-body diagram is r
first expressed in Cartesian vector form. Using Eq. 2-9 for F and
noting point D(—1m, 2 m, 2 m) for Fy,, we have
(a)
FB = ng
Fo = Focos 120% + Fpcos 135% + F cos 60°k

]

—0.5Fqi — 0.707F¢j + 05F-k

B, = Fy —li1+ 2j f-::ak }
2 (-1)°+ (2 + (2)f
= —0.333Fpi + 0.667Fpj + 0.667Fpk
W= {—981k} N
Equilibrium requires
SF =0, Fy+ Fe+Fp+W=0
Fyi — 05F¢i — 0.707F¢j + 0.5F-k i)
— 0.333Fpi + 0667Fp j + 0.667Fpk — 981k = 0 (b)
Equating the respective i, j, k components to zero, Fig. 3-13
ZF,. =0 Fg — 05F- — 0333F, =0 (1)
2R, =0 —0.707F¢ + 0.667F; = 0 (2)
XE =0 0.5F: + 0.667F, — 981 = 0 (3)

Solving Eq. (2) for Fj, in terms of F and substituting this into Eq. (3)
yields Fe. Fp is then determined from Eq. (2). Finally, substituting the
results into Eq. (1) gives Fg. Hence,

Fe=813N Ans.
Fp=862N Ans.

Fg= 694N Ans.
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- FUNDAMENTAL PROBLEMS

All problem solutions must include an FBD. F3-10. Determine the tension developed in cables AB,

F3-7. Determine the magnitude of forces Fy. F,. F, so AC,and AD,

that the particle is held in equilibrium.

F3-8. Determine the tension developed in cables AB.AC, F3-10
and AD.

F3-11. The 150-Ib crate is supported by cables AB, AC,
and AD. Determine the tension in these wires.

F3-8

F3-9, Determine the tension developed in cables AB, AC,
and AD.

F3-9 F3-11
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Cleromiems

All problem solutions must include an FBD.

*345. Determine the tension in the cables in order to
support the 100-kg crate in the equilibrium position shown.

346. Determine the maximum mass of the crate so that the
tension developed in any cable does not exceeded 3 kN.

Probs. 3-45/46

3-47. 'The shear leg derrick is used to haul the 200-kg net of
fish onto the dock. Determine the compressive force along
each of the legs AS and CB and the tension in the winch
cable DE. Assume the force in each leg acts along its axis.

“S56m

Proh. 347

*348. Determine the tension developed in cables AB, AC,
and AD required for equilibrium of the 300-Ib crate.

*3-49. Determine the maximum weight of the crate so that
the tension developed in any cable does not exceed 450 Ib.

Probs. 3-48/49

3-50. Determine the force in each cable needed to
support the 3500-1b platform. Setd = 2 1.

3-51. Determine the force in ecach cable needed to
support the 3500-1b platform. Set d = 4 {1,

- &

Probs, 3-50/51
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*3-52. Determine the force in each of the three cables
needed to lift the tractor which has a mass of 8 Mg.

Prob. 3-52

*3-53. Determine the force acting along the axis of each of
the three struts needed to support the 500-kg block.

3-54. If the mass of the flowerpot is 50 kg, determine the
tension developed in each wire for equilibrium. Set
xr=15mandz=2m.

3-55. 1f the mass of the flowerpot is 50 kg. determine the
tension developed in each wire for equilibrium.Set x = 2m
andz = L5m.

Probs. 3-54/55

*3-56. The ends of the three cables are attached to a ring
at A and to the edge of a uniform 150-kg plate. Determine
the tension in each of the cables for equilibrium.

#3-57. The ends of the three cables are attached to a ring
at A and to the edge of the uniform plate. Determine the
largest mass the plate can have if each cable can support a
maximum tension of 15 kN,

Prob. 3-53

Probs. 3-56/57



3-58. Determine the tension developed in cables AB. AC,
and AD required for equilibrium of the 75-kg cylinder.

3-59. If each cable can withstand a maximum tension of
1000 N, determine the largest mass of the cylinder for
equilibrium.

Probs, 3-58/59

*3-60. The 50-kg pot is supported from A by the three
cables. Determine the force acting in each cable for
equilibrium. Take d = 2.5 m.

*3-61. Determine the height d of cable A B so that the force
in cables AD and AC is one-half as great as the force in
cable AB. What is the force in each cable for this case? The
flower pot has a mass of 50 kg.

Probs. 3-60/61
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3-62. A force of F = 100 Ib holds the 400-Ib crate in
equilibrium. Determine the coordinates (0, v, 2) of point A
if the tension in cords AC and AB is 700 Ib each,

3-63. If the maximum allowable tension in cables AB and
AC is 500 Ib, determine the maximum height z to which the
200-1b crate can be lifted. What horizontal force F must be
applied”? Take v = 8 [t.

Prabs, 3-62/63

*3-64. The thin ring can be adjusted vertically between
three equally long cables from which the 100-kg chandelier
is suspended. If the ring remains in the horizontal plane and
z = 600 mm. determine the tension in each cable.

#3-65. The thin ring can be adjusted vertically between
three equally long cables from which the 100-kg chandelier
is suspended. If the ring remains in the horizontal plane and
the tension in each cable is not allowed to exceed 1 kN.
determine the smallest allowable distance z required for
equilibrium,
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3-66. The bucket has a weight of 80 Ib and is being hoisted
using three springs, each having an unstretched length of
I, = 1.5 1t and stiffness of & = 50 Ib/ft. Determine the
vertical distance d from the rim to point A for equilibrium,

Prob. 3-66

3-67. Three cables are used to support a 900-Ib ring.
Determine the tension in each cable for equilibrium.

*3-68. The three outer blocks each have a mass of 2 kg,
and the central block £ has a mass of 3 kg. Determine the
sag s for equilibrium of the system.

Prob. 3-68

*3-69. Determine the angle ¢ such that an equal force is
developed in legs OB and OC. What is the force in each leg
if the force is directed along the axis of each leg? The force
F lies in the x—y plane. The supports at A, B. C can exert
forces in either direction along the attached legs.
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. CHAPTER REVIEW

Particdle Equilibrium

When a particle is at rest or moves with
constant velocity. it is in equilibrium.
This requires that all the forees acting on
the particle form a zero resultant force.

In order to account for all the forces that
act on a particle, it is necessary to draw
its free-body diagram, This diagram is an
outlined shape of the particle that shows
all the forces listed with their known or
unknown magnitudes and directions.

Fr=2F=10

F, F,

Two Dimensions

The two scalar equations of force
equilibrium can be applied with reference
to an established x, y coordinate system.

The tensile force developed in a
continuous cable that passes over a
frictionless pulley must have a consrant
magnitude throughout the cable to keep
the cable in equilibrium.

If the problem involves a linearly elastic
spring. then the stretch or compression s
of the spring can be related to the force
applied to it.

ks

e

Cable is in tension

Three Dimensions

If the three-dimensional geometry is
difficult to visualize, then the equilibrium
equation should be applied using a
Cartesian vector analysis. This requires
first expressing each force on the free-
body diagram as a Cartesian vector.
When the forces are summed and set
equal to zero, then the i j. and k
components are also zero.




114 CHAPTER 3

EcuiLiBriuM OF A PARTICLE

. REVIEW PROBLEMS

3-70. The 500-Ib crate is hoisted using the ropes AB and
AC. Each rope can withstand a maximum tension of 2500 |b
before it breaks, If AB always remains horizontal,
determine the smallest angle # to which the crate can be
hoisted.

Prob. 3-70

3-71. The members of a truss are pin connected at joint 0.
Determine the magnitude of F; and its angle # for
equilibrium. Set F; = 6 kN.

*3-72. 'The members of a truss are pin connected at joint O.
Determine the magnitudes of F; and F: for equilibrium.
Set 0 = 60°,

.|

SkN

Prob. 3-71/72

*3-73. Two electrically charged pith balls, each having a
mass of 0.15 g, are suspended from light threads of equal
length. Determine the magnitude of the horizontal
repulsive force. F, acting on each ball if the measured
distance between them is r = 200 mm.

r =200 mm

Prob. 3-73

3-74. The lamp has a mass of 15 kg and is supported by a
pole AO and cables AB and AC. If the force in the pole acts
along its axis, determine the forces in A0, AB, and AC for
equilibrium.

Prob. 3-74



3-75. Determine the magnitude of P and the coordinate
direction angles of F: required for equilibrium of the
particle. Note that F; acts in the octant shown.

4

(=1ft, =T, 4M)
-

CFy = 3601b

“Fy=1201b

x Prob. 3-75

*3-76. 'The ring of negligible size is subjected to a vertical
force of 200 Ib. Determine the longest length [ of cord AC
such that the tension acting in AC is 160 Ib. Also, what is the
force acting in cord AB? Hint: Use the equilibrium
condition to determine the required angle # for attachment,
then determine / using trigonometry applied to AABC.

Prob. 3-76

*3-77. Determine the magnitudes of Fy, F>. and F: for
equilibrium of the particle.

"~

Prob. 3-77
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3-78. Determine the force in each cable needed to
support the S00-Ib load.

Prob. 3-78

3-79. The joint of a space frame is subjected to four
member forces. Member OA lies in the x-y plane and
member OF lies in the y-z plane. Determine the forces
acting in each of the members required for equilibrium of
the joint.

Prob. 3-79



Application of forces to the handles of these wrenches will produce a tendency to
rotate each wrench about its end. It is important to know how to calculate this effect
and, in some cases, to be able to simplify this system to its resultants.




Force System
Resultants

CHAPTER OBJECTIVES

* To discuss the concept of the moment of a force and show how to
calculate it in two and three dimensions.

®* To provide a method for finding the moment of a force about a
specified axis.

* To define the moment of a couple.

* To present methods for determining the resultants of nonconcurrent
force systems.

* To indicate how to reduce a simple distributed loading to a resultant
force having a specified location.

4.1 Moment of a Force—
Scalar Formulation

When a force is applied to a body it will produce a tendency for the body
to rotate about a point that is not on the line of action of the force. This
tendency to rotate is sometimes called a rorgue, but most often it is called
the moment of a force or simply the moment. For example, consider a
wrench used to unscrew the bolt in Fig. 4-1a. If a force is applied to the
handle of the wrench it will tend to turn the bolt about point O (or the z
axis). The magnitude of the moment is directly proportional to the
magnitude of F and the perpendicular distance or moment arm d. The
larger the force or the longer the moment arm, the greater the moment or
turning effect. Note that if the force F is applied at an angle 8 # 90°,
Fig. 4-1b, then it will be more difficult to turn the bolt since the moment
arm d' = d sinf will be smaller than d. If F is applied along the wrench,
Fig. 4-lc. its moment arm will be zero since the line of action of F will
intersect point @ (the z axis). As a result, the moment of F about O is also
zero and no turning can occur.

Fig. 4-1
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Moment axis

(b)

Fig. 4-2

Fig. 4-3

We can generalize the above discussion and consider the force F and
point O which lie in the shaded plane as shown in Fig. 4-2a. The moment
M, about point O, or about an axis passing through O and perpendicular
to the plane, is a vector quantity since it has a specified magnitude and
direction.

Magnitude. The magnitude of My, is

| Mo = Fd (4-1)

where d is the moment arm or perpendicular distance from the axis at
point O to the line of action of the force. Units of moment magnitude
consist of force times distance, c.g., N-mor [b-ft.

Direction. The direction of My, is defined by its moment axis, which
is perpendicular to the plane that contains the force F and its moment
arm d. The right-hand rule is used to establish the sense of direction of
M. According to this rule, the natural curl of the fingers of the right
hand, as they are drawn towards the palm, represent the tendency for
rotation caused by the moment. As this action is performed, the thumb
of the right hand will give the directional sense of My, Fig. 4-2a. Notice
that the moment vector is represented three-dimensionally by a curl
around an arrow. In two dimensions this vector is represented only by
the curl as in Fig. 4-2b. Since in this case the moment will tend to cause a
counterclockwise rotation, the moment vector is actually directed out of
the page.

Resultant Moment. For two-dimensional problems, where all the
forces lie within the x-y plane, Fig. 4-3. the resultant moment (Mg),
about point O (the 7 axis) can be determined by finding the algebraic sum
of the moments caused by all the forces in the system. As a convention,
we will generally consider positive moments as counterclockwise since
they are directed along the positive z axis (out of the page). Clockwise
moments will be negative. Doing this, the directional sense of each
moment can be represented by a plus or minus sign. Using this sign
convention, the resultant moment in Fig. 4-3 is therefore

(+ (Mﬂ'}.. = XFd. {MR}“ = F1d| e ng: + F_‘dj
If the numerical result of this sum is a positive scalar, (Mg)  will be a

counterclockwise moment (out of the page): and if the result is negative,
(Mg),, will be a clockwise moment (into the page).
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EXAMPLE |4.1

For each case illustrated in Fig. 44, determine the moment of the
force about point 0.

SOLUTION (SCALAR ANALYSIS)

The line of action of each force is extended as a dashed line in order to
establish the moment arm d. Also illustrated is the tendency of rotation
of the member as caused by the force. Furthermore, the orbit of the
force about O is shown as a colored curl. Thus,

Fig. 4-4a Mp = (100N)(2m) = 200N-m ) Ans. )
Fig. 4-4b Mo = (50N)(0.75m) = 37.5N-m 0 Ans. !
Fig.d4c  Mp = (401b)(4ft + 2cos30° ft) = 2291b-ft D Ans 0 %z—_:
Fig.44d My = (601b)(1sin 45° ft) = 42.41b-ft Ans. - e 9
Fig. 4-4e Mo = (TkN)(4m — 1m) = 21.0kN-m 9 Ans. (a)

2n
(2] 300740 1b
= 41t - - -
2cos 307 Nt
(c)
- zm—u
TR 1 ol
lm
| TkN
— 3t -
‘\ } 4m
(o] e H
7 B e |
1R is¢ l,sm‘-IS It |
Rolb I N
= [N
(d) (o] (e)

Fig. 44
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EXAMPLE |4.2

Determine the resultant moment of the four forces acting on the rod
shown in Fig. 4-5 about point O.

SOLUTION
Assuming that positive moments act in the +k direction, i.e.,
counterclockwise, we have

C+Mg, = ZFd;
Mg, = —S0N(2m) + 60 N(0) + 20 N(3 sin 30° m)

—40N(4 m + 3cos 30°m)
Mg, = —334N'm = 334 N-m ) Ans.

Fig. 4-5 For this calculation, note how the moment-arm distances for the 20-N
and 40-N forces are established from the extended (dashed) lines of
action of each of these forces.

As illustrated by the example problems, the moment of a The ability to remove the nail will require the moment
force does not always cause a rotation. For example. the force of Fy; about point @ to be larger than the moment of
F tends to rotate the beam clockwise about its support at A the foree Fy about O that is needed to pull the nail out.

with a moment M , = Fd ;. The actual rotation would occur
if the support at B were removed.



4.2 Cross Product

The moment of a force will be formulated using Cartesian vectors in the
next section. Before doing this, however, it is first necessary to expand our
knowledge of vector algebra and introduce the cross-product method of
vector multiplication.

The cross product of two vectors A and B vields the vector C, which is
written

C=AXxXB (4-2)
and is read “C equals A cross B.”

Magnitude. The magnitude of C is defined as the product of the
magnitudes of A and B and the sine of the angle 6 between their tails
(0° = 6 = 1807). Thus,C = ABsind.

Direction. Vector C has a direction that is perpendicular to the plane
containing A and B such that C is specified by the right-hand rule; i.e.,
curling the fingers of the right hand from vector A (cross) to vector B,
the thumb points in the direction of C, as shown in Fig. 4-6.

Knowing both the magnitude and direction of C. we can write

C=A X B = (ABsin0)uc (4-3)
where the scalar AB sin 8 defines the magnitude of C and the unit vector

u. defines the direction of C. The terms of Eq. 4-3 are illustrated
graphically in Fig. 4-6.

C=AXB

Fig. 4-6

4.2 Cross Proouct
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Fig. 4-7

Fig. 4-§

Laws of Operation.
o The commutative law is nor valid: 1.e., A X B # B X A. Rather,

AXB=-BxXA

This is shown in Fig. 4-7 by using the right-hand rule, The cross
product B X A vields a vector that has the same magnitude but acts
in the opposite direction to C;ie.. B X A = —C.

e If the cross product is multiplied by a scalar a, it obeys the assoc-
iative law;

a(A X B) = (aA) X B = A X (aB) = (A X B)a

This property is casily shown since the magnitude of the resultant
vector (|al AB sin 6) and its direction are the same in each case.

e The vector cross product also obeys the distributive law of addition,

Ax(B+D)=(AXB)+(AXD)

e The proof of this identity is left as an exercise (see Prob. 4-1). It is
important to note that proper order of the cross products must be
maintained, since they are not commutative.

Cartesian Vector Formulation. Equation 4-3 may be used
to find the cross product of any pair of Cartesian unit vectors. For
example, to find i X j. the magnitude of the resultant vector is
(£)(j)(sin90°) = (1)(1)(1) = I, and its direction is determined using
the right-hand rule. As shown in Fig. 4-8, the resultant vector points in
the +k direction. Thus,i X j = (1)k. In a similar manner,

iXj=k iXk=-j ixXi=0
IXk=i jxi=-k jxXj=0
kxi=j kxXj=-i kxXk=0

These results should not be memornized; rather, it should be clearly
understood how each is obtained by using the right-hand rule and the
definition of the cross product. A simple scheme shown in Fig. 4-9 is
helpful for obtaining the same results when the need arises. If the circle is
constructed as shown, then “crossing” two unit vectors in a
counterclockwise fashion around the circle yields the positive third unit
vector; e.g., k X i = j. “Crossing” clockwise, a negative unit vector is
obtained; e.g..i X k = —j.
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Let us now consider the cross product of two general vectors A and B
which are expressed in Cartesian vector form, We have
AXB=(Ai+ Aj+ AKk)X (Bi+Bj+ BKk)
= AB(i X 1) + AB(i X j) + AB.(i X k)
+ AB(j X i) + AB(j X j) + AB.(j X k)
+ AB(k xi) + AB(k X j) + A.B.(k X k)
Carrying oul the cross-product operations and combining terms vields
AXB=(AB.— AB,)i— (AB.— AB,)j + (A8, — AB)k (4-4)

This equation may also be written in a more compact determinant

form as
i i k
AXB=1A Ay A; (4-5)
B, B, B,

Thus, to find the cross product of any two Cartesian vectors A and B, it is
necessary to expand a determinant whose first row of elements consists
of the unit vectors i, j. and k and whose second and third rows represent
the x, y, z components of the two vectors A and B, respectively.®

*A determinant having three rows and three columns can be expanded using three
minors, cach of which is multiplied by one of the three terms in the first row. There are
four elements in each minor., for example,

.y - N
Any Ar )

/

By definition, this determinant notation represents the terms (A An — AjpAsy ), which is
simply the product of the two elements intersected by the arrow slanting downward to the
right (A As) minus the product of the two elements intersected by the arrow slanting
downward to the left { A2As ). Fora 3 % 3 determinant, such as Eq. 4-5, the three minors
can be generated in accordance with the following scheme:

For element i A, AT ".|= i(A.B.— A.B)
.B" i Remember the
G e /. negative sign
For element j: A.\-\%;, A.|'= Lj(A,B. — ABY)
.-,B)-"" -""'““E.‘.__I

A AT
B¢ By )

For clement k: .| =KkAB, - AB,)

Adding the results and noting that the j element must include the minus sign yiclds the
expanded form of A x B given by Eq. 4-4.
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Moment axis

(a)

Moment axis

Fig. 4-10

:T;M(}ZI'JXF=I:3{FZT\XF
|

Fig. 4-11

4.3 Moment of a Force—Vector
Formulation

The moment of a force F about point O, or actually about the moment axis
passing through @ and perpendicular to the plane containing O and F,
Fig. 4-10a, can be expressed using the vector cross product. namely,

Mn =rXF ("—6)

Here r represents a position vector directed from O to any point on the
line of action of F. We will now show that indeed the moment Mg, when
determined by this cross product, has the proper magnitude and direction.

Magnitude. The magnitude of the cross product is defined from
Eq. 4-3 as M, = rF sin 6, where the angle # is measured between the
tails of r and F. To establish this angle, r must be treated as a sliding
vector so that # can be constructed properly, Fig. 4-10b. Since the
moment arm = rsin #, then

Mgy = rFsin® = F(rsin®) = Fd

which agrees with Eq. 4-1.

Direction. The direction and sense of My, in Eq. 4-6 are determined
by the right-hand rule as it applies to the cross product. Thus, sliding r to
the dashed position and curling the right-hand fingers from r toward F,“r
cross F." the thumb is directed upward or perpendicular to the plane
containing r and F and this is in the same direction as M, the moment
of the force about point O, Fig. 4-10b. Note that the “curl” of the fingers,
like the curl around the moment vector, indicates the sense of rotation
caused by the force. Since the cross product does not obey the
commutative law, the order of r X F must be maintained to produce
the correct sense of direction for My,.

Principle of Trarlsmissibility. The cross product operation is
often used in three dimensions since the perpendicular distance or
moment arm from point O to the line of action of the force is not
needed. In other words, we can use any position vector r measured from
point O to any point on the line of action of the force F, Fig. 4-11. Thus,

Mo=nXF=nXF=nXF
Since F can be applied at any point along its line of action and still create

this same moment about point O, then F can be considered a sliding
vector. This property is called the principle of transmissibility of a force.
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Cartesian Vector Formulation. If we establish x, v, z coordinate
axes, then the position vector r and force F can be expressed as Cartesian
vectors, Fig. 4-12a. Applying Eq. 4-5 we have

ST
Mo=trXF=|r, r, r (4-7)
Boh B

where
reryr.  represent the x, y, z components of the position
vector drawn from point O to any point on the
line of action of the force

Fo Fy. F: representthe x, y. z components of the force vector

If the determinant is expanded, then like Eq. 4-4 we have
Mo = (ryF: = r.Fy)i = (roF. = rFo)j + (rFy = ryFok (4-8)

The physical meaning of these three moment components becomes
evident by studving Fig. 4-12b. For example, the i component of Mg
can be determined from the moments of F,. F,, and F. about the x axis.
The component F, does not create a moment or tendency Lo cause
turning about the x axis since this force is parallel to the x axis. The line
of action of F, passes through point B, and so the magnitude of the
moment of F, about point A on the x axis is r.F. By the right-hand
rule this component acts in the negative i direction. Likewise, F. passes
through point € and so it contributes a moment component of r Fi
about the axis. Thus, (M), = (r,F. — r.F,) as shown in Eq. 4-8. As an
exercise, establish the j and k components of My, in this manner and
show that indeed the expanded form of the determinant, Eq. 4-8.
represents the moment of F about point O. Once My, is determined,
realize that it will always be perpendicular 1o the shaded plane
containing vectors r and F, Fig. 4-12a.

Resultant Moment of a System of Forces. Ifabodyisacted
upon by a system of forces, Fig. 4-13. the resultant moment of the forces
about point O can be determined by vector addition of the moment of
cach force. This resultant can be written symbolically as

Mg, = 3(r X F) (4-9)

axis \

Moment I
M,

()

Fig. 4-13
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EXAMPLE 4.3

Determine the moment produced by the force F in Fig. 4-14a about
point O. Express the result as a Cartesian vector.

SOLUTION

As shown in Fig. 4-14q, cither r4 or rg can be used to determine the
moment about point 0. These position vectors are

ry={12k}m and rz= {4i+ 12j}m
Force F expressed as a Cartesian vector is

{4i + 12j — 12k} m
F = Fup = 2kN| ——— -
V(4m) + (12m)? + (—12m)?
= {0.4588i + 1.376] — 1.376k} kN

(a) Thus

i i k
Moo=t XF=| 0 0 12
04588 1376 —1376
= [0(—1.376) — 12(1.376)]i — [0(—1.376) — 12(0.4588)] j
+ [0(1.376) — 0(0.4588)]k

= {~165i + 551j) kKN'm Ans,
or
i i k
Mp=r3 XF = 4 12 0

04588 1376 —1.376

Il

[12(~1.376) — 0(1.376)]i — [4(~1.376) — 0(0.4588)]j
+ [4(1.376) — 12(0.4588)]k
= {—16.5i + 5.51j} kN'm Ans.

NOTE: As shown in Fig. 4-14h, My, acts perpendicular to the plane
(b) that contains F.r,. and rz. Had this problem been worked using
Mg = Fd, notice the difficulty that would arise in obtaining the

Fig, 4-14 moment arm d.
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EXAMPLE (4.4

Two forces act on the rod shown in Fig. 4-154. Determine the
resultant moment they create about the flange at O. Express the result
as a Cartesian vector.

F = [80i + 40 — 30k Ib

—60 40 20| |80 40 —30
[5(20) — 0(40)Ji — [0]f + [0(40) — (5)(—60)]k
+[5(=30) = (=2)(40)]i — [4(=30) = (=2)(80)]j + [4(40) — 5(80)]k

= {30 — 40 + 60k} Ib-ft Ans.

NOTE: This result is shown in Fig. 4-15¢. The coordinate direction
angles were determined from the unit vector for Mg, . Realize that the
two forces tend to cause the rod to rotate about the moment axis in
the manner shown by the curl indicated on the moment vector.

(@)
SOLUTION
Position vectors are directed from point O to each force as shown in z
Figd—lﬁbThcsc vectors are Mj; = [30i - 40j + 60k} b - fi
{ o e t
£ = {5i} i S P
rp={4i+ 55— 2k} ft o=ﬁ?7/o‘
The resultant moment about O is therefore : A !
Mg, = S(r X F) L
=ry X F, +r5 XF, Fig, 4-15
i g i ] k
=10 5 0=k |4 5B =2




128 CHAPTER 4 FoORCE SYSTEM RESULTANTS

o0

Fig 4-16

Fig. 4-17

The moment of the applied force F about
point O is easy to determine if we use the
principle of moments. It is simply
Mg = F.d.

4.4 Principle of Moments

A concept often used in mechanics is the principle of moments, which is
sometimes referred to as Varignon's theorem since it was originally
developed by the French mathematician Varignon (1654-1722), It states
that the moment of a force about a point is equal to the sum of the moments
of the components of the force about the point. This theorem can be proven
casily using the vector cross product since the cross product obeys the
distributive law. For example, consider the moments of the force F and
two of its components about point O. Fig. 4-16. Since F = F;, + F,
we have

Mo=rXF=rXx(FF+F)=rXF+rxF

For two-dimensional problems, Fig. 4-17, we can use the principle of
moments by resolving the force into its rectangular components and
then determine the moment using a scalar analysis. Thus,

JW(; = F|\' W F‘.,\'

This method is generally casier than finding the same moment using
Mgy = Fd.

Important Points

# The moment of a force creates the tendency of a body 1o turn
about an axis passing through a specific point O.

e Using the right-hand rule, the sense of rotation is indicated by the
curl of the fingers, and the thumb is directed along the moment
axis, or line of action of the moment.

* The magnitude of the moment is determined from M, = Fd.
where d is called the moment arm, which represents the
perpendicular or shortest distance from point @ to the line of
action of the force.

* In three dimensions the vector cross product is used to determine
the moment, i.e., My = r X F. Remember that r is directed from
point O to any point on the line of action of F.

¢ The principle of moments states that the moment of a force
about a point is equal to the sum of the moments of the force’s
components about the point. This is a very convenient method to
use in two dimensions.




Determine the moment of the force in Fig, 4-18a about point O.

y

o, = 3cos 30°m

-
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F, = (5 kN) cos 45°

SOLUTION |
The moment arm d in Fig. 4-18a can be found from trigonometry.
d = (3m)sin75° = 2.898 m
Thus,
My = Fd = (5kN)(2.898 m) = 14.5kN-m) Ans.
Since the foree tends to rotate or orbit clockwise about point O, the
moment is directed into the page.

SOLUTION II

The x and y components of the force are indicated in Fig. 4-18b.
Considering counterclockwise moments as positive, and applying the
principle of moments, we have

C"‘ MO == Fld.r = F_\‘d.l
= —(5cos45” kN)(3sin 30" m) — (5sin 457 kN)(3 cos 30" m)
= —145kN-m = 145kN-m ) Ans. F=(5 kNl!is 8%
| X
SOLUTION It ) , 4
The x and y axes can be set parallel and perpendicular to the rod’s axis A  45°

as shown in Fig. 4-18c. Here F, produces no moment about point O
since its line of action passes through this point. Therefore,

C+Mp = —F,d,
—(5sin 75° kN)(3 m)

—145kN'm = 145kN-m)

Ans

X

i

F, = (5kN) sin 75°

{c}

Fig. 4-18
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EXAMPLE |4.6

Force F acts at the end of the angle bracket shown in Fig. 4-19a.
Determine the moment of the force about point O.

SOLUTION | (SCALAR ANALYSIS)

The force is resolved into its x and y components as shown in
Fig. 4-19b, then

C+Mgy

400 sin 30° N(0.2 m) — 400 cos 30° N(0.4 m)
~986N-m = 98.6N-m )

or

My = {—98.6k} N-m Ans.

SOLUTION Il (VECTOR ANALYSIS)

' x
02m Using a Cartesian vector approach, the force and position vectors
shown in Fig. 4-19¢ are
400 sin 30° N
r={04i —02j} m
400 cos 3N

F = {400 sin 30°i — 400 cos 30°} N
= {200.0i — 346.4j} N

The moment is therefore

i i k
M,=rXxF=| 04 —02 0
- 2000 —3464 0
= 0i — 0j + [0.4(—=346.4) — (—0.2)(200.0)]k
= {—98.6k} N-m Ans.

NOTE: It is seen that the scalar analysis (Solution I) provides a
more convenient method lor analysis than Solution Il since the
direction of the moment and the moment arm for each component
force arc easy to establish. Hence. this method is generally
recommended for solving problems displayed in two dimensions,
whereas a Cartesian vector analysis is generally recommended only
for solving three-dimensional problems.

Fig. 4-19
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. FUNDAMENTAL PROBLEMS

Fa-1. Determine the moment of the force about point O. F4-. Determine the moment of the force about point 0.

600 b ._i. — 41t - i

F4-1

F4-2. Determine the moment of the force about point 0. F4-5.  Determine the moment of the force about point O.
Neglect the thickness of the member.
100N SON

F4-2 l——-lm mm-—
F4-5
F4-3. Determine the moment of the force about point 0. F4-6. Determine the moment of the force about point O.
F=300N S00N
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F4-7. Determine the resultant moment produced by the
forces about point O.

F4-10.  Determine the moment of force F about point O.
Express the result as a Cartesian vector.

600 N
F4-7

F4-8. Determine the resultant moment produced by the
forces about point 0.

F, = S00N

0.125m

N £ = 600N
F4-8

F4-9. Determine the resultant moment produced by the
forces about point 0.

61t —-{ /{

Fy = 2001b !

F4-10

F 4-11. Determine the moment of force F about point 0.
Express the result as a Cartesian vector.

F4-11
F4-12. If F; = {100i — 120§ + 75k} Ib and F; = {-200i
+ 250j + 100k} Ib, determine the resultant moment
produced by these forces about point O. Express the result
as a Cartesian vector.

F4-12
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Sleromews

«41. If A, B, and D are given vectors. prove the
distributive law for the wector cross product, ie.
AX(B+D)=(AXB)+(AXD)
4-2. Prove the triple scalar
A'BXC=AXB-C

4-3. Given the three nonzero vectors A, B, and C, show
that if A-(B X C) = 0, the three vectors must lie in the
same plane.

product  identity

*44. Two men exert forces of F = 80 Iband P = 501bon
the ropes. Determine the moment of each force about A.
Which way will the pole rotate. clockwise or counterclockwise?

*4-5. If the man at B exerts a force of P = 301b on his
rope, determine the magnitude of the force F the man a1 C
must exert to prevent the pole from rotating. i.c.. so the
resultant moment about A of both forces is zero.

Probs, 4-4/5

4-6. If # = 45°, determine the moment produced by the
4-kN force about point A.

4-7. If the moment produced by the 4-kN force about
point A is 10 kN - m clockwise. determine the angle 8, where
0" =0 =9.

- Im- |

Probs. 4-6/7

*4-8. The handle of the hammer is subjected to the force
of F = 20 Ib. Determine the moment of this force about the

point A.

*4-9. In order to pull out the nail at B. the force F exerted
on the handle of the hammer must produce a clockwise
moment of 5001b-in. about point A. Determine the
required magnitude of force F.

Probs. 4-8/9

4-10. The hub of the wheel can be attached to the axle
cither with negative offset (left) or with positive offset
(right). If the tire is subjected to both a normal and radial
load as shown. determine the resultant moment of these
loads about point € on the axle for both cases.

Case | Case 2
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4-11. The member is subjected 10 a force of F = 6 KN, If
@# = 457, determine the moment produced by F about
point A.

*4-12, Determine the angle #(0° = 6 = 180°) of the
force F so that it produces a maximum moment and a
minimum moment about point A. Also, what are the
magnitudes of these maximum and minimum moments?

*4-13. Determine the moment produced by the force F
about point A in terms of the angle 6. Plot the graph of M
versus 6, where 0° = 0 = 180",

Probs. 4-11/12/13

4-14. Serious neck injuries can occur when a football
plaver is struck in the face guard of his helmet in the
manner shown, giving rise to a guillotine mechanism.
Determine the moment of the knee force P = 50 Ib about
point A. What would be the magnitude of the neck force F
so that it gives the counterbalancing moment about A?

Probs. 4-14

4-15. The Achilles tendon force of F,= 650N is
maobilized when the man tries to stand on his toes. As this is
done. each of his feet is subjected to a reactive force of
N = 400 N. Determine the resultant moment of F, and Ny
about the ankle joint A.

*4-16. The Achilles tendon force F, is mobilized when the
man tries to stand on his toes. As this is done, each of his feet
is subjected to a reactive force of N, = 400 N, If the resultant
moment produced by forces F, and N, about the ankle joint
A is required to be zero, determine the magnitude of F,.

Ny = 400N
Probs. 4-15/16

*4-17. The two boys push on the gate with forces of
F4=301band as shown. Determine the moment of each
force about €. Which way will the gate rotate, clockwise or
counterclockwise? Neglect the thickness of the gate.

4-18. Two boys push on the gate as shown. If the boy at B
exerts a force of Fy = 301b, determine the magnitude of
the force F , the boy at A must exert in order to prevent the
gate from turning. Neglect the thickness of the gate.

Probs. 4-17/18



4-19. The tongs are used to grip the ends of the drilling
pipe P. Determine the torque (moment) Mp that the
applied force F = 150 Ib exerts on the pipe about point P
as a function of #. Plot this moment M, versus # for
0=0=9°.

*4-20. The tongs are used to grip the ends of the drilling
pipe P. If a torque (moment) of M, = 800 Ib-{t is needed
at P to turn the pipe. determine the cable force F that must
be applied to the tongs. Set # = 30°,

[~ 43in. - -

Probs. 4-19/20

*4-21. Determine the direction # for 0° = # = 180° of the
force F so that it produces the maximum moment about
point A. Calculate this moment.

4-22. Determine the moment of the force F about point A
as a function of #. Plot the results of M (ordinate) versus ¢
(abscissa) for 0° = 6 = 180°.

4-23. Determine the minimum moment produced by
the force F about point A. Specify the angle #(0° =
o = 180°).

F=400N

Probs. 4-21/22/23
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*4-24. In order to raise the lamp post from the position
shown, force F is applied to the cable. If F = 2001b,
determine the moment produced by F about point A.

*4-25. In order to raise the lamp post from the position
shown, the force F on the cable must create a counterclockwise
moment of 15001b-«ft about point A. Determine the
magnitude of F that must be applied to the cable.

]
Probs. 4-24/25
4-26. The foot segment is subjected to the pull of the two

plantarflexor muscles. Determine the moment of each force
about the point of contact A on the ground.
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4-27. The 70-N force acts on the end of the pipe at B. 4-31. The rod on the power control mechanism for a
Determine (a) the moment of this force about point A, and business jet is subjected to a force of 80 N. Determine the
(b) the magnitude and direction of a horizontal force, applied moment of this force about the bearing at A.

at €, which produces the same moment. Take 8 = 60°.

*4-28. The 70-N force acts on the end of the pipe at B.
Determine the angles @ (0° = # = 180°) of the force that
will produce maximum and minimum moments about
point A. What are the magnitudes of these moments?

=03m—~t 07m 4
Probs, 4-27/28 Prob. 4-31
+4-29. Determine the moment of each force about the *4-32. The towline exerts a force of P = 4kN at the end
bolt located at A.Take Fy = 401b. Fe = 501b. of the 20-m-long crane boom. If # = 30°, determine the
4-30. If Fy = 30Iband Fe = 45 Ib, determine the resultant placement x of the hook at A so :vhat this force creat:s a
ent about the bolt located at A. maximum moment about point €. What is this moment?

+4-33. The towline exerts a force of P = 4 kN at the end
of the 20-m-long crane boom. If x = 25 m, determine the
position # of the boom so that this force creates a maximum
moment about point 0. What is this moment?

P=4kN

——

Probs. 4-29/30 Probs. 4-32/33



4-34. In order to hold the wheelbarrow in the position
shown. force F must produce a counterclockwise moment
of 200 N-m about the axle at A. Determine the required
magnitude of force F.

4-35. The wheelbarrow and its contents have a mass of
50 kg and a center of mass at G. If the resultant moment
produced by force F and the weight about point A is to be
zero, determine the required magnitude of force F.

*4-36. ‘The wheelbarrow and its contents have a center of
mass at G. If F = 100 N and the resultant moment produced
by force F and the weight about the axle at A is zero,
determine the mass of the wheelbarrow and its contents.

Prob. 4-34/35/36

*4-37. Determine the moment produced by F; about
point O. Express the result as a Cartesian vector,

4-38, Determine the moment produced by F, about
point O. Express the result as a Cartesian vector,

4-39. Determine the resultant moment produced by the two
forces about point O. Express the result as a Cartesian vector.

Probs. 4-37/38/39
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*4-40. Determine the moment produced by force Fjy
about point (). Express the result as a Cartesian vector.

*441. Determine the moment produced by force F
about point O. Express the result as a Cartesian vector.

4-42. Determine the resultant moment produced by
forces Fy and F about point 0. Express the result as a
Cartesian vector.

Probs. 4-40/41/42

4-43. Determine the moment produced by each force
about point @ located on the drill bit. Express the results as
Cartesian vectors.

_ 600mm -
F, = (408 - 100) — 60K N
e

150 m

Fp = |~50i — 120j + 60k} N

Prob. 443

*4-44. A force of F = {6i - 2j + Ik} kN produces a
moment of Mg = {4i + 5§ — 14k} kKN - m about the origin
of coordinates, point 0. If the force acts at a point having an
xcoordinate of ¥ = 1 m, determine the y and z coordinates.
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+4-45. The pipe assembly is subjected to the 80-N force. *4-48. Force F acts perpendicular to the inclined plane.
Determine the moment of this force about point A. Determine the moment produced by F about point A.

4-46. The pipe assembly is subjected to the 80-N force. Express the result as a Cartesian vector.

Determine the moment of this force about point B. +449, Force F acts perpendicular to the inclined plane.

Determine the moment produced by F about point B.
Express the result as a Cartesian vector.

4-47. The force F = {6i + 8 + 10k} N creates a 4-50. A 20-N horizontal force is applied perpendicular to

moment about point @ of M, = {—14i + 8j + 2k} N-m. the handle of the socket wrench. Determine the magnitude
If the force passes through a point having an x coordinate of and the coordinate direction angles of the moment created
1 m, determine the ¥ and z coordinates of the point. Also, by this force about point 0.

realizing that M, = Fd. determine the perpendicular
distance o from point O to the line of action of F.

Prob. 447 Prob. 4-50
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4.5 Moment of a Force about a
Specified Axis

Sometimes, the moment produced by a force about a specified axis must
be determined. For example, suppose the lug nut at O on the car tire in
Fig. 4-20a needs to be loosened. The force applied to the wrench will
create a tendency for the wrench and the nut to rotate about the moment
axis passing through O; however, the nut can only rotate about the v axis.

Therefore, to determine the turning effect, only the y component of the *

moment is needed, and the total moment produced is not important. To
determine this component, we can use either a scalar or vector analysis.

Scalar Anaiysis. To use a scalar analysis in the case of the lug nut in
Fig. 4-20a, the moment arm perpendicular distance from the axis to the line
of action of the force is d, = d cos f. Thus, the moment of F about the y
axis is M, = Fd, = F(d cos #). According to the right-hand rule, M, is
directed along the positive y axis as shown in the figure. In general, for any
axis a, the moment is

| M, = Fd, | (4-10)

Moment Axis
(a)

Fig. 4-20

If large enough, the cable foree F on the boom
of this crane can cause the crane to topple
over. To mvestigate this, the moment of the
force must be calculated about an axis passing
through the base of the legs at A and B.

139
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(b)

Fig. 4-20

Axis of projection

Fig. 4-21

Vector Analysis. To find the moment of force F in Fig. 4-20b about
the y axis using a vector analysis, we must first determine the moment of
the force about any point O on the y axis by applying Eq. 4-7,
Mg = r X F.The component M, along the y axis is the projection of Mg
onto the y axis. It can be found using the dot product discussed in
Chapter 2, so that M, = j-Mg = j-(r X F), where j is the unit vector
for the y axis.

We can generalize this approach by letting u, be the unit vector that
specifies the direction of the a axis shown in Fig. 4-21.Then the moment
of F about the axis is M, = u, - (r X F). This combination is referred to
as the scalar triple product. If the vectors are written in Cartesian form,
we have

i j Kk
M, = [u,d+u, j+ukl-[r, r, r.
F. F, F.

N‘;.[J"-F_- —rFy) = “n_(rlF: = reFy) + “nl_.{r.tFt' = ryFy)

This result can also be written in the form of a determinant, making it
easier lo memorize.*

Uy, Uy Uy
My=ui @ XF)=|r, ry, r; (4-11)
F. F, F;

where
ty U, o, represent the x, y. z components of the unit
vector defining the direction of the a axis

T T represent the x, v, z components of the
' position vector extended from any point O on
the a axis to any point A on the line of action
of the force
F..F, F. representthe.x,y, z components of the force
vector.

When M, is evaluated from Eq. 4-11, it will yield a positive or negative
scalar. The sign of this scalar indicates the sense of direction of M, along
the a axis. [T it is positive, then M, will have the same sense as u,, whereas
if it is negative, then M, will act opposite to u,.

Once M, is determined, we can then express M, as a Cartesian vector,
namely,

M, = M, (4-12)

The examples which follow illustrate numerical applications of the
above conceplts.

*Take a moment to expand this determinant, to show that it will vield the above result.
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Important Points

# The moment of a force about a specified axis can be determined
provided the perpendicular distance d, from the force line of
action to the axis can be determined. M, = Fd,.

s If vector analysis is used, M, = u,- (r X F), where u, defines the
direction of the axis and r is extended from any point on the axis
10 any point on the line of action of the force.

e If M, is calculated as a negative scalar, then the sense of direction

of M, is opposite 10 u,. .

* The moment M, expressed as a Cartesian vector is determined
from M, = M,u,.

EXAMPLE |4.7

Determine the resultant moment of the three forces in Fig. 4-22 about
the x axis, the y axis, and the z axis.

SOLUTION

A force that is parallel 1o a coordinate axis or has a line of action that
passes through the axis does nor produce any moment or tendency for
turning about that axis. Therefore, defining the positive direction of the £, =401y
moment of a force according to the right-hand rule, as shown in the
figure, we have

M, = (601b)(21t) + (S0Ib)(2ft) + 0 = 2201b+ft  Ans
M, =0~ (501b)(3ft) — (401b)(21t) = —2301b-ft  Ans

M.=0+0-(401b)(2ft) = —801Ib-ft Ans.

The negative signs indicate that M, and M. act in the —y and —z
directions, respectively.
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EXAMPLE |4.8

Determine the moment Mg produced by the force F in Fig. 4-23a,
which tends to rotate the rod about the AB axis.

SOLUTION
A vector analysis using M 5 = ng - (r X F) will be considered for the
solution rather than trying to find the moment arm or perpendicular
distance from the line of action of F to the AR axis. Each of the terms
in the equation will now be identified.

Unit vector ug defines the direction of the AB axis of the rod,
Fig. 4-23b, where

0.4i + 0.2§
SO NN ) T R

5 V(04m) T+ (02m) 2
Vector ris directed from any point on the AB axis to any point on the
line of action of the force. For example, position vectors re and rp are
suitable, Fig. 4-23b. (Although not shown, rge or rgp, can also be
used.) For simplicity, we choose rp, where

rp = {0.6i} m

The force is
F = {-300k} N
Substituting these vectors into the determinant form and expanding,
we have
0.8944 04472 0
Myg=ug (rp X F)=| 06 0 0
0 0 —300
= 0.8944[0(—=300) — 0(0)] — 0.4472[0.6(—300) — 0(0)]
+ 0[0.6(0) = 0(0)]

= 8050N-m
This positive result indicates that the sense of M,y is in the same
direction as ug.
Expressing M 4 as a Cartesian vector yields
Mz = M pup = (80.50 N -m)(0.8944i + 0.4472j)
= {72.0i + 36.0j} N-m Ans.
The result is shown in Fig. 4-235.
NOTE: Ifaxis AB is defined using a unit vector directed from B toward
A, then in the above formulation —ug would have to be used. This would

lead to M 45 = —80.50 N+m. Consequently. M,z = M 45(—uy), and
the same result would be obtained.
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EXAMPLE |4.9

Determine the magnitude of the moment of force F about segment
OA of the pipe assembly in Fig. 4-24a.

SOLUTION

The moment of F about the OA axis is determined from D-
Mo = ug, - (r X F), where ris a position vector extending from any
point on the OA axis to any point on the line of action of F. As
indicated in Fig. 4-24b, cither rop. Yoe, Fap. Or 1y can be used;
however, rpp will be considered since it will simplify the calculation.

The unit vector ug 4, which specifies the direction of the OA axis. is

05m

030 + 0.4j
I 7 OO L - = 0.6i + 08

OAT Yoa  V(03mY + (04Am)

and the position vector ryy, is
rop = {051 + 0.5k} m
The force F expressed as a Cartesian vector is
r —~
Fe F(t_v)
fco

{S(XIN)I:

{0.4i — 04§ + 02k} m
V(04m)? + (—04m) + (02m)
= (200i — 200 + 100k} N

Therefore, (b)
Fig. 4-24

Mg = ug,-(rop X F)

0.6 0.8 0

0.5 0 0.5

200 =200 100

0.6[0(100) — (0.5)(=200)] — 0.8[0.5(100) — (0.5)(200)] + 0

100 N-m Ans.
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. FUNDAMENTAL PROBLEMS

F4-13. Deternine the magnitude of the moment of the Fd-16. Determine the magnitude of the moment of the
force F = {300i — 200j + 150k} N about the x axis. force about the v axis.
Express the result as a Cartesian vector. F = [30i - 20§ + S0k] N

Fd-14. Determine the magnitude of the moment of the
force F = {300i — 200j + 150k} N about the ©OA axis. A
Express the result as a Cartesian vector.

F4-16

F4-17. Determine the moment of the force
F = {50i — 40§ + 20k} Ib about the AB axis. Express the
result as a Cartesian vector. -

Fa4-13/14

F4-15. Determine the magnitude of the moment of the
200-N force about the x axis.

F4-17
F4-18. Determine the moment of force F about the x, the
v.and the z axes. Use a scalar analysis.

F4-15
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Clemomiews

4-51. Determine the moment produced by force F about
the diagonal AF of the rectangular block. Express the result
as a Cartesian vector.

*4-52. Determine the moment produced by force F about
the diagonal OD of the rectangular block. Express the
result as a Cartesian vector.

F=[-6i + 3] + 10k]N

Probs. 4-51/52

*4-53. The tool is used to shut off gas valves that are
difficult to access. If the force F is applied to the handle.
determine the component of the moment created about the
zaxisof the valve. .

025m

F = [-60i + 20j + 15k] N

Prob. 4-53

4-54. Determine the magnitude of the moments of the
force F about the x. v, and = axes Solve the problem (a) using
a Cartesian vector approach and (b) using a scalar approach.

4-55. Determine the moment of the force F about an axis
extending between A and C. Express the result as a
Cartesian vector. z

F={4i + 12j - 3k} Ib

Probs, 4-54/55

*4-56. Determine the moment produced by force F about
segment AB of the pipe assembly. Express the result as a
Cartesian vector.

F = [~20i + 10j + 15k} N

Prob. 4-36
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*4-57. Determine the magnitude of the moment that the
force F exerts about the y axis of the shaft. Solve the
problem using a Cartesian vector approach and using a
scalar approach.

Prob. 4-57

4-58. If F =450N, determine the magnitude of the
moment produced by this force about the x axis.

4-59. The friction at sleeve A can provide a maximum
resisting moment of 125 N - m about the x axis. Determine
the largest magnitude of force F that can be applied to the
bracket so that the bracket will not turn.

*4-60. Determine the magnitude of the moment
produced by the force of F = 200 N about the hinged axis
(the x axis) of the door.

Prob. 4-60

*4-61. If the tension in the cable is F = 140 Ib, determine
the magnitude of the moment produced by this force about
the hinged axis. CD, of the panel.

4-62. Determine the magnitude of force F in cable AB in
order to produce a moment of 500 Ib - ft about the hinged
axis CD, which is needed to hold the panel in the position
shown,

Probs. 4-58/59

Probs. 4-61/62



4-63. The A-frame is being hoisted into an upright
position by the vertical force of F = 801b. Determine the
moment of this force about the y' axis passing through
points A and B when the frame is in the position shown.

*4-64. The A-frame is being hoisted into an upright
position by the vertical force of £ = 80 Ib. Determine the
moment of this force about the x axis when the frame is in
the position shown.

*4-65. The A-frame is being hoisted into an upright
position by the vertical force of £ = 80 Ib. Determine the
moment of this force about the y axis when the frame is in
the position shown.

Probs. 4-63/64/65
4-66. The flex-headed ratchet wrench is subjected to a
force of P = 16 1b, applied perpendicular to the handle as
shown. Determine the moment or torque this imparts along
the vertical axis of the bolt at A.

4-67. 1If a torque or moment of 80 lb-in. is required to
loosen the bolt at A. determine the force £ that must be
applied perpendicular to the handle of the flex-headed ratchet
wrench.

Probs. 4-66/67
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*4-68. The pipe assembly is secured on the wall by the
two brackets. If the flower pot has a weight of 50 Ib,
determine the magnitude of the moment produced by the
weight about the OA axis.

*4-69. The pipe assembly is secured on the wall by the two
brackets, If the frictional force of both brackets can resist a
maximum moment of 1501b-ft, determine the largest
weight of the flower pot that can be supported by the
assembly without causing it to rotate about the OA axis.

Probs. 4-68/69

4-70. A vertical force of F =60 N is applied to the
handle of the pipe wrench, Determine the moment that this
force exerts along the axis AB (x axis) of the pipe assembly.
Both the wrench and pipe assembly ABC lie in the x—v
plane. Suggestion: Use a scalar analysis.

4-71. Determine the magnitude of the vertical force F
acting on the handle of the wrench so that this force
produces a component of moment along the AB axis (x axis)
of the pipe assembly of (M ), = {-5i} N-m. Both the pipe
assembly ABC and the wrench lie in the x—y plane.
Suggestion: Use a scalar analysis.

— K
150 mm
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4.6 Moment of a Couple

A couple is defined as two parallel forees that have the same magnitude,
but opposite directions, and are separated by a perpendicular distance o,
Fig. 4-25. Since the resultant force is zero, the only effect of a couple is 1o
produce a rotation or tendency of rotation in a specified direction, For
example, imagine that you are driving a car with both hands on the steering
wheel and you are making a turn. One hand will push up on the wheel
while the other hand pulls down, which causes the steering wheel to rotate.

The moment produced by a couple is called a couple moment. We can
determine its value by finding the sum of the moments of both couple
forces about any arbitrary point. For example, in Fig. 4-26, position
vectors ry and ry are directed from point O to points A and B lying on
the line of action of —F and F. The couple moment determined about O
is therefore

M=rgXF+r,X-F=(rg—1r)XF
Howeverrg = ry + rorr = ry — r,.50 that
M=rXF (4-13)

This result indicates that a couple moment is a free vector, i.c., it can act
at any point since M depends only upon the position vector r directed
between the forces and not the position vectors r,; and rg, directed from
the arbitrary point O to the forces, This concept is unlike the moment of
a force, which requires a definite point (or axis) about which moments
are determined.

Scalar Formulation. The moment of a couple. M, Fig. 4-27, is
defined as having a magnitude of

| M =Fd (4-14)

where F is the magnitude of one of the forces and d is the perpendicular
distance or moment arm between the forces. The direction and sense of
the couple moment are determined by the right-hand rule, where the
thumb indicates this direction when the fingers are curled with the sense
of rotation caused by the couple forces. In all cases, M will act
perpendicular to the plane containing these forces.

Vector Formulation. The moment of a couple can also be
expressed by the vector cross product using Eq. 4-13,ie.,

M=rxl-‘] (4-15)

Application of this equation is easily remembered if one thinks of taking
the moments of both forces about a point lying on the line of action of
one of the forces. For example, if moments are taken about point A in
Fig. 4-26, the moment of —F is zero about this point, and the moment of
F is defined from Eq. 4-15. Therefore, in the formulation r is crossed with
the force F to which it is directed.



Equivalent Couples. Iftwo couples produce a moment with the same
magnitude and direction, then these two couples are equivalent. For example,
the two couples shown in Fig. 4-28 are equivalent because each couple
moment has a magnitude of M = 30N(0.4m) = 4O0N(0.3m) = 12N-m
.and each is directed into the plane of the page. Notice that larger forces
are required in the second case to create the same turning effect
because the hands are placed closer together. Also, if the wheel was
connected to the shaft at a point other than at its center, then the wheel
would still turn when each couple is applied since the 12 N-m couple is
a [ree vector.

Resultant Couple Moment. Since couple moments are vectors,
their resultant can be determined by vector addition. For example,
consider the couple moments My and M, acting on the pipe in Fig. 4-29a.
Since each couple moment is a free vector, we can join their tails at any
arbitrary point and find the resultant couple moment, My = M; + M,
as shown in Fig. 4-29b.

If more than two couple moments act on the body, we may generalize
this concept and write the vector resultant as

M;=Z(r XF) (4-16)

These concepts are illustrated numerically in the examples that follow.
In general, problems projected in two dimensions should be solved using
a scalar analysis since the moment arms and force components are easy
to determine.

4.6 MomenT OF A COUPLE
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Important Points

* A couple moment is produced by two noncollinear forces that
are equal in magnitude but opposite in direction, Its effect is to
produce pure rotation, or tendency for rotation in a specified
direction.

* A couple moment is a free vector, and as a result it causes the
same rotational effect on a body regardless of where the couple
moment is applied to the body.

Steering wheels on vehicles have been made
smaller than on older vehicles because

power steering does not require the driver ¢ The moment of the two couple forces can be determined about

to apply a large couple moment to the rim of any point. For convenience, this point is often chosen on the line
. Wio-wheel. of action of one of the forces in order to eliminate the moment of
this force about the point.

e In three dimensions the couple moment is often determined
using the vector formulation, M = r X F. where r is directed
from any point on the line of action of one of the forces to any
point on the line of action of the other force F.

® A resultant couple moment is simply the vector sum of all the
couple moments of the system.

EXAMPLE (4.10

Determine the resultant couple moment of the three couples acting
on the plate in Fig. 4-30.
2 F =2001b
Fy =300 1b
e i B SOLUTION
' As shown the perpendicular distances between each pair of couple forces
are dy = 4 ft, d; = 3 ft, and d5 = 5 ft. Considering counterclockwise
couple moments as positive, we have

Fy=4501b A

diw m}:

C+Mp = SM; Mg = —Fyd, + Fad> — Fxds

= (=200 Ib)(4 ft) + (450 Ib)(3 f1) — (300 1b)(5 f1)

= =950 1b-ft = 9501b-f1) Ans.

The negative sign indicates that Mg has a clockwise rotational sense.
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EXAMPLE |4.11

Determine the magnitude and direction of the couple moment acting
on the gear in Fig. 4-31a.

F=600N 600 sin 30° N
(b}

SOLUTION

The easiest solution requires resolving each force into its components
as shown in Fig. 4-31b. The couple moment can be determined by
summing the moments of these force components about any point, for
example, the center O of the gear or point A. If we consider
counterclockwise moments as positive, we have

C+M = EMy: M = (600 cos 30° N)(0.2 m) — (600 sin 30° N)(0.2 m)
=439N'm)H Ans.

or

C+M = M M = (600 cos 30° N)(0.2 m) — (600 sin 30° N)(0.2 m)
=439N-m?H Ans,

This positive result indicates that M has a counterclockwise rotational
sense, so it is directed outward, perpendicular to the page.

NOTE: The same result can also be obtained using M = Fd, where d
is the perpendicular distance between the lines of action of the couple
forces, Fig. 4-31c. However, the computation for d is more involved.
Realize that the couple moment is a free vector and can act at any
point on the gear and produce the same turning effect about point O.
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EXAMPLE |4.12

Determine the couple moment acting on the pipe shown in Fig. 4-32a.
Segment AB is directed 30° below the x-v plane.

SOLUTION | (VECTOR ANALYSIS)
The moment of the two couple forces can be found about any point. If
point O is considered, Fig. 4-32b, we have

M =, X (=25k) + ry X (25k)
(8j) % (—25k) + (6cos30% + 8 — 6sin 30°k) X (25k)
—200i — 129.9j + 200i
{=130§} Ib+in. Ans.
Itis easier to take moments of the couple forces about a point lying on
the line of action of one of the forces, e.g.. point A, Fig. 4-32¢. In this
case the moment of the force at A is zero, so that

M = s X (25k)

g = (6.cos 30% — 6sin 30°k) X (25k)
= {—130§} Ib-in. Ans.

1l

sy SOLUTION Il (SCALAR ANALYSIS)

Although this problem is shown in three dimensions, the geometry is

b A simple enough to use the scalar equation M = Fd. The perpendicular

T, distance between the lines of action of the couple forces is

"~ d = 6c0s30° = 5.196 in.. Fig. 4-32d. Hence. taking moments of the
forces about either point A or point B yiclds

1ty M = Fd =251b(5.196in.) = 12991b-in.
*/~ Applying the right-hand rule. M acts in the —j direction. Thus,
M = {—130j} Ib-in. Ans.




M, = 60N m

(h)
Fig. 4-33

SOLUTION (VECTOR ANALYSIS)
The couple moment M, developed by the forces at A and B, can
casily be determined from a scalar formulation.

M, = Fd = 150N(0.4m) = 60N-m
By the right-hand rule, M acts in the +i direction, Fig. 4-33b. Hence,
M; = {60i} N-m

Vector analysis will be used to determine M, caused by forces at C
and D. If moments are computed about point D, Fig. 4-33a,
M, = rpe X Fe, then

M, = rpe % Fe = (03i) x [125()j — 125(3)k]
(0.3i) % [100j — 75k] = 30(i % j) — 22.5(i X k)
= {22.5j + 30k} N-m

Since M, and M, are free vectors. they may be moved to some
arbitrary point and added vectorially, Fig. 4-33¢. The resultant couple
moment becomes

Mg =M, + M, = {60i + 22.5j + 30k} N-m Ans,

4.6 MomenT oF A CourLE

EXAMPLE |4.13

Replace the two couples acting on the pipe column in Fig. 4-33a by a
resultant couple moment.

153
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- FUNDAMENTAL PROBLEMS

F4-19. Determine the resultant couple moment acting on
the beam.

400 N A00 N

A

f—2m—
Y
300N

I 3m

300N
F4-19

F4-20. Determine the resultant couple moment acting on
the triangular plate.

200 Ib

150 Ib

300 Ib 300 1

Fd4-20

F4-21. Determine the magnitude of F so that the resultant
couple moment acting on the beam is 1.5 kN - m clockwise.

F4-21

F4-22. Determine the couple moment acting on the beam.

I —4m— Im

10 kN
F4-22
F4-23, Determine the resultant couple moment acting on
the pipe assembly.

i(y,). = 4s0tb-t | T

(M,): = 250 Ib-ft

F4-23
F4-24. Determine the couple moment acting on the pipe
assembly and express the result as a Cartesian vector.

Fy=450N 7§
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Clemomiews

*4-72. 'The frictional effects of the air on the blades of the 4-74. The caster wheel is subjected to the two couples.
standing fan creates a couple moment of My = 6 N-m on Determine the forces F that the bearings exert on the shaft
the blades. Determine the magnitude of the couple forces so that the resultant couple moment on the caster is zero.

at the base of the fan so that the resultant couple moment
on the fan is zero.

0l5m_ "/ \!' 015m
Prob. 4-72 Prob. 4-74
*4-73. Determine the required magnitude of the couple 4-75. If F =2001b, determine the resultant couple
moments M, and M; so that the resultant couple moment moment.

SO *4-76. Determine the required magnitude of force Fif the

resultant couple moment on the frame is 2001b-ft,
clockwise.

My = 300 N-m

Prob. 4-73 Probs. 4-75/76
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*4-77. The floor causes a couple moment of

M4 =40N-m and Mgz = 30 N-m on the brushes of the
polishing machine. Determine the magnitude of the couple
forces that must be developed by the operator on the
handles so that the resultant couple moment on the polisher
is zero. What is the magnitude of these forces if the brush
at B suddenly stops so that My = 0?7

Prob. 4-77
4-78.1f 6 = 30°. determine the magnitude of force F so that
the resultant couple moment is 100 N - m, clockwise.

4-79.1f F = 200 N, determine the required angle ¢ so that
the resultant couple moment is zero.

*4-80. Two couples act on the beam. Determine the
magnitude of F so that the resultant couple moment is
450 Ib - ft, counterclockwise. Where on the beam does the
resultant couple moment act?

*4-81. The cord passing over the two small pegs A and B of
the square board is subjected to a tension of 100 N,
Determine the required tension P acting on the cord that
passes over pegs € and D so that the resultant couple
produced by the two couples is 15 N-m acting clockwise.
Take 0 = 15°.

4-82. The cord passing over the two small pegs A and B of
the board is subjected to a tension of 100 N. Determine the
minimum tension P and the orientation # of the cord
passing over pegs C and D, so that the resultant couple
moment produced by the two cords is 20 N - m, clockwise.

- 300 mm 18
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4-83. A device called a rolamite is used in various ways to *4-85. Determine the resultant couple moment acting on
replace slipping motion with rolling motion. If the belt, the beam. Solve the problem two ways: (a) sum moments
which wraps between the rollers, is subjected to a tension of about point O: and (b) sum moments about point A.

15 N, determine the reactive forces N of the top and bottom
plates on the rollers so that the resultant couple acting on
the rollers is equal to zero.

*4-84. Two couples act on the beam as shown. Determine 4-86. Two couples act on the cantilever beam. If
the magnitude of F so that the resultant couple moment is F = 6 kN, determine the resultant couple moment.
300 b+ it counterclockwise. Where on the beam does the

resultant couple act? 4-87. Determine the required magnitude of force F, if the

resultant couple moment on the beam is to be zero.

e 3m e 3m —

Prob. 4-84 Probs. 4-86/87
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*4-88. Two couples act on the frame. If the resultant
couple moment is to be zero, determine the distance d
between the 40-1b couple forces.

*4-89. Two couples act on the frame. If = 4 (1, determine
the resultant couple moment. Compute the result by resolving
each force into x and y components and (a) finding the
moment of each couple (Eq. 4-13) and (b) summing the
moments of all the force components about point A.

4-90. Two couples act on the frame. If d = 4 1, determine
the resultant couple moment. Compute the result by
resolving cach force into x and y components and (a) finding
the moment of each couple (Eq. 4-13) and (b) summing the
moments of all the force components about point B.

¥

Ifi———4N——

1
Probs. 4-88/89/90
491 If M, = 500 N-m, M, = 600 N-m,and M; = 450 N-m,
determine the magnitude and coordinate direction angles
of the resultant couple moment,

*4-92. Determine the required magnitude of couple
moments M;, M, and M; so that the resultant couple
moment is Mg = { =300i + 450j — 600k} N-m.

Probs. 4-91/92

«4-93. If F =80N, determine the magnitude and
coordinate direction angles of the couple moment. The pipe
assembly lies in the x-y plane.

4-94. If the magnitude of the couple moment acting on
the pipe assembly is 50 N - m, determine the magnitude of
the couple forces applied to each wrench. The pipe
assembly lies in the x-y plane.

Probs. 4-93/9%4

4-95. From load calculations it is determined that the
wing is subjected to couple moments M, = 17 kip -t and
M, = 25 kip- ft. Determine the resultant couple moments
created about the x' and y* axes. The axes all lie in the same
horizontal plane.

Prob, 4-95



*4-96. Express the moment of the couple acting on the
frame in Cartesian vector form. The forces are applied
perpendicular to the frame. What is the magnitude of the
couple moment? Take F = S0N.

*4-97. In order to turn over the frame, a couple moment is
applied as shown. If the component of this couple moment
along the x axis is M, = {—20i} N-m. determine the
magnitude F of the couple forces.

4-98. Determine the resultant couple moment of the two
couples that act on the pipe assembly. The distance from A to
Bis d = 400 mm. Express the result as a Cartesian vector.

4-99. Determine the distance o between A and B so that the
resultant couple moment has a magnitude of Mz = 20N -m.

[35k| N
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*4-100. If M, = 180 Ib-ft, My = 90 Ib-ft,and M; = 120 1b-ft,
determine the magnitude and coordinate direction angles
of the resultant couple moment.

*4-101. Determine the magnitudes of couple moments
M;. M,. and M so that the resultant couple moment is zero.

Probs. 4-100/101

4-102. If F;=100lband F, = 2001b, determine the
magnitude and coordinate direction angles of the resultant
couple moment.

4-103. Determine the magnitude of couple forces F, and
F, so that the resultant couple moment acting on the block
is zero.

Probs. 4-102/103
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4.7 Simplification of a Force and Couple
System

Sometimes it is convenient to reduce a system of forces and couple moments
acting on a body to a simpler form by replacing it with an equivalent system,
consisting of a single resultant force acting at a specific point and a resultant
couple moment. A system is equivalent if the external effects it produces on
a body are the same as those caused by the original force and couple
moment system. In this context. the external effects of a system refer to the
translating and rotating motion of the body if the body is free to move, or it
refers to the reactive forces at the supports if the body is held fixed.

For example, consider holding the stick in Fig. 4-34a, which is
subjected to the force F at point A. If we attach a pair of equal but
opposite forces F and -F at point B, which is on the line of action of F,
Fig. 4-34b, we observe that —F at B and F at A will cancel ¢ach other,
leaving only F at B, Fig. 4-34c. Force F has now been moved from A to B
without modifying its external effects on the stick:i.e., the reaction at the
grip remains the same. This demonstrates the principle of transmissibility,
which states that a force acting on a body (stick) is a sliding vector since
it can be applied at any point along its line of action.

‘We can also use the above procedure to move a force to a point that is not
on the line of action of the force. If F is applied perpendicular to the stick, as
in Fig. 4-35a, then we can attach a pair of equal but opposite forces F and -F
to B, Fig.4-35b. Force F is now applied at B, and the other two forces Fat A
and -F at B, form a couple that produces the couple moment M = Fd,
Fig. 4-35c. Therefore, the force F can be moved from A to B provided a
couple moment M is added to maintain an equivalent system. This couple
moment is determined by taking the moment of F about B. Since M is
actually a free vector. it can act at any point on the stick. In both cases the
systems are equivalent which causes a downward force F and clockwise
couple moment M = Fd 1o be felt at the grip.

(a)

ib) ()
Fig. 4-34

(b) (€)
Fig. 4-35
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System of Forces and Couple Moments. Using the above
method. a system of several forces and couple moments acting on a
body can be reduced to an equivalent single resultant force acting at a
point @ and a resultant couple moment. For example, in Fig. 4364, O is
not on the line of action of Fy. and so this force can be moved to point
O provided a couple moment My = r) X F is added to the body.
Similarly, the couple moment My = r; X F, should be added to the
body when we move F; to point Q. Finally, since the couple moment M
is a free vector. it can just be moved to point O. By doing this, we obtain
the equivalent system shown in Fig. 4-36b, which produces the same
external effects (support reactions) on the body as that of the force and
couple system shown in Fig. 4-36a4. If we sum the forces and couple
moments, we obtain the resultant force Fi = F; + F» and the resultant
couple moment (Mg)g = M + M, + M., Fig. 4-36¢.

Notice that Fg is independent of the location of point O: however, (Mg)g
depends upon this location since the moments M; and M, are (b)
determined using the position vectors ry and r,. Also note that (Mg)p is
a free vector and can act at any point on the body, although point O is
generally chosen as its point of application.

We can generalize the above method of reducing a force and couple
system to an equivalent resultant force Fg acting at point O and a
resultant couple moment (Mg),, by using the following two equations.

(a)

Fp = F

4-17)
(M-R)O — XMO + M ( )

The first equation states that the resultant force of the system is  ©

equivalent to the sum of all the forces: and the second equation states
that the resultant couple moment of the system is equivalent to the sum
of all the couple moments M plus the moments of all the forces =M,
about point 0. If the force system lies in the x—y plane and any couple
moments are perpendicular to this plane. then the above equations
reduce to the following three scalar equations. Fig, 4-36

(Fp)y = 2R,
(Fr)y = XF (4-18)
(MR)O = 2“04‘ =M

Here the resultant force is determined from the vector sum of its two
components (Fg), and (Fg),.
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CHAPTER 4

Force SYSTEM RESULTANTS

The weights of these traffic lights can be replaced by their equivalent resultant force
Wg =W, + W, and a couple moment (Mg), = Wd, + W, d; at the support. O. In
both cases the support must provide the same resistance to translation and rotation in
order to keep the member in the horizontal position.

Procedure for Analysis

‘The following points should be kept in mind when simphifying a force
and couple moment sysiem (o an equivalent resultant force and
couple system.

# Establish the coordinate axes with the origin located at point O and
the axes having a selected orientation.

Force Summation.

# [f the force system is coplanar, resolve each foree into its x and y
components. If a component is directed along the positive x or y
axis, it represents a positive scalar; whereas if it is directed along
the negative x or y axis, it is a negative scalar,

# In three dimensions, represent each force as a Cartesian vector
before summing the forces.

Moment Summation.

* When determining the moments of a coplanar force system about
point O, it is generally advantageous to use the principle of
momenls, i.e., determine the moments of the components of each
force, rather than the moment of the force itself.

& In three dimensions use the vector cross product to determine the
moment of cach force about point O. Here the position vectors
extend from O to any point on the line of action of each force.
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EXAMPLE |4.14

Replace the force and couple system shown in Fig. 4-37a by an
equivalent resultant force and couple moment acting at point 0.
¥

(3 kNjsin 30°

4kN

(@) Fig. 4-37
SOLUTION

Force Summation. The 3 kN and 5 kN forces are resolved into their
x and y components as shown in Fig. 4-37b. We have

B (Fr)y = EFq (Fg)i = (3KkN)cos 30° + (2) (5kN) = 5598 kN —

Using the Pythagorean theorem, Fig. 4-37¢. the magnitude of Fg is
Fe= V(Fp) + (Fr)? = V(5598kN)? + (6.50kN)? = 858kN  Ans

Its direction @ is
(Fg)y 6.50 kN

0= lan"( —~—-—'~-) = Ian"(--::— ) = 49.3° Ans.
{FR).I’

Moment Summation. The moments of 3 kN and 5 kN about

point @ will be determined using their x and v components. Referring

to Fig. 4-37b, we have

C+ (Mg)o = My,

(Mg)o = (3kN)sin 30°(0.2 m) — (3 kN)cos 30°(0.1 m) + (2) (SkN) (0.1 m)

= -246kN'm = 246kN+m ) Ans,

This clockwise moment is shown in Fig. 4-37¢.

NOTE: Realize that the resultant force and couple moment in
Fig. 4-37¢ will produce the same external effects or reactions at the
supports as those produced by the force system, Fig 4-37a.

+1(Fr)y = XFy: (Fg)y = (3kN)sin30° — (§) (5kN) — 4kN = —6.50 kN = 650 kN

— (1) GKN) (0.5m) — (4kN)(0.2m)

M)y =246 kKN'm

o

Sy
(Fg), = 6.50kN

(c)
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EXAMPLE |4.15

Replace the force and couple system acting on the member in Fig, 4-384
by an equivalent resultant force and couple moment acting at point O.

S00N
FSON
200N
o 1
ﬁ : 3] 1m
125 m——125m -+
200N Mg
(a) (Fg), = 350N ib)
Fig. 4-38

SOLUTION

Force Summation. Since the couple forees of 200 N are equal but
opposite, they produce a zero resultant force. and so it is not necessary
to consider them in the force summation. The 500-N force is resolved
into its x and y components, thus,

5 (Fy), = SFg (Fg), = (£) (S00N) = 300N—
+1(Fg)y = =Fy: (Fr)y = (S00N)(2) — 750N = =350 N = 350N}
From Fig. 4-15b, the magnitude of Fy is
Fo= VI(F){ + (Fr))
= V(300N)? + (350N)? = 461 N Ans

And the angle 6 is

(Fgr)y 350N
e heari St Il o, TP e § fpeetnladurl) Ve o c
f# = tan ( ( FR):) tan (3001\1) 494 Ans.

Moment Summation. Since the couple moment is a [ree vector, it
can act at any point on the member. Referring to Fig. 4-38a, we have

C +(Mglo = EMg+ M,

(Mg)o = (500 N)(%)(2.5 m) — (500 N)(2)(1 m)

— (750 N)(1.25m) + 200 N'm

—37.5Nm = 37.5N-m2 Ans.
This clockwise moment is shown in Fig. 4-38b.
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EXAMPLE |4.16

The structural member is subjected to a couple moment M and
forces Fy and F; in Fig. 4-39a. Replace this system by an equivalent
resultant force and couple moment acting at its base, point O.

SOLUTION (VECTOR ANALYSIS)

The three-dimensional aspects of the problem can be simplified by
using a Cartesian vector analysis. Expressing the forces and couple
moment as Cartesian vectors, we have

F, = {—800k} N
F; = (300 N)ucg

(300 N)(z—j)

[~0.15i + 0.1j} m
V(=015m)* + (0.1 m)?

300 N[ } = {24960 + 166.4j} N (a)

M = —500()j + 500(3)k = {—400j + 300k} N-m

Force Summation.

Fp = XF; Fg = F, + F, = =800k — 249.6i + 166.4j
= {—250i + 166j — 800k} N Ans.

Moment Summation.

Mg,

)

SM + =M,

MR“=M+I.'C}(F| +ry X F;
i i k
Mﬂrr = (—400j +300k) + (1k) x (= B00k)+| —0.15 0.1 1 Fig. 4-39
2496 1664 0
= (—400j + 300k) + (0) + (—166.4i — 249.6f)
= {—166i — 650j + 300k} N-m Ans.

The results are shown in Fig. 4-39h.
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- FUNDAMENTAL PROBLEMS

F4-25. Replace the loading system by an equivalent
resultant force and couple moment acting at point A.

100 Ib

150 1b
F4-25

F4-26. Replace the loading system by an equivalent
resultant foree and couple moment acting at point A.

40N

F4-26

F4-27. Replace the loading system by an equivalent
resultant force and couple moment acting at point A.

900 N \3" | 300N

075m | 075m | 075m [ 075m |

F4-27

F4-28. Replace the loading system by an equivalent
resultant force and couple moment acting at point A.

s A4 1000
- .l.

5016

F4-28
F4-29. Replace the loading system by an equivalent
resultant force and couple moment acting at point O.

I } F, = [~300i + 150j + 200k] N

F4-29

F4-30. Replace the loading system by an equivalent
resultant force and couple moment acting at point O,

-

Fy= 100N

F4-30
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Clemomiews

*4-104. Replace the force system acting on the truss by a 4-107. Replace the two forces by an equivalent resultant
resultant force and couple moment at point C. force and couple moment at point 0. Set F = 20 1b.

“4-108. Replace the two forces by an equivalent resultant
force and couple moment at point . Set F = 15 Ib.

Probs. 4-107/108
Prob. 4-104

*4-105. Replace the force system acting on the beam by *4-109. Replace the force system acting on the post by a
an equivalent force and couple moment at point A. resultant force and couple moment at point A.

4-106. Replace the force system acting on the beam by an
equivalent force and couple moment at point B.

3kN

25kN L5kN3g

Probs. 4-105/106 Prob. 4-109
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*4-112. Replace the two forces acting on the grinder by a
resultant force and couple moment at point 0. Express the
results in Cartesian vector form.

4-110. Replace the force and couple moment system
acting on the overhang beam by a resultant force and

couple moment at point A.

F, = [10i — 15} — 40k] N

Prob. 4-110

Proh. 4-112

*4-113. Replace the two forces acting on the post by a
resultant force and couple moment at point 0. Express the
results in Cartesian vector form.

4-111. Replace the force system by a resultant force and
couple moment at point 0.

T3O0N 200N

200N

125 m—r—125m —

Prob. 4-113

Prob. 4-111
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4-114. The three forces act on the pipe assembly. If *4-116. Replace the force system acting on the pipe
Fy = 50N and F, = 80 N, replace this force system by an assembly by a resultant force and couple moment at point €.
equivalent resultant force and couple moment acting at O. Express the results in Cartesian vector form.

Express the results in Cartesian vector form.

F; = |~ 10§ + 25§ + 20k} Ib

Prob. 4-114 Prob. 4-116

4-115. Handle forces F, and F; are applied to the electric *4-117. 'The slab is to be hoisted using the three slings

drill. Replace this force system by an equivalent resultant shown. Replace the system of forces acting on slings by an
force and couple moment acting at point O, Express the equivalent force and couple moment at point . The force
results in Cartesian vector form. F, is vertical.

F,=[2 - 4k N

»
-

Prob, 4-115 Prob. 4-117
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4.8 Further Simplification of a Force and
Couple System

In the preceding section, we developed a way to reduce a force and couple
moment system acting on a rigid body into an equivalent resultant force
F acting at a specific point O and a resultant couple moment (Mg)q. The
force system can be further reduced to an equivalent single resultant force
provided the lines of action of Fg and (Mg), are perpendicular 1o each
other. Because of this condition, only concurrent, coplanar, and parallel
force systems can be further simplified.

Concurrent Force System. Since a concurrent force system is
one in which the lines of action of all the forces intersect at a common
point O, Fig. 4-40a, then the force system produces no moment about
this point. As a result, the equivalent system can be represented by a
single resultant force Fg = XF acting at O, Fig. 4-40b.

F,
(a) {b)

Fig. 4-40

Coplanar Force System. In the case of a coplanar foree system,
the lines of action of all the forces lie in the same plane, Fig. 4-41a, and
so the resultant force Fg = XF of this system also lies in this plane,
Furthermore, the moment of each of the forces about any point O is
directed perpendicular to this plane. Thus, the resultant moment
(Mg)o and resultant force Fg will be mutually perpendicular,
Fig. 4-41b. The resultant moment can be replaced by moving the
resultant force Fg a perpendicular or moment arm distance d away
from point O such that Fg produces the same moment (Mg)o about
point O, Fig. 4-41c¢. This distance d can be determined from the scalar
equation (Mg)o = Frd = EMgpord = (Mg)o/ Fg.
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(b) (©
Fig, 441

Parallel Force System. The parallel force system shown in Fig.4-42a
consists of forces that are all parallel to the z axis. Thus, the resultant
force Fi = XF at point O must also be parallel to this axis, Fig. 4-42b.
The moment produced by each force lies in the plane of the plate. and so
the resultant couple moment, (Mg)o. will also lie in this plane, along the
moment axis a since Fg and (Mg)p are mutually perpendicular. As a
result, the force system can be further reduced to an equivalent single
resultant force Fg, acting through point P located on the perpendicular b
axis, Fig. 4-42¢. The distance d along this axis from point O requires
(MR)() = Fsd = EMo()rd T EMDfFR.

(@) (b) ©)
Fig. 442
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The four cable forces are all concurrent at point @ on this bridge
tower. Consequently they produce no resultant moment there,
only a resultant force Fy. Note that the designers have positioned
the cables so that Fp is directed along the bridge tower directly to
the support, so that it does not cause any bending of the tower.

Procedure for Analysis

The technique used to reduce a coplanar or parallel force system to
a single resultant force follows a similar procedure outlined in the
previous section.

# Establish the x, y, z, axes and locate the resultant force Fi an
arbitrary distance away from the origin of the coordinates.

Force Summation.

¢ The resultant force is equal to the sum of all the forces in the
system.

# For a coplanar force system, resolve each force into its x and y
components. Posilive components are directed along the positive
x and y axes, and negative components are directed along the
negative x and y axes.

Moment Summation.

® The moment of the resultant force about point O is equal to the
sum of all the couple moments in the system plus the moments of
all the forces in the system about O.

® This moment condition is used to find the location of the
resultant force from point 0.
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Here the weights of the traffic lights are replaced by their resultant force Wg = Wy + W
which acts at a distance d = (Wyd, + W1d:)/ Wi from O. Both systems are equivalent.

Reduction to a Wrench In general, a three-dimensional force
and couple moment system will have an equivalent resultant force Fg
acting at point O and a resultant couple moment (Mg)o that are not
perpendicular 10 one another, as shown in Fig. 4434, Although a force
system such as this cannot be further reduced to an equivalent single
resultant foree, the resultant couple moment (Mg)p can be resolved into
components parallel and perpendicular to the line of action of Fyg,
Fig. 4-43a. The perpendicular component M | can be replaced if we
move Fg 1o point P, a distance d from point O along the b axis,
Fig. 4-43b. As seen, this axis is perpendicular to both the a axis and the
line of action of Fg The location of P can be determined from
d = M | /Fg. Finally, because M, is a free vector. it can be moved to
point P, Fig. 4-43¢. This combination of a resultant force Fg and collinear
couple moment M will tend to translate and rotate the body about its
axis and is referred to as a wrench or screw. A wrench is the simplest
system that can represent any general force and couple moment system
acting on a body.

Fig. 4-43
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EXAMPLE |4.17

Replace the force and couple moment system acting on the beam in
Fig. 4444 by an equivalent resultant force, and find where its line of
action intersects the beam, measured from point O.

f—d |
| - Fr
(Fg), = 240 kN :

(Fi)y = 4.80 kN

|
—1Sm—p—15Sm—p—lim——1.5m—

(a) b)
Fig. 4-44
SOLUTION

Force Summation. Summing the force components,

5 (Fp)y = ZF:  (Fg)y = 8kN(3) = 480kN—

1l

+1(FR)y = =Fy. (Fr)y = —4kN + 8kN(}) = 240kN?

From Fig. 4-44h. the magnitude of Fy is

Fr= V(480kN)? + (240kN)? = 537kN Ans.

The angle 6 is

2.40 kN
= -1 : — o Ans
f lan ( 80} N) = 26.6 Ans.

Moment Summation. We must equate the moment of Fy about
point O in Fig. 4-44b to the sum of the moments of the force and
couple moment system about point O in Fig. 4-44a. Since the line of
action of (Fg), acts through point O, only (Fg), produces a moment
about this point, Thus,

C+(Mglo = =My 240kN(d) = —(4 kN)(1.5m) — 15kN-m

~[8KkN(1)] (05 m) + [SkN(2))(4.5 m)
d=225m Ans.
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EXAMPLE |4.18

The jib crane shown in Fig. 4-454 is subjected to three coplanar forces.
Replace this loading by an equivalent resultant force and specify
where the resultant’s line of action intersects the column AB and
boom BC.

SOLUTION HAl

Force Summation. Resolving the 250-1b force into x and y components
and summing the force components vields

i’FR_

Il

EF[: FR,

Il

~2501b(2) — 1751b = —3251b = 325 Ib

+1Fg = SFy; Fp = —2501b(}) — 601b = —2601b = 260 1b}

As shown by the vector addition in Fig. 4456,

Fgp= \/(325 1b)* + (260 ]b)z = 416 1b Ans,
260 1b
— V)= L
fl = tan (325 !b) _IT0F Ans.

Moment Summation. Moments will be summed about point A.
Assuming the line of action of Fg intersects AB at a distance y from A,
Fig. 4-45b, we have

C+Mp, = SMy; 3251b (v) + 2601b (0)
= 1751b (5 ft) — 601b (3 ft) + 250 Ib(2)(11 ft) — 250 1b(2)(8 ft)
y= 2291t Ans.

By the principle of transmissibility. Fy can be placed at a distance x
where it intersects BC, Fig. 4-45b. In this case we have

G+Mg, = SMy;  3251b (111t) — 26016 (x)

= 1751b (5 ft) — 601b (3 ft) + 2501b(3)(11 ft) — 250 1b(3)(S ft)
x=10911 Ans.

175
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EXAMPLE |4.19

The slab in Fig. 4464 is subjected to four parallel forces. Determine
the magnitude and direction of a resultant force equivalent to the
given force system and locate its point of application on the slab.

Fig. 4-46

SOLUTION (SCALAR ANALYSIS)
Force Summation. From Fig. 4-46a, the resultant force is

+1Fg=5SF: —Fr=—600N+ 100N — 400N — 500N
—1400 N = 1400 N | Ans.

]

Moment Summation. We require the moment about the x axis of
the resultant force, Fig. 4-46b, to be equal to the sum of the moments
about the x axis of all the forces in the system, Fig. 4-464. The moment
arms are determined from the y coordinates since these coordinates
represent the perpendicular distances from the x axis to the lines of
action of the forces. Using the right-hand rule, we have

(.MR).I' == SMJ':
—(1400 N)y = 600 N(0) + 100 N(5m) — 400 N(10 m) + 500 N(0)
—1400y = —3500 y=250m Ans.
In a similar manner, a moment equation can be written about the y
axis using moment arms defined by the x coordinates of cach force.
(Mg)y = EM;
(1400 N)x = 600 N(Sm) — 100 N(6:m) + 400 N(0) + 500 N(0)
1400x = 4200
x=3m Ans.

NOTE: A force of Fg = 1400 N placed at point P(3.00 m,2.50 m) on
the slab, Fig. 4-46b, is therefore equivalent to the parallel force system
acting on the slab in Fig. 4-46a.
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EXAMPLE (4.20

Replace the force system in Fig. 4-47a by an equivalent resultant
force and specify its point of application on the pedestal.

SOLUTION
Force Summation. Here we will demonstrate a veclor analysis.

Summing forces,
Fr=2F, Fr=F, +Fz+F¢
= {—=300k} Ib + {—500k} Ib + {100k} Ib
= {700k} Ib Ans.

Location. Moments will be summed about point @, The resultant
force Fg is assumed to act through point P (x, y,0), Fig. 4-47b. Thus

(Mg)o = ZMg;
rp X Fp = (ry X Fy) + (rp X Fp) + (rc X Fe)
(xi + yj) x (=700k) = [(4i) X (=300k)]
+ [(—4i + 2j) % (—500k)] + [(—4j) x (100K)]
~700x(i X k) — T00y(j X k) = —1200( X k) + 2000 X k)
—~ 1000(j X k) — 400(j X K)
700xj — 700yi = 1200j — 2000 — 1000i — 400i

Equating the i and j components,

=700y = —1400 (1)
v =2in. Ans.
700x = =800 (2)
x = —114in, Ans.

The negative sign indicates that the x coordinate of point P is
negative.

NOTE: Itis also possible to establish Eq. 1 and 2 directly by summing
moments about the x and y axes. Using the right-hand rule, we have

(Mg), = SMy ~700y = —100 Ib(4 in.) — 500 1b(2 in.)

{M R}_\-

My 700x = 300 1b(4 in.) — 500 Ib(4 in.)

(a)

a

= (700K} It

(b)

Fig. 4-47
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- FUNDAMENTAL PROBLEMS

F4-31. Replace the loading system by an equivalent F4-34. Replace the loading system by an equivalent

resultant force and specify where the resultant’s line of resultant force and specify where the resultant’s line of
action intersects the beam measured from 0. action intersects the member AB measured from A.
¥
0.5m

¥ ——1.5m—

- L—Sﬁ—-l-—jﬁLSH—-l-—S l'l—.-;—

| ]
F4-31
F4-32. Replace the loading system by an equivalent

resultant force and specify where the resultant’s line of
action intersects the member measured from A. T =S

F4-34
F4-35. Replace the loading shown by an equivalent single
resultant force and specify the x and y coordinates of its line
of action. i

¥ F4-35
F4-33. Replace the loading system by an equivalent F4-36. Replace the loading shown by an equivalent single
resultant force and specify where the resultant’s line of resultant force and specify the v and v coordinates of its line
action intersects the member measured from A. of action. 1
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Sleromiews

+4-121. The system of four forces acts on the roof truss,
Determine the equivalent resultant force and specify its
location along AB, measured from point A.

4-118. The weights of the various components of the truck
are shown. Replace this system of forces by an equivalent
resultant force and specify its location measured from B.

4-119. ‘The weights of the various components of the 200 I

truck are shown. Replace this system of forces by an -
4 i . v = 30

equivalent resultant force and specify its location 251b 40

1B

measured from point A. 30016 447

1501 40

| Prob. 4-121
S 14—t [t~
in 2t
Probs. 4-118/119
4-122. Replace the force and couple system acting on the
frame by an equivalent resultant force and specify where
the resultant’s line of action intersects member AB,
measured from A.
4-123. Replace the force and couple system acting on the
“4-120. The system of parallel forces acts on the top of the frame by an equivalent resultant force and specify where
Warren truss. Determine the equivalent resultant force of the the resultant’s line of action intersects member BC,
system and specify its location measured from point A. measured from B.

500 1b - ft

IC B
& _‘-—3 n—l.
30°

501b

Prob. 4-120 Probs. 4-122/123
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“4-124. Replace the force and couple moment system
acting on the overhang beam by a resultant force, and
specily its location along AB measured from point A.

*4-125. Replace the force system acting on the frame by
an equivalent resultant force and specify where the
resultant’s line of action intersects member AB, measured
from point A.

4-126. Replace the force system acting on the frame by
an equivalent resultant force and specify where the
resultant’s line of action intersects member BC, measured
from point B.

Probs. 4-125/126

4-127. Replace the force system acting on the post by a
resultant force, and specify where its line of action
intersects the post AB measured from point A.

“4-128. Replace the force system acting on the post by a
resultant force, and specify where its line of action
intersects the post AB measured from point B.

035m

Probs. 4-127/128

*4-129. The building slab is subjected to four parallel
column loadings. Determine the equivalent resultant force
and specify its location (x, ¥) on the slab. Take F; = 30 kN,
Fs = 40 kN.

4-130. The building slab is subjected to four parallel
column loadings. Determine the equivalent resultant force
and specify its location (x, y) on the slab. Take F; = 20 kN,
Fi = 50kN,
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4-131. The tube supports the four parallel [orces
Determine the magnitudes of forces Fe and Fp, acting at C
and D so that the equivalent resultant force of the force
system acts through the midpoint O of the tube.

4-134. If F,=40kNand Fy = 35kN, determine the
magnitude of the resultant force and specify the location of
its point of application (x, y) on the slab.

4-135. If the resultant force is required to act at the center
of the slab. determine the magnitude of the column loadings
F , and F and the magnitude of the resultant force.

Proh. 4-131

“4-132. Three parallel bolting forces act on the circular
plate. Determine the resultant force. and specify its
location (x, z) on the plate. £y = 2001b, Fy = 100 b, and
Fe =400 Ib.

*4-133. 'The three parallel bolting forces act on the circular
plate. If the force at A has a magnitude of F, = 200 Ib.
determine the magnitudes of Fy and Fg- so that the resultant
force Fj of the system has a line of action that coincides with
the y axis. Hint: This requires =M, = Oand EM_ = 0.

Probs. 4-132/133

Probs. 4-134/135

*4-136. Replace the parallel force system acting on
the plate by a resultant force and specify its location on the
x-z plane.

Prob. 4-136
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*4-137. If F, = TkNand Fgz = SkN, represent the force *4-140. Replace the three forces acting on the plate by a
system acting on the corbels by a resultant force, and wrench. Specify the magnitude of the force and couple
specify its location on the x-y plane. moment for the wrench and the point P(y. z) where its line
of action intersects the plate.

4-138. Determine the magnitudes of F; and Fg so that the
resultant force passes through point @ of the column.

_r Fe = [~40i] Ib ’
Probs. 4-137/138 Ty~

Prob. 4-140

4-139. Replace the force and couple moment system «4-141. Replace the three forces acting on the plate by a
acting on the rectangular block by a wrench. Specify the wrench. Specify the magnitude of the force and couple
magnitude of the force and couple moment of the wrench moment for the wrench and the point F(x, ¥) where its line
and where its line of action intersects the x-y plane. of action intersects the plate.

Fe = (300j] N

300 1b

Prob. 4-139 Prob, 4-141
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4.9 Reduction of a Simple Distributed
Loading

Sometimes, a body may be subjected to a loading that is distributed over
its surface. For example, the pressure of the wind on the face of a sign, the
pressure of water within a tank, or the weight of sand on the floor of a
storage container, are all distributed loadings. The pressure exerted at each
point on the surface indicates the intensity of the loading. It is measured
using pascals Pa (or N/m?) in SI units or Ib/ft* in the U.S. Customary
system.

Uniform Loading Along a Single Axis. The most common
type of distributed loading encountered in engineering practice is
generally uniform along a single axis.* For example, consider the beam
(or plate) in Fig. 4-484 that has a constant width and is subjected to a
pressure loading that varies only along the x axis. This loading can be
described by the function p = p(x) N/m®. It contains only one variable
x, and for this reason, we can also represent it as a coplanar distributed
load. To do so, we multiply the loading function by the width b m of
the beam, so that w(x) = p(x)b N/m, Fig. 4-48b. Using the methods of
Sec. 4.8, we can replace this coplanar parallel force system with a
single equivalent resultant force Fy acting at a specific location on the
beam, Fig. 4-48¢.

Magnitude of Resultant Force. From Eq.4-17 (Fyz = £F),
the magnitude of Fy is equivalent to the sum of all the forces in the
system. In this case integration must be used since there is an infinite
number of parallel forces dF acting on the beam, Fig. 4-48b. Since dF is
acting on an ¢lement of length dx, and w(x) is a force per unit length,
then dF = w(x)dx = dA. In other words, the magnitude of dF is
determined from the colored differential area dA under the loading
curve. For the entire length L,

+lFg = ZF;

Fgr= /w(.r)d.t:jdA:-A (4-19)
. L A

Therefore, the magnitude of the resultant foree is equal to the total area A
under the loading diagram, Fig. 4-48c.

*The more general casc of a ilorm surface loading acting on a body is considered
in Sec. 9.5.

(a)

dF = dA

Fig. 448

183
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(a)

w
I dF = dA

A=

wix)

x -
- I_ -

(b)
w

Fp

o] A

l( ) ...-R-_ X
— —
. L -

(c)

The beam supporting this stack of lumber 15
subjected to a uniform loading of wy. The
resultant force is therefore equal to the arca
under the loading diagram Fg = wb. It acts
trough the centroid or geometric center of
this area, h/2 from the support.

Location of Resultant Force. Applying Eq.4-17 (Mg, = SM,),
the location ¥ of the line of action of Fj can be determined by equating the
moments of the force resultant and the parallel force distribution about
point O (the vy axis). Since dF produces a moment of x dF = xw(x) dx
about O, Fig. 4-48b, then for the entire length, Fig. 4-48c,

C+(Mplo=2My, —XFg= —f aw(x) dx
L

Solving for ¥, using Eq. 4-19, we have

.Ezl.rw(.r}dx Lxd/l

= (4-20)

]w{x) dx f dA
L A

This coordinate x, locates the geometric center or centroid of the area
under the distributed loading. In other words, the resultant force has a line
of action which passes through the centroid C (geometric center) of the
area under the loading diagram, Fig. 4-48¢. Detailed treatment of the
integration techniques for finding the location of the centroid for areas is
given in Chapter 9. In many cases, however, the distributed-loading
diagram is in the shape of a rectangle, triangle, or some other simple
geometric form. The centroid location for such common shapes does not
have to be determined from the above equation but can be obtained
directly from the tabulation given on the inside back cover.

Once x is determined, Fg by symmetry passes through point (x,0) on
the surface of the beam, Fig. 4-48a. Therefore, in this case the resultant
force has a magnitude equal to the volume under the loading curve
p = plx) and a line of action which passes through the centroid
(geometric center) of this volume.

Important Points

» Coplanar distributed loadings are defined by using a loading
function w = w(x) that indicates the intensity of the loading
along the length of a member. This intensity is measured in N/m
or Ib/ft.

# The external effects caused by a coplanar distributed load acting
on a body can be represented by a single resultant force.

# This resultant force is equivalent to the area under the loading
diagram, and has a line of action that passes through the centroid
or geometric center of this area.
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EXAMPLE |4.21

Determine the magnitude and location of the equivalent resultant
force acting on the shaft in Fig. 4-49a.

w= (60 )N/m 240N/m

— X - —ilx
—Im—————

(a) (b}

Fig. 4-49

SOLUTION
Since w = w(x) is given, this problem will be solved by integration.

The differential element has an area dA = wdx = 602* dx. Applying

Eq.4-19,
+l Fp=3F;:
Im 23 03)
=pl)] —— —
0 ( R
= 160N Ans.

1]

Fg

Im 2
f;m = f 60x? dx = 60| =
A 0 3

The location x of Fy measured from O, Fig. 4-49b, is determined from

Eq.4-20.
Im . 6_0("(4) Im 60(24 ()4)
1 L xdA l x(60x7) dx 4 )l X o
= = = =
60 N 60
fdA 160N 160 160N
A
=15m Ans.

NOTE: These results can be checked by using the table on the inside
back cover. where it 1s shown that for an exparabolic area of length a,
height b, and shape shown in Fig. 449, we have

g ah 2 m(240 Nfrn)

3 =
i R e F=ag==(2 =15
3 5 160 N and x rid 4( m)=15m
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EXAMPLE |4.22

A distributed loading of p = (800x) Pa acts over the top surface of
the beam shown in Fig. 4-504. Determine the magnitude and location
of the equivalent resultant force.

()

SOLUTION
w w=160x N/m 1440 N/m Since llu? loading in.lcnsily is ur}iform.along llsu: wic.llh of the bcafn
G et (the y axis), the loading can be viewed in two dimensions as shown in
Fig. 4-50b. Here
g " w = (800x N/m?)(0.2 m)
|f o = (160x) N/m
— 9 m— =

At x = 9m, note that w = 1440 N/m. Although we may again apply
(b) Eqs. 4-19 and 4-20 as in the previous example, it is simpler to use the
table on the inside back cover.
The magnitude of the resultant force is equivalent to the area of the
triangle,

Fp= %(9 m)(1440 N/m) = 6480 N = 6.48 kN Ans.

The line of action of Fg passes through the centroid C of this triangle.
Hence,

¥=9m—}O9m)=6m Ans.

The results are shown in Fig. 4-50c.

NOTE: We may also view the resultant Fg as acting through the
centroid of the volume of the loading diagram p = p(x) in Fig. 4-50a.
Fig. 4-50 Hence Fg intersects the x—y plane at the point (6 m, 0). Furthermore,

the magnitude of Fy is equal to the volume under the loading
diagram: i.c..

Fg =V =1}7200 N/m*)(9m)(02 m) = 648 kN  Ans
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The granular material exerts the distributed loading on the beam as
shown in Fig. 4-51a. Determine the magnitude and location of the
equivalent resultant of this load.

501b/ft

SOLUTION P

The area of the loading diagram is a trapezoid, and therefore the
solution can be obtained directly from the area and centroid formulas
for a trapezoid listed on the inside back cover. Since these formulas
are nol easily remembered, instead we will solve this problem by
using “composite™ areas. Here we will divide the trapezoidal loading
into a rectangular and triangular loading as shown in Fig. 4-51b.The 5
magnitude of the force represented by each of these loadings is equal 5
1o its associated area,

Fy

39 £t)(50 Ib/ft) = 2251b
F,

I

(9 t)(50 Ib/ft) = 450 Ib

The lines of action of these parallel forces act through the centroid of
their associated areas and therefore intersect the beam at

¥ =491f) =31t

F=19f) =451t

The two parallel forces F and F, can be reduced to a single resultant

Fg. The magnitude of Fyis

+|Fg=ZF; Fyg =225 + 450 = 6751b Ans.

We can find the location of Fg with reference to point A, Fig. 4-51b
and 4-51¢. We require

C+ Mg, = SMy  X(675) = 3(225) + 4.5(450)

x=41f1 Ans.

=
50 1b /1t
L]

NOTE: The trapezoidal area in Fig. 4-51a can also be divided into
two triangular areas as shown in Fig. 4-514. In this case

Fy = Y9 ft)(100 Ib/ft) = 450 Ib @

Fy =19 f1)(50 Ib/f1) = 2251b
and
%H=4on) =31

X =9ft— Y9ft) =611

NOTE: Using these results, show that again Fg = 675lband x = 4t
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- FUNDAMENTAL PROBLEMS

F4-37. Determine the resultant force and specify where it
acts on the beam measured from A.

15m—

Ll.im T 3m

F4-37

F4-38. Determine the resultant force and specify where it
acts on the beam measured from A.

F4-39. Determine the resultant force and specify where it
acts on the beam measured from A.

F4-40. Determine the resultant force and specify where it
acts on the beam measured from A.

2016/ 500

1501b/M

F4-41. Determine the resultant force and specify where it
acts on the beam measured from A.

45m I5m—

F4-42. Determine the resultant force and specify where it
acts on the beam measured from A.
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Sleromews

4-142. Replace the distributed loading with an equivalent
resultant force, and specify its location on the beam
measured from point A,

15kN/m

1D KN/m

Prob. 4-142

4-143. Replace the distributed loading with an equivalent
resultant force, and specify its location on the beam
measured from point A.

8 kN/m

3m—————3m

Prob. 4-143

*4-144. Replace the distributed loading by an equivalent
resultant force and specify its location. measured from
point A.

800 N/m

Prob. 4-144

*4-145. Replace the distributed loading with an
cquivalent resultant force. and specify its location on the
beam measured from point A.

Wy Wy

L L | L -
2 2
Prob. 4-145

4-146. The distribution of soil loading on the bottom of
a building slab is shown. Replace this loading by an
equivalent resultant force and specify its location, measured
from point 0.

300 Ib /it
- 1210t - 9ft—

Prob. 4-146

4-147. Determine the intensities wy, and wy of the
distributed loading acting on the bottom of the slab so that
this loading has an e¢quivalent resultant force that is equal
but opposite to the resultant of the distributed loading
acting on the top of the plate.

Prob, 4-147
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*4-148. The bricks on top of the beam and the supports
at the bottom create the distributed loading shown in the
second figure. Determine the required intensity w and
dimension d of the right support so that the resultant force
and couple moment about point A of the system are
both zero.

Prob. 4-148

+4-149. The wind pressure acting on a triangular sign is
uniform. Replace this loading by an equivalent resultant
force and couple moment at point O.

Prob. 4-149

4-150. The beam is subjected to the distributed loading.
Determine the length b of the uniform load and its position
a on the beam such that the resultant force and couple
moment acting on the beam are zero.

‘ 601b/n

| 101 - 6n

Prob. 4-150

4-151. Currently eighty-five percent of all neck injuries
are caused by rear-end car collisions. To alleviate this
problem, an automobile seat restraint has been developed
that provides additional pressure contact with the cranium.
During dvnamic tests the distribution of load on the
cranium has been plotied and shown to be parabolic.
Determine the equivalent resultant force and its location,
measured from point A.

w

—w = 12(1 + 2¢) Ib/it

Prob. 4-151



*4-152. Wind has blown sand over a platform such that
the intensity of the load can be approximated by the
function w = (0.5x") N/m. Simplify this distributed loading
to an equivalent resultant force and specify its magnitude
and location measured from A.

Prob. 4-152

=4-153. Wet concrete exerts a pressure distribution along
the wall of the form. Determine the resultant force of this
distribution and specify the height & where the bracing strut
should be placed so that it lies through the line of action of
the resultant force. The wall has a width of 5 m.

Prob. 4-153
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4-154. Replace the distributed loading with an equivalent
resultant force, and specify its location on the beam
measured from point A.

4-155. Replace the loading by an equivalent resultant
force and couple moment at point A,

*4-156. Replace the loading by an equivalent resultant
force and couple moment acting at point B.

501b/ft

Probs. 4-155/156
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*4-157. The lifting force along the wing of a jet aircraft =460, The distributed load acts on the beam as shown.
consists of a uniform distribution along AB. and a Determine the magnitude of the equivalent resultant force

semiparabolic distribution along BC with origin at B.  and specify its location. measured from point A.
Replace this loading by a single resultant force and specify
its location measured from point A,

w
,wﬂ{-&ﬂf“:+ijbﬂl
—w = (2880 — 5x7) b/t [

“10ft—— -

Prob. 4-160

4-158. The distributed load acts on the beam as shown. *4-161. If the distribution of the ground reaction on the
Determine the magnitude of the equivalent resultant force pipe per foot of length can be approximated as shown,
and specify where it acts. measured from point A. determine the magnitude of the resultant force due to this
loading.

4-159. The distributed load acts on the beam as shown.

Determine the maximum intensity w,,,. What is the

magnitude of the equivalent resultant force? Specify where

it acts, measured from point B.

we= (-2 + dx +16)Ib/M1

= 4n -

Probs. 4-158/159 Prob. 4-161



Moment of Force—Scalar Definition

A force produces a turning effect or
moment about a point € that does not lie
on its line of action. In scalar form, the
moment magnitude is the product of the
force and the moment arm or
perpendicular distance from point O to
the line of action of the force.

The direction of the moment is defined
using the right-hand rule. M, always acts
along an axis perpendicular to the plane
containing F and ¢, and passes through
the point Q.

Rather than finding o, it is normally
easier to resolve the force into its x and y
components, determine the moment of
each component about the point. and
then sum the results. This is called the
principle of moments.

My = Fd

M= Fil = Fy=Fx

CHAPTER ReviEw

. CHAPTER REVIEW

Moment axis

193

Moment of a Force— Vector Definition

Since three-dimensional geometry is
generally more difficult to visualize. the
vector cross product should be used
to determine the moment. Here
Mg = r X F, where ris a position vector
that extends from point O to any poini
A. B.or C on the line of action of F.

If the position vector r and force F are
expressed as Cartesian vectors. then the
cross product results from the expansion
of a determinant.

Mo=1yXF=rmpgXF=rcXF

Mo=rXF=|r
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Moment about an Axis

If the moment of a force F is to be M,
determined about an arbitrary axis a. M, = Fd, h%,\
then the projection of the moment onto o ;-
the axis must be obtained. Provided the
distance d, that is perpendicular to both
the line of action of the force and the
axis can be found, then the moment of
the force about the axis can be a
determined from a scalar equation. l

3

Note that when the line of action of F
intersects the axis then the moment of F
about the axis is zero. Also, when the line
of action of F is parallel to the axis, the
moment of F about the axis is zero.

In three dimensions. the scalar triple
product should be used. Here u, is the
unit vector that specifies the direction of
the axis. and r is a position vector that is
directed from any point on the axis to
any point on the line of action of the | Ma=u, (r X F) = {r. 7, 7. ZL
force. If M, is calculated as a negative F. F, F
scalar. then the sense of direction of M,

is opposite (o u,. a

T R

Axis of projection - '

Couple Moment

A couple consists of two equal but
opposite forces that act a perpendicular M= Fd
distance « apart. Couples tend to produce
a rotation without translation.

The magnitude of the couple moment is
M = Fd, and its dircction is established
using the right-hand rule.

If the vector cross product is used to M=rxF
determine the moment of a couple, then
r extends from any point on the line of
action of one of the forces to any point
on the line of action of the other force F
that is used in the cross product.




CHAPTER ReviEw

195

Simplification of a Force and Couple
System

Any system of forces and couples can be
reduced to a single resultant force and
resultant couple moment acting al a
point. The resultant force is the sum of
all the forces in the system, Fy = ZF,
and the resultant couple moment is
equal to the sum of all the moments of
the forces about the point and couple
moments. My = XM, + EM.

Further simplification to a single
resultant force is possible provided the
force system is concurrent, coplanar, or
parallel. To find the location of the
resultant force from a point, it is
necessary to equate the moment of the
resultant force about the point to the
moment of the forces and couples in
the system about the same point,

If the resultant force and couple moment
at a point are not perpendicular to one
another. then this system can be reduced
to a wrench, which consists of the
resultant force and collinear couple
moment.

Coplanar Distributed Loading

A simple distributed loading can be
represented by its resultant force, which
is equivalent to the area under the
loading curve. This resultant has a line of
action that passes through the centroid
or peometric center of the area or
volume under the loading diagram.
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- REVIEW PROBLEMS

4-162. The beam is subjected to the parabolic loading. *4-164. Determine the coordinate direction angles a, 8. y
Determine an equivalent force and couple system at of F, which is apphied to the end of the pipe assembly. so
point A. that the moment of F about O is zero.

+4-165. Determine the moment of the force F about point
0. The force has coordinate direction angles of o = 60°,
B = 1207, y = 45°. Express the result as a Cartesian vector.

w F=201b
400 1h/ft

w= (25 )b/t

[ 40 fr"

Prob, 4-162
Probs. 4-164/165
4-163. Two couples act on the frame. If the resultant 4-166. The snorkel boom lift is extended into the position
couple moment is to be zero, determine the distance o shown. If the worker weighs 160 Ib, determine the moment
between the 100-1b couple forces. of this force about the connection at A.
100 1
30

150 1b

150 Ib* ¥

Prob, 4-163 Prob. 4-166



4-167. Determine the moment of the force F.- about the
door hinge at A. Express the result as a Cartesian vector.

*4-168. Determine the magnitude of the moment of the
force F about the hinged axis aa of the door.

Probs. 4-167/168

*4-169. Express the moment of the couple acting on the
pipe assembly in Cartesian vector form. Solve the problem
(a) using Eq. 4-13 and (b) summing the moment of each
force about point Q. Take F = {25k} N.

4-170. If the couple moment acting on the pipe has a
magnitude of 400 N - m, determine the magnitude F of the
vertical force applied 1o each wrench.

Probs. 4-169/170

Review PROBLEMS 197

4-171. Replace the force at A by an equivalent resultant
force and couple moment at point P, Express the results in
Cartesian vector form.

Prob. 4-171

*4-172. 'The horizontal 30-N force acts on the handle of
the wrench. Determine the moment of this force about
point O. Specify the coordinate direction angles a, . y of
the moment axis.

*4-173. 'The horizontal 30-N force acts on the handle of
the wrench, What is the magnitude of the moment of this
force about the z axis?

Probs. 4-172/173



ht and the load it supports. In order to calculate

rt reactions on the crane, it is necessary to apply the principles of

equilibrium



Equilibrium of a
Rigid Body

CHAPTER OBJECTIVES
® To develop the equations of equilibrium for a rigid body.
* Tointroduce the concept of the free-body diagram for a rigid body.

® To show how to solve rigid-body equilibrium problems using the
equations of equilibrium.

5.1 Conditions for Rigid-Body Equilibrium

In this section, we will develop both the necessary and sufficient conditions
for the equilibrium of the rigid body in Fig. 5-1a. As shown, this body is
subjected to an external force and couple moment system that is the result
of the effects of gravitational, electrical, magnetic, or contact forces caused
by adjacent bodies. The internal forces caused by interactions between
particles within the body are not shown in this figure because these forces
occur in equal but opposite collinear pairs and hence will cancel out, a
consequence of Newton'’s third law,

Fig. 5-1
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F, Using the methods of the previous chapter, the force and couple
moment system acting on a body can be reduced to an equivalent
resultant force and resultant couple moment at any arbitrary point @ on
or off the body, Fig. 5-1b. If this resultant force and couple moment are
both equal to zero, then the body is said to be in equilibrium.
Mathematically, the equilibrium of a body is expressed as

F,

Fp= XF =0

(Mg)o

(5-1)

EMp =10

The first of these equations states that the sum of the forces acting on
the body is equal to zero. The second equation states that the sum of the
moments of all the forces in the system about point O, added to all the
couple moments, is equal to zero. These two equations are not only
necessary for equilibrium, they are also sufficient. To show this, consider
summing moments about some other point, such as point A in Fig. 5-1¢.
We require

My =X Fg+ (Mgl =10

Since r # (), this equation is satisfied only if Eqs. 5-1 are satisfied,
namely Fgi = 0and (Mg)y = 0.

When applying the equations of equilibrium, we will assume that the
body remains rigid. In reality, however, all bodies deform when
subjected to loads. Although this is the case, most engineering materials
such as steel and concrete are very rigid and so their deformation is
usually very small. Therefore, when applying the equations of
equilibrium, we can generally assume that the body will remain rigid
and not deform under the applied load without introducing any
significant error. This way the direction of the applied forces and their
() moment arms with respect to a fixed reference remain unchanged

before and after the body is loaded.

Fig. 5-1

EQUILIBRIUM IN TWO DIMENSIONS

In the first part of the chapter, we will consider the case where the force
system acting on a rigid body lies in or may be projected onto a single
plane and, furthermore, any couple moments acting on the body are
directed perpendicular to this plane. This type of force and couple system
is often referred to as a two-dimensional or coplanar force system. For
example, the airplane in Fig. 5-2 has a planc of symmetry through its
center axis, and so the loads acting on the airplane are symmetrical with
respect to this plane. Thus, each of the two wing tires will support the
same load T, which is represented on the side (two-dimensional) view of
the plane as 2T.




5.2 Free-Body Diagrams

Successful application of the equations of equilibrium requires a complete
specification of all the known and unknown external forces that act on
the body. The best way to account for these forces is to draw a free-body
diagram. This diagram is a sketch of the outlined shape of the body, which
represents it as being isolated or “free” from its surroundings, i.e., a “free
body.” On this sketch it is necessary to show all the forces and couple
moments that the surroundings exert on the body so that these effects can
be accounted for when the equations of equilibrium are applied. A
thorough understanding of how to draw a free-body diagram is of primary
importance for solving problems in mechanics.

Support Reactions. Before presenting a formal procedure as to
how to draw a free-body diagram, we will first consider the various types
of reactions that occur at supports and points of contact between bodies
subjected to coplanar force systems. As a general rule,

* If a support prevents the translation of a body in a given direction,
then a foree is developed on the body in that direction,

e Ifrotation is prevented, a couple moment is exerted on the body.

For example, let us consider three ways in which a horizontal member,
such as a beam, is supported at its end. One method consists of a roller or
cylinder, Fig. 5-3a. Since this support only prevents the beam from
translating in the vertical direction, the roller will only exert a force on
the beam in this direction, Fig. 5-3b.

The beam can be supported in a more restrictive manner by using a pin,
Fig. 5-3¢. The pin passes through a hole in the beam and two leaves which
are fixed to the ground. Here the pin can prevent translation of the beam
in any direction ¢, Fig. 5-3d, and so the pin must exert a force F on the
beam in this direction. For purposes of analysis, it is generally easier to
represent this resultant force F by its two rectangular components F, and
F,, Fig.5-3¢.If F and F arc known, then F and ¢ can be calculated.

The most restrictive way 1o support the beam would be to use a fived
support as shown in Fig. 5-3f. This support will prevent both translation
and rotation of the beam. To do this a force and couple moment must be
developed on the beam at its point of connection, Fig. 5-3g. As in the
case of the pin, the force is usually represented by its rectangular
components F, and F,.

Table 5-1 lists other common types of supports for bodies subjected to
coplanar force systems. (In all cases the angle # is assumed to be known.)
Carcfully study each of the symbols used to represent these supports and
the types of reactions they exert on their contacting members,

5.2 Free-Booy DiaGRAMS
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Types of Connection Reaction Number of Unknowns
—
t One unknown. The reaction is a tension force which acts
F . away from the member in the direction of the cable.
cable
T
0 or é One unknown. The reaction is a force which acts along
the axis of the link.
F F
weightless link
(3)
One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.
i
T
roller F
(4)
A - )
o ,\ or 7 One unknown. The reaction is a force which acts
Bl RERETN BN perpendicular to the slot.
roller or pin in
confined smooth slot
(%)
One unknown. The reaction is a force which acts
4 perpendicular to the surface at the point of contact.
rocker
(6)

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

smooth contacting
surface

or pe {// \
b One unknown. The reaction is a force which acts
fy perpendicular to the rod.
F

member pin connected
1o collar on smooth rod

continued
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Types of Connection Reaction Number of Unknowns

(8) £
5 Two unknowns. The reactions are two components of
force, or the magnitude and direction & of the resultant
5 W r force. Note that ¢ and # are not necessarily equal [usually
— . not, unless the rod shown is a link as in (2)].

smooth pin or hinge

%) -
s ? ./
i 4
( N Two unknowns. The reactions are the couple moment
. and the force which acts perpendicular to the rod.

member fixed connected
1o collar on smooth rod

(1)

Three unknowns. The reactions are the couple moment
and the two force components, or the couple moment and
the magnitude and direction ¢ of the resultant force.

==

fixed support

Typical examples of actual supports are shown in the following sequence of photos. The numbers refer to the
connection types in Table 5-1.

This concrete girder
rests on the ledge that
is assumed 1o act as
a smooth contacting
surface. (6)

The cable exerts a force on the brackel
in the direction of the cable. (1)

'TTh.

The rocker support for this bridge
girder allows horizontal movement
so the bridge is free to expand and
contract due to a change in
temperature. {5)

This utility building is The floor beams of this building
pin supported at the top are welded together and thus
of the column. (8) form fixed connections. (10)
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CHAPTER 5

EquiLisriuM OF A RiGID BoDY

Internal Forces. As stated in Sec. 5.1, the internal forces that act
between adjacent particles in a body always occur in collinear pairs such that
they have the same magnitude and act in opposite directions (Newton's
third law). Since these forces cancel each other, they will not create an
external effect on the body. It is for this reason that the internal forces should
not be included on the free-body diagram if the entire body is to be
considered. For example. the engine shown in Fig. 5-4a has a free-body
diagram shown in Fig. 5-4b. The internal forces between all its connected
parts such as the screws and bolts, will cancel out because they form equal
and opposite collinear pairs. Only the external forces T, and T, exerted by
the chains and the engine weight W, are shown on the free-body diagram.

(b)

Fig. 54

Weight and the Center of Gravity. When a body is within a
gravitational field, then each of its particles has a specified weight. It was
shown in Sec. 4.8 that such a system of forces can be reduced to a single
resultant force acting through a specified point. We refer to this force
resultant as the weight W of the body and to the location of its point of
application as the center of gravity. The methods used for its
determination will be developed in Chapter 9.

In the examples and problems that follow, if the weight of the body is
important for the analysis, this force will be reported in the problem
statement. Also, when the body is uniform or made from the same
material, the center of gravity will be located at the body's geometric
center or centroid; however. if the body consists of a nonuniform
distribution of material, or has an unusual shape, then the location of its
center of gravity G will be given.

Idealized Models. When an engineer performs a force analysis of
any object, he or she considers a corresponding analytical or idealized
model that gives results that approximate as closely as possible the
actual situation. To do this, careful choices have to be made so that
selection of the type of supports, the material behavior, and the object’s
dimensions can be justified. This way one can feel confident that any
design or analysis will vield results which can be trusted. In complex



cases this process may require developing several different models of the
object that must be analyzed. In any case, this selection process requires
both skill and experience.

The following two cases illustrate what is required to develop a proper
model. In Fig. 5-5a, the steel beam is to be used to support the three roof
joists of a building. For a force analysis it is reasonable to assume the
material (steel) is rigid since only very small deflections will occur when
the beam is loaded. A bolted connection at A will allow for any slight
rotation that occurs here when the load is applied, and so a pin can be
considered for this support. At B a roller can be considered since this
support offers no resistance to horizontal movement. Building code is
used to specify the roof loading A so that the joist loads F can be
calculated. These forces will be larger than any actual loading on the
beam since they account for extreme loading cases and [or dynamic or
vibrational effects. Finally, the weight of the beam is generally neglected
when it is small compared to the load the beam supports. The idealized
model of the beam is therefore shown with average dimensions a, b, ¢,
and d in Fig. 5-5b.

As a second case, consider the lift boom in Fig. 5-6a. By inspection. it is
supported by a pin at A and by the hydraulic eylinder BC, which can be
approximated as a weightless link. The material can be assumed rigid,
and with its density known, the weight of the boom and the location of its
center of gravity G are determined. When a design loading P is specified,
the idealized model shown in Fig. 5-6b can be used for a force analysis,
Average dimensions (not shown) are used to specify the location of the
loads and the supports.

Idealized models of specific objects will be given in some of the
examples throughout the text. It should be realized, however, that each
case represents the reduction of a practical situation using simplifying
assumptions like the ones illustrated here.

Fig. 5-6

5.2 Free-Booy DIAGRAMS
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Procedure for Analysis

To construct a free-body diagram for a rigid body or any group of
bodics considered as a single system, the following steps should be
performed:

Draw Outlined Shape,

Imagine the body 1o be isolated or cut “free” from its constraints
and connections and draw (sketch) its outlined shape.

Show All Forces and Couple Moments.

Identify all the known and unknown external forces and couple
moments that act on the body. Those generally encountered are due to
(1) applied loadings, (2) reactions occurring at the supports or at points
of contact with other bodies (see Table 5-1), and (3) the weight of the
body. To account for all these effects, it may help to trace over the
boundary, carefully noting each force or couple moment acting on it.

Identify Each Loading and Give Dimensions,

The forces and couple moments that are known should be labeled
with their proper magnitudes and directions. Letters are used to
represent the magnitudes and direction angles of forces and couple
moments that are unknown. Establish an x, y coordinate system so
that these unknowns, A,, A,. ete., can be identified. Finally, indicate
the dimensions of the body necessary for caleulating the moments
of forces,

Important Points

® No equilibrium problem should be solved without first drawing
the free-body diagram. so as 10 account for all the forces and
couple moments that act on the body.

« [f a support prevenis translation of a body in a particular direction,
then the support exerts a force on the body in that direction,

e If rotation is prevented, then the support exerts a couple moment
on the body.

# Study Table 5-1.

o Internal forees are never shown on the free-body diagram since they
oceur in equal but opposite collinear pairs and therefore cancel out.

® The weight of a body is an external force, and its effect is
represented by a single resultant force acting through the body's
center of gravity G.

e Couple moments can be placed anywhere on the free-body
diagram since they are free vectors. Forces can act at any point
along their lines of action since they are sliding vectors.
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EXAMPLE |5.1

Draw the free-body diagram of the uniform beam shown in Fig. 5-7a.
The beam has a mass of 100 kg.

b—2m 1200 N

(a)

SOLUTION

The free-body diagram of the beam is shown in Fig. 5-7b. Since the
support at A is fixed, the wall exerts three reactions on the beam.
denoted as A, A,. and M. The magnitudes of these reactions are
unknown. and their sense has been assumed. The weight of the beam.
W = 100(9.81) N = 981 N, acts through the beam’s center of gravity
G, which is 3 m from A since the beam is uniform.

x 1200N
P—zm—]
X “\‘_“ Effect of applied

force acting on beam

Z
Effect of fixed
support acting
on beam

o
YosiN |

3m

Effect of gravity (weight)
acting on beam

(b)
Fig. 5-7
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EXAMPLE |5

Draw the free-body diagram of the foot lever shown in Fig. 5-8a. The
operator applies a vertical force to the pedal so that the spring is
stretched 1.5 in. and the force in the short link at B 1s 20 Ib.

(b)
F = 201b
f
B \
\ 301h |.5;II'I
\ . 3
Fig. 5-8 ek 1in.
I T - =
Tl Aj) A,
I 5in.
A,
(<)

SOLUTION

By inspection of the photo the lever is loosely bolted to the frame
at A. The rod at B is pinned at its ends and acts as a “short link.”
After making the proper measurements, the idealized model of the
lever is shown in Fig. 5-8b. From this, the free-body diagram is
shown in Fig. 5-8¢. The pin support at A exerts force components
A, and A, on the lever. The link at B exerts a force of 20 Ib, acting
in the direction of the link. In addition the spring also exerts a
horizontal force on the lever. If the stiffness is measured and found
to be k = 20 Ib/in., then since the stretch s = 1.51in., using Eq. 3-2,
Fy= ks = 201b/in. (1.5in.) = 301b. Finally, the operator’s shoe
applies a vertical force of F on the pedal. The dimensions of the
lever are also shown on the free-body diagram. since this
information will be useful when computing the moments of the
forces. As usual, the senses of the unknown forces at A have been
assumed. The correct senses will become apparent after solving the
equilibrium equations.
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EXAMPLE |5.3

Two smooth pipes, each having a mass of 300 kg, are supported by the
forked tines of the tractor in Fig. 5-9a. Draw the free-body diagrams
for each pipe and both pipes together.

Effect of B acting on A

A o

JEffectof sloped ‘
blade actingon A |

2943 N‘\ —~
- ; Effect of sloped
Effect of gravity F  fork acting on A

(weight) acting on A
()

SOLUTION

The idealized model from which we must draw the free-body
diagrams is shown in Fig. 5-9bh. Here the pipes are identified, the
dimensions have been added. and the physical situation reduced 1o its
simplest form.

The free-body diagram for pipe A is shown in Fig. 5-9¢. Its weight is
W = 300(9.81) N = 2043 N. Assuming all contacting surfaces are
smooth. the reactive forces T, F, R act in a direction normal to the
tangent at their surfaces of contact.

The [ree-body diagram of pipe B is shown in Fig. 5-9d. Can you
identify each of the three forces acting on this pipe? In particular, note
that R, representing the force of A on B, Fig. 5-9d, is equal and
opposite to R representing the force of B on A, Fig. 5-9¢. This is a
consequence of Newton's third law of motion.

The free-body diagram of both pipes combined (“system™) is shown
in Fig. 5-9¢. Here the contact force R, which acts between A and B, is
considered as an internal force and hence is not shown on the free-
body diagram. That is, it represents a pair of equal but opposite
collinear forces which cancel each other.




210 CHAPTER 5 EcuiLiBRIUM OF A RiGID BoDy

EXAMPLE |5.4

Draw the free-body diagram of the unloaded platform that is
suspended off the edge of the oil rig shown in Fig. 5-10a. The platform
has a mass of 200 kg.

il .
Ilm
A e
=2 1
140 m=~—i
0.8 m
(b)
SOLUTION
_ The idealized model of the platform will be considered in two
i dimensions because by observation the loading and the dimensions
. are all symmetrical about a vertical plane passing through its center,

Fig. 5-10b. The connection at A is considered to be a pin, and the cable
supporis the platform at B. The direction of the cable and average
dimensions of the platform are listed. and the center of gravity GG
has been determined. It is from this model that we have drawn the
free-body diagram shown in Fig. 5-10c. The platform's weight is
200(9.81) = 1962 N. The force components A, and A, along with the
cable force T represent the reactions that both pins and both cables
exert on the platform, Fig. 5-10a. Consequently, after the solution for
these reactions, half their magnitude is developed at A and half is
developed at B.




5.2 Free-Booy DiaGrAMS 211

Cleromiems

*5-1. Draw the free-body diagram of the 50-kg paper roll *54. Draw the free-body diagram of the beam which

which has a center of mass at &G and rests on the smooth supports the 80-kg load and is supported by the pin at A and
blade of the paper hauler. Explain the significance of each a cable which wraps around the pulley at D. Explain the
force acting on the diagram, (See Fig. 5-7h.) significance of each force on the diagram. (See Fig. 5-7b.)

Prob, 5-1

5-2. Draw the free-body diagram of member AB. which is
supported by a roller at A and a pin at B. Explain the
significance of each force on the diagram. (See Fig. 5-7b.)

3901b t5

Prob. 54

*5-5. Draw the free-body diagram of the truss that is
supported by the cable AB and pin C. Explain the significance
Prob. -2 of each force acting on the diagram. (See Fig. 5-7b.)
5-3. Draw the free-body diagram of the dumpster D of the
truck, which has a weight of 5000 Ib and a center of gravity
at G. It is supported by a pin at A and a pin-connected
hydraulic cvlinder BC (short link). Explain the significance
of each force on the diagram. (See Fig. 5-7b.)

14 kN

F—2im——2m ——21Im —

Prob. 5-3 Prob, 5-5
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5-6. Draw the free-body diagram of the crane boom A
which has a weight of 630 Ib and center of gravity at G. The
boom is supported by a pin at A and cable BC. The load of
1250 Ib is suspended from a cable attached at B. Explain
the significance of each force acting on the diagram. (See
Fig. 5-7b.)

EcuiLierium OF A RiGID Boby

*5-9. Draw the free-body diagram of the bar, which has a
negligible thickness and smooth points of contact at A, B,
and C. Explain the significance of each force on the
diagram. (See Fig. 5-7b.)

Prob. 5-6

5-7. Draw the free-body diagram of the “spanner
wrench” subjected to the 20-1b force. The support at A can
be considered a pin, and the surface of contact at B is
smooth. Explain the significance of each force on the
diagram. (See Fig. 5-7b.)

201b

6in.
Prob. 5-7

#5-8. Draw the free-body diagram of member ABC which
is supported by a smooth collar at A, roller at B, and short
link €D, Explain the significance of each force acting on the
diagram. (See Fig. 5-7b.)

Prob. 5-9

5-10. Draw the free-body diagram of the winch, which
consists of a drum of radius 4 in, It is pin-connected at its
center C, and at its outer rim is a ratchet gear having a mean
radius of 6 in. The pawl AB serves as a two-force member
(short link) and prevents the drum from rotating. Explain
the significance of each force on the diagram. (See
Fig. 5-7h.)

Prob. 5-10
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| | CONCEPTUAL PROBLEMS

P5-1. Draw the free-body diagram of the uniform trash P5-3. Draw the free-body diagram of the wing on the
bucket which has a significant weight. It is pinned at A and passenger plane. The weights of the engine and wing are
rests against the smooth horizontal member at B. Show significant. The tires at B are free to roll.

vour result in side view. Label any necessary dimensions.

P5-3

P5-1
P5-2. Draw the free-body diagram of the outrigger ABC *P5-4. Draw the free-body diagram of the wheel and
used to support a backhoe. The top pin B is connected to member ABC used as part of the landing gear on a jet
the hydraulic cylinder, which can be considered to be a plane. The hydraulic cyvlinder AD acts as a two-force
short link (two-force member). the bearing shoe at A is member, and there is a pin connection at B.

smooth, and the outrigger is pinned to the frame at C.

P5-2 P-4
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5.3 Equations of Equilibrium

In Sec. 5.1 we developed the two equations which are both necessary and

sufficient for the equilibrium of a rigid body, namely, £F = 0 and
F, XMy = 0. When the body is subjected to a system of forces, which all lie
' in the x-v plane, then the forces can be resolved into their x and y
components. Consequently, the conditions for equilibrium in two
dimensions are

SF, =0
SF=0 (5-2)
EMg =10

Here £F, and TF, represent, respectively, the algebraic sums of the x
and y components of all the forces acting on the body, and =M,
represents the algebraic sum of the couple moments and the moments of
all the force components about the z axis, which is perpendicular to the
x-y plane and passes through the arbitrary point O.

Alternative Sets of Equilibrium Equations. Although
Eqs. 5-2 are most often used for solving coplanar equilibrium problems,
two alternative sets of three independent equilibrium equations may also
be used. One such set is

(b)
IF, =0
EMy =0 (5-3)
EMg=10

When using these equations it is required that a line passing through
points A and B is not parallel to the y axis. To prove that Egs. 5-3 provide
the conditions for equilibrium, consider the free-body diagram of the
plate shown in Fig. 5-11a. Using the methods of Sec. 4.8, all the forces on
the free-body diagram may be replaced by an equivalent resultant force
Fr = XF, acting at point A, and a resultant couple moment
Mg, = EM,, Fig. 5-11b. If M, = 0 is sausfied. it is necessary that
(c) M, = 0. Furthermore, in order that Fg satisfy £F, = 0, it must have no
component along the x axis, and therefore Fgz must be parallel to the y
axis, Fig. 5-11c. Finally, if it is required that EMy = 0, where B does not
lic on the line of action of Fg, then Fg = 0. Since Eqgs. 5-3 show that both
of these resultants are zero, indeed the body in Fig. 5-11a must be in
equilibrium.

Fig. 5-11



A second alternative set of equilibrium equations is

53

EMA =10
EMg=10 (54)
SMe=0

Here it is necessary that points A, B, and € do not li¢ on the same line. To
prove that these equations, when satisfied. ensure equilibrium. consider
again the free-body diagram in Fig. 5-115. 1If ZM, = 0 is to be satisfied.
then Mg = 0. ZM = 0 is satisfied if the line of action of Fy passes
through point C as shown in Fig. 5-11¢. Finally, if we require EM; = 0,
it is necessary that Fg = 0, and so the plate in Fig. 5-11a must then be in
equilibrium.

Procedure for Analysis

Coplanar force equilibrium problems for a rigid body can be solved
using the following procedure.

Free-Body Diagram.

Establish the x, v coordinate axes in any suitable orientation.
Draw an outlined shape of the body.
Show all the forces and couple moments acting on the body.

Label all the loadings and specify their directions relative to the
x or y axis. The sense of a force or couple moment having an
unknown magnitude but known line of action can be assumed.
Indicate the dimensions of the body necessary for computing the
moments of forces.

Equations of Equilibrium.

Apply the moment equation of equilibrium, EM, = 0, about a
point (O) that lies at the intersection of the lines of action of two
unknown forces. In this way. the moments of these unknowns are
zero about O, and a direct solution for the third unknown can be
determined.

When applying the force equilibrium equations, £F, = (0 and
X F, = 0, orient the x and y axes along lines that will provide the
simplest resolution of the forces into their x and y components.
If the solution of the equilibrium equations yields a negative
scalar for a force or couple moment magnitude. this indicates that
the sense is opposite to that which was assumed on the free-body
diagram.

Ecuanons oF EQuILIBRIUM
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EXAMPLE |5.5

Determine the horizontal and vertical components of reaction on the
beam caused by the pin at B and the rocker at A as shown in Fig. 5-12a.
Neglect the weight of the beam.

600N 200N 600 sin 45° N
200N
600 cos 45° N "i"" ¥ &
A== e "J‘:"—‘- x
o| K
Zm im 2m—1
A, A B,
100N

Fig. 5-12

SOLUTION
Free-Body Diagram. Identify cach of the forces shown on the free-
body diagram of the beam, Fig. 5-12b. (See Example 5.1.) For
simplicity, the 600-N force is represented by its x and y components as
shown in Fig, 5-12b.
Equations of Equilibrium. Summing forces in the x direction yields
EXF, =0 600 cos45° N — B, = 0

B, =424 N Ans.

A direct solution for A, can be obtained by applying the moment
equation XMy = 0 about point B.

C+EMz=0; 100N(2m) + (600sin45° N)(5m)
— (600 cos 45" N)(0.2m) — Ay (7Tm) =0
Ay = 319N Ans.
Summing forces in the y direction. using this result, gives
+12F, = 0; 319N — 600sin 45" N — 100N — 200N + B, =0
B, = 405N Ans.
NOTE: We can check this result by summing moments about point A.
C+EM, =0 —(600sin 45" N)(2m) — (600 cos 45° N)(0.2 m)
—(100N)(5m) — (200N){7m) + B(7m) =0
By, = 405N Ans.
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EXAMPLE |5.6

The cord shown in Fig. 5-13a supports a force of 100 Ib and wraps
over the frictionless pulley. Determine the tension in the cord at C
and the horizontal and vertical components of reaction at pin A.

100 1h

(a)
Fig. 5-13

SOLUTION

Free-Body Diagrams. The free-body diagrams of the cord and pulley
are shown in Fig. 5-13b. Note that the principle of action, equal but
opposite reaction must be carefully observed when drawing each of
these diagrams: the cord exerts an unknown load distribution p on the
pulley at the contact surface, whereas the pulley exerts an equal but
opposite effect on the cord. For the solution, however, it is simpler to
combine the free-body diagrams of the pulley and this portion of the
cord, so that the distributed load becomes internal to this “system™
and is therefore eliminated from the analysis, Fig. 5-13¢.

Equations of Equilibrium. Summing moments about point A to
eliminate A, and A, Fig. 5-13c, we have

C+EM, =0, 1001b (0.5f1) — T(051t) =0

T =1001b Ans.
Using the result,
5 EF, =0, —A, + 100sin30°1b = 0

A, = 5001b Ans.

+TEP}. =1 A, —1001b — 100 cos 30°1b = 0
Ay =1871b Ans.
NOTE: It is seen that the tension remains constant as the cord passes

over the pulley. (This of course is true for any angle f at which the
cord is directed and for any radius r of the pulley.)

100 1

217
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EXAMPLE |5.7

The member shown in Fig. 5-14a is pin-connected at A and rests
against a smooth support at B. Determine the horizontal and vertical
components of reaction at the pin A.

(b}

Fig. 5-14
SOLUTION

Free-Body Diagram. As shown in Fig. 5-14b, the reaction Ny is
perpendicular to the member at B. Also, horizontal and vertical
components of reaction are represented at A.

Equations of Equilibrium. Summing moments about A, we obtain a
direct solution for N g.

C+SM, =0 —90N-m — 60N(I1m) + Ng(0.75m) = 0

Ng=200N
Using this result,
BEF =0 A, — 200sin30°N = 0
A, = 100N Ans.
+TE£‘.={J: Ay — 200cos30°N —60N =0

Ay =233N Ans.
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EXAMPLE |5.8

The box wrench in Fig. 5-15a is used to tighten the bolt at A. If the
wrench does not turn when the load is applied to the handle,
determine the torque or moment applied to the bolt and the foree of
the wrench on the bolt.

SOLUTION

Free-Body Diagram. The [ree-body diagram for the wrench is
shown in Fig. 5-15b. Since the bolt acts as a “fixed support,” it exerts
force components A, and A, and a moment M, on the wrench at A,

Equations of Equilibrium.

E3F =0 A, —352(35)N +30cos60°N =0

A, = 500N Ans.
+1ZF,=0; A, — 52(13)N = 30sin60°N = 0

Ay =T40N Ans.

C+3M, = 0; M, — [52(13) N] (03m) — (30sin 60° N)(0.7m) = 0

My=326N-m Ans.

o

Note that M, must be included in this moment summation. This
couple moment is a free vector and represents the twisting resistance
of the bolt on the wrench. By Newton’s third law, the wrench exerts an
equal but opposite moment or torque on the bolt. Furthermore, the
resultant force on the wrench is

ek — B W

F,= V(500 + (740)F = 741N Ans.

NOTE: Although only three independent equilibrium equations can
be written for a rigid body. it is a good practice to check the
calculations using a fourth equilibrium equation. For example, the
above computations may be verified in part by summing moments
about point C:

C+EMe = 0: [S2(3)N] (0.4m) + 326 N-m — 740N(0.7m) = 0
192N-m + 326 N-m — 5L8N-m = 0

.

400 mm

52N

e

(a)
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EXAMPLE |5.9

Determine the horizontal and vertical components of reaction on the
member at the pin A, and the normal reaction at the roller B in
Fig. 5-16a.

SOLUTION

Free-Body Diagram. The free-body diagram is shown in Fig. 5-16b.
The pin at A exerts two components of reaction on the member, A,
and A .

750 1b

Fig. 5-16

Equations of Equilibrium. The reaction N can be obtained directly
by summing moments about point A since A, and A, produce no
moment about A.

C+EM, = O
[Ny cos 30°](6 ft) — [N sin 30°)(2 ft) — 750 Ib(3 ft) = 0
Ng = 536.21b = 536 1b Ans.

Using this result,
BIF =0; A, — (53621b)sin30° = 0
A, = 268 1b ks

+12F,

Il

Ay + (536.21b) cos 30° — 7501b = 0
A, = 2861b Ans.
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The uniform smooth rod shown in Fig. 5-17a is subjected to a force
and couple moment. If the rod is supported at A by a smooth wall and
at B and C either at the top or bottom by rollers, determine the
reactions at these supports. Neglect the weight of the rod.

J”"Tnj
00N o/ /
’(Zm.}‘ Shad
SOLUTION "

Free-Body Diagram. As shown in Fig. 5-17b, all the support
reactions act normal to the surfaces of contact since these surfaces are
smooth. The reactions at B and C are shown acting in the positive y’
direction. This assumes that only the rollers located on the bottom of
the rod are used for support.

Equations of Equilibrium. Using the x, v coordinate system in
Fig. 5-17h, we have

B EF =0; Cysin30° + Bysin30° — A, =0 (1
+T)_'.F_‘. =0; -300N+ C‘..- cos 30° + B_‘.- cos 30° =0 (2)
C+EM, =0: —By(2m) +4000N+m — Cy(6 m)

+ (300 cos 30° N)(8 m) = 0 (3)

When writing the moment equation, it should be noted that the line of

action of the force component 300 sin 30” N passes through point A,

and therefore this force is not included in the moment equation.
Solving Eqs. 2 and 3 simultancously, we obtain

B, = —1000.0N = -1 kN Ans.
Cy = 13464 N = 1.35kN Ans.

Since By is a negative scalar, the sense of By, is opposite to that shown
on the free-body diagram in Fig. 5-17h. Therefore, the top roller at B
serves as the support rather than the bottom one. Retaining the negative
sign for By (Why?) and substituting the results into Eq. 1, we obtain

1346.4 sin 30° N + (—1000.0s8in 30°N) — A, =0
A, = 173N Ans.
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EXAMPLE |5.11

The uniform truck ramp shown in Fig. 5-18a has a weight of 400 Ib and
1s pinned to the body of the truck at each side and held in the position
shown by the two side cables. Determine the tension in the cables.

SOLUTION

The idealized model of the ramp, which indicates all necessary
dimensions and supports, is shown in Fig. 5-18bh. Here the center of
gravity is located at the midpoint since the ramp is considered to be
uniform.

(a)

Free-Body Diagram. Working from the idealized model, the ramp’s
free-body diagram is shown in Fig. 5-18¢.

Equations of Equilibrium. Summing moments about point A will
vield a direct solution for the cable tension. Using the principle of

moments, there are several ways of determining the moment of T
about A.If we use x and y components, with T applied at B, we have

C+HEM,=0; —T cos 20°(7 sin 30° ft) + T sin 20°(7 cos 30° f1)

+ 400 1b (5 cos 30° ft) = 0

T'=14251b

The simplest way to determine the moment of T about A is to resolve
it into components along and perpendicular to the ramp at B.Then the
moment of the component along the ramp will be zero about A, so that

CH+HEM, =0; —Tsin10°(71t) + 4001b (5cos 30° ft) = 0
T =14251b

Since there are two cables supporting the ramp.

T = ':':- =T7121b Ans.

NOTE: As an exercise. show that A, = 1339 1band A, = 887.4 lb.

Fig. 5-18
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Determine the support reactions on the member in Fig. 5-19a. The
collar at A is fixed to the member and can slide vertically along the
vertical shaft.

Ecuanons oF EQuILIBRIUM

S00N -m

(a)

Fig. 5-19

SOLUTION

Free-Body Diagram. The free-body diagram of the member is shown
in Fig. 5-19b. The collar exerts a horizontal force A, and moment M
on the member. The reaction Ny of the roller on the member is
vertical.

Equations of Equilibrium. The forces A, and Ny can be determined
directly from the force equations of equilibrium.

LHEF, =0 A, =0 Ans.
+H12E =0 Np = 900N =0
Ny — 900N Ans.

The moment M, can be determined by summing moments ¢ither
about point A or point B.

C+HEIM,= O

M, — 900N(1.5m) — S00N-m + 900N [3m + (1 m) cos 45°] = 0
My =—1486N'm = 1.49kN-m D Ans.

or

C+SMg = 0; My + 900N [L5m + (1 m)cos45°] — S00N-m = 0
M, = —1486N-m = 1.49kN-m) Ans.

The negative sign indicates that My has the opposite sense of rotation
to that shown on the free-body diagram.
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The bucket link AB on the back-hoe
is o typical example of a two-force
member since it is pin connected at
its ends and. provided its weight is
neglected. no other force acts on this
member.

The link used for this railroad car brake
is a three-foree member. Since the force
Fy in the tie rod at B and F¢ from the
link at C are parallel, then for
equilibrium the resultant force F , at the
pin A must also be parallel with these
two forces.

The boom on this lift is a three-force
member, provided its weight is neglected.
Here the lines of action of the weight of the
worker, W, and the force of the two-force
member (hydraulic cylinder) at B, Fg,
intersect at . For moment equilibrium, the
resultant force at the pin A, Fy, must also
be directed towards O.

EcuiLisrium oF A RiGiD Bopy

5.4 Two- and Three-Force Members

The solutions to some equilibrium problems can be simplified by
recognizing members that are subjected to only two or three forces.

Two-Force Members As the name implies, a nvo-force member has
forces applied at only two points on the member. An example of a two-
force member is shown in Fig. 5-20a. To satisfy force equilibrium, F 4 and
Fg must be equal in magnitude, Fy = Fg = F, but opposite in direction
(XF = 0). Fig. 5-20b. Furthermore, moment equilibrium requires that F
and Fy share the same line of action, which can only happen if they are
directed along the line joining points A and B (EM, = 0 or EMy = 0),
Fig. 5-20c. Therefore, for any two-force member to be in equilibrium, the
two forces acting on the member must have the same magnitude, act in
apposite directions, and have the same line of action, directed along the line
Jjoining the two points where these forces act,

Fp=F

Fy=F (b) (<)

Two-force member
Fig. 5-20

Three-Force Members If a member is subjected to only three
forces, it is called a three-force member. Moment equilibrium can be
satisfied only if the three forces form a concurrent or parallel force
system. To illustrate, consider the member subjected to the three forces
F, F5, and F;, shown in Fig. 5-21a. If the lines of action of F, and F,
intersect at point O, then the line of action of F; must also pass through
point O so that the forces satisfy Mg = 0. As a special case, if the three
forces are all parallel, Fig. 5-21b. the location of the point of intersection,
O, will approach infinity.
o,

) )

F 5 B

(a) (b)

Three-force member
Fig. 5-21
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The lever ABC is pin supported at A and connected to a short link BD
as shown in Fig. 5-22a. If the weight of the members is negligible,
determine the force of the pin on the lever at A.

SOLUTION

Free-Body Diagrams. As shown in Fig. 5-22b, the short link BD is a
two-force member, so the resultant forces at pins D and B must be
equal, opposite, and collinear. Although the magnitude of the foree is
unknown, the line of action is known since it passes through B and D.

Lever ABC is a three-force member, and therefore, in order to
satisfy moment equilibrium, the three nonparallel forces acting on it
must be concurrent at @, Fig. 5-22¢. In particular, note that the force F
on the lever at B is equal but opposite to the force F acting at B on the
link. Why? The distance CO must be 0.5 m since the lines of action of
F and the 400-N force are known.

Equations of Equilibrium. By requiring the force system to be
concurrent at @, since EMp = 0, the angle # which defines the line of
action of F 4 can be determined from trigonometry,

0.7
= =] = 3°
fl=ta ( 04 ) 60.3

Using the x, y axes and applying the force equilibrium equations,
BIEF =0  Fjeos60.3° — Feos45° + 400N = 0
+12F =0:  Fysin60.3° — Fsin45° =0

Solving, we get

Fy = 1.07kN Ans.

]

F

1.32kN

NOTE: We can also solve this problem by representing the force at A
by its two components A, and A, and applying ZM, = 0, £F, =0,
2F, = 010 the lever, Once A, and A, are determined, we can get Fy
and 6.

——

0.5 m
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. FUNDAMENTAL PROBLEMS

All problem solutions must include an FBD. F5-4. Determine the components of reaction at the fixed

; . . support A. Neglect the thickness of the beam.
F5-1. Determine the horizontal and vertical components e -

of reaction at the supports. Neglect the thickness of

the beam. 200N

00N 200N

L |

/
600 1Ib - fi / L m—=—1m-—=—1m-— 00N

. -]
L—-S ft —-'J——S i -—-L—ﬁ It —-!

F5-1 F5-4
F5-2. Determine the horizontal and vertical components F5-5. The 25-kg bar has a center of mass at G. If it is
of reaction at the pin A and the reaction on the beam at C, supported by a smooth peg at €, a roller at A, and cord AB,
4 kN I determine the reactions at these supports.

I 1.5m | I5m

v

15m

F5-22
F5-3, The truss is supported by a pin at A and a roller at B. F5-6. Determine the reactions at the smooth contact
Determine the support reactions. points A, B, and € on the bar,
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Sleromiems

All problem solutions must include an FBD.

5-11. Determine the normal reactions at A and B in
Prob. 5-1.

#*5-12. Determine the tension in the cord and the
horizontal and vertical components of reaction at support A
of the beam in Prob. 5-4.

*5-13. Determine the horizontal and vertical components
of reaction at € and the tension in the cable AB for the
truss in Prob. 5-5.

5-14. Determine the horizontal and vertical components
of reaction at A and the tension in cable BC on the boom in
Prob, 5-6.

5-15. Determine the horizontal and vertical components
of reaction at A and the normal reaction at B on the
spanner wrench in Prob, 5-7.

*5-16. Determine the normal reactions at A and B and the
force in link CD acting on the member in Prob. 5-8.

*5-17. Determine the normal reactions at the points of
contact at A, B, and C of the bar in Prob. 5-9.

5-18. Determine the horizontal and vertical components
of reaction at pin € and the force in the pawl of the winch in
Prob, 5-10.

5-19. Compare the force exerted on the toe and heel of a
120-1b woman when she is wearing regular shoes and
stiletto heels. Assume all her weight is placed on one foot
and the reactions occur at points A and B as shown.

120 1b

120 Ib

125 in. 075in. 375 in.

Prob, 5-19

*5-20. The train car has a weight of 24 000 Ib and a center
of gravity at G. Itis suspended from its front and rear on the
track by six tires located at A, B, and C. Determine the
normal reactions on these tires if the track is assumed to be
a smooth surface and an equal portion of the load is
supported at both the front and rear tires.

Prob. 5-20

*5-21. Determine the horizontal and vertical components
of reaction at the pin A and the tension developed in cable
BC used to support the steel frame.

Proh. 5-21
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5-22. 'The articulated crane boom has a weight of 125 Ib and
center of gravity at G. If it supports a load of 600 Ib, determine
the force acting at the pin A and the force in the hydraulic
cylinder BC when the boom is in the position shown.

5-23. The airstroke actuator at [ is used to apply a force of
F =200 N on the member at 8. Determine the horizontal
and vertical components of reaction at the pin A and the
force of the smooth shaft at C on the member.

*5-24. The airstroke actuator at D is used to apply a force
of F on the member at B. The normal reaction of the
smooth shaft at C on the member is 300 N, Determine the
magnitude of F and the horizontal and vertical components
of reaction at pin A.

*5-25. The 300-1b electrical transformer with center of gravity
at G is supported by a pin at A and a smooth pad at B.
Determine the horizontal and vertical components of reaction
at the pin A and the reaction of the pad B on the transformer.

Prob, 5-25

5-26. A skeletal diagram of a hand holding a load is shown
in the upper figure. If the load and the forearm have masses
of 2 kg and 1.2 kg, respectively, and their centers of mass are
located at G, and G, determine the force developed in the
biceps CD and the horizontal and vertical components of
reaction at the elbow joint B. The forearm supporting
system can be modeled as the structural system shown in
the lower figure.

G

A!.. [ |
100 mm-=~—135 mm TS mm)

Prob. 5-26



5-27. As an airplane’s brakes are applied, the nose wheel
exerts two forces on the end of the landing gear as shown.
Determine the horizontal and vertical components of
reaction at the pin C and the force in strut AB.

Prob. 5-27

*5-28. The 1.4-Mg drainpipe is held in the tines of the fork
lift. Determine the normal forces at A and B as functions of
the blade angle # and plot the results of force (vertical axis)
versus f (horizontal axis) for 0 = # = 90°,

Proh. 5-28
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*5-29. The mass of 700 kg is suspended from a trolley
which moves along the crane rail from d = 1.7 m to
d = 3.5m. Determine the force along the pin-connected
knee strut BC (short link) and the magnitude of force at pin
A as a function of position d. Plot these results of Fyge and F,
(vertical axis) versus d (horizontal axis).

Prob. 5-29

5-30. If the force of F = 100 Ib is applied to the handle of
the bar bender, determine the horizontal and vertical
components of reaction at pin A and the reaction of the
roller B on the smooth bar.

5-31. If the force of the smooth roller at B on the bar
bender is required to be 1.5 kip. determine the horizontal
and vertical components of reaction at pin A and the
required magnitude of force F applied to the handle.

Probs, 5-30/31
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*5-32. The jib crane is supported by a pin at C and rod AB.
If the load has a mass of 2 Mg with its center of mass located
at G, determine the horizontal and vertical components of
reaction at the pin € and the force developed in rod AB on
the crane when x =35 m.

*5-33. The jib crane is supported by a pin at C and rod AB.
The rod can withstand a maximum tension of 40 kN. If the
load has a mass of 2 Mg, with its center of mass located at G,
determine its maximum allowable distance x and the
corresponding horizontal and vertical components of
reaction at C.

4m

Probs. 5-32/33

5-34. Determine the horizontal and vertical components
of reaction at the pin A and the normal force at the smooth
peg B on the member.

Prob. 5-34

EauiLisrium oF A RiGID BoDy

5-35. The framework is supported by the member AB
which rests on the smooth floor. When loaded, the pressure
distribution on A8 is linear as shown. Determine the length d
of member AB and the intensity w for this case.

*5-36. Outnggers A and B are used to stabilize the crane
from overturning when lifting large loads. If the load to be
lifted is 3 Mg, determine the maximum boom angle # so that
the crane does not overturn. The crane has a mass of 5 Mg
and center of mass at G, whereas the boom has a mass of
0.6 Mg and center of mass at Gy,




*5-37. The wooden plank resting between the buildings
deflects slightly when it supports the 50-kg boy. This
deflection causes a triangular distribution of load at its ends,
having maximum intensities of wy and wg. Determine wy
and wg, each measured in N/m. when the boy is standing
3 m from one end as shown. Neglect the mass of the plank.

Prob. 5-37

5-38. Spring CD remains in the horizontal position at all
times due to the roller at D. If the spring is unstretched
when # = (° and the bracket achieves its equilibrium
position when @ = 30°, determine the stiffness k of the
spring and the horizontal and vertical components of
reaction at pin A.

5-39. Spring CD remains in the horizontal position at all
times due to the roller at 2. If the spring is unstretched
when 0 = 0° and the stiffness is & = 1.5 kN/m. determine
the smallest angle # for equilibrium and the horizontal and
vertical components of reaction at pin A,
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*5-40. The platform assembly has a weight of 250 1b and
center of gravity at Gy. If it is intended to support a
maximum load of 400 Ib placed at point G, determine the
smallest counterweight W that should be placed at B in
order to prevent the platform from tipping over.

*5-41. Determine the horizontal and vertical components
of reaction at the pin A and the reaction of the smooth
collar B on the rod.

Probs. 5-38/39
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5-42. Determine the support reactions of roller A and the *5-44. Determine the horizontal and vertical components
smooth collar B on the rod. The collar is fixed to the rod of force at the pin A and the reaction at the rocker B of the
AB, but is allowed to slide along rod CD. curved beam.

SN

Prob, 5-42 Proh, 5-44
5-43. The uniform rod AB has a weight of 15 Ib. Determine *5-45, The floor crane and the driver have a total weight
the force in the cable when the rod is in the position shown. of 2500 Ib with a center of gravity at G. If the crane is

required to lift the 500-1b drum, determine the normal
reaction on both the wheels at A and both the wheels at B
when the boom is in the position shown.

5-46. The floor crane and the driver have a total weight of
2500 Ib with a center of gravity at G. Determine the largest
weight of the drum that can be lifted without causing the
crane to overturn when its boom is in the position shown.

Prob. 5-43



5-47. The motor has a weight of 850 Ib. Determine the
force that each of the chains exerts on the supporting hooks
at A, B, and C. Neglect the size of the hooks and the
thickness of the beam.

Prob. 547

*5-48. Determine the force P needed to pull the 50-kg roller
over the smooth step. Take § = 60°,

*5-49. Determine the magnitude and direction @ of the
minimum force P needed to pull the 50-kg roller over the
smooth step.

Probs, 5-48/49
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5-50. The winch cable on a tow truck is subjected to a
force of T = 6 kN when the cable is directed at 6 = 60°,
Determine the magnitudes of the total brake frictional
force F for the rear set of wheels B and the total normal
forces at both front wheels A and both rear wheels B for
equilibrium. The truck has a total mass of 4 Mg and mass
cenler at (s,

5-51. Determine the minimum cable force T and critical
angle # which will cause the tow truck to start tipping, i.e.. for
the normal reaction at A to be zero, Assume that the truck is
braked and will not slip at B. The truck has a lotal mass of
4 Mg and mass center at G.x

Probs, 5-30/51

*5-52. Three uniform books, each having a weight W and
length a. are stacked as shown. Determine the maximum
distance ¢ that the top book can extend out from the
bottom one so the stack does not topple over.

Prob. 5-52
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*5-53. Determine the angle ¢ at which the link ABC is
held in equilibrium if member 8D moves 2 in. to the right.
The springs are originally unstretched when # = 0°. Each
spring has the stiffness shown. The springs remain
horizontal since they are attached to roller guides.

Prob. 5-53

5-54. The uniform rod AB has a weight of 15 Ib and the
spring is unstretched when @ = 0°. If # = 30°, determine
the stiffness k of the spring.

Prob. 5-54

EauiLisrium oF A RiGID BoDy

5-55. The horizontal beam is supported by springs at its
ends. Each spring has a stiffness of k = 5kN/m and is
originally unstretched so that the beam is in the horizontal
position. Determine the angle of tilt of the beam if a load of
800 N is applied at point C as shown.

*5-56. The horizontal beam is supported by springs at its
ends. If the stiffness of the spring at A is k4 = SkN/m,
determine the required stiffness of the spring at B so that if
the beam is loaded with the 800 N it remains in the
horizontal position. The springs are originally constructed
5o that the beam is in the horizontal position when it is
unloaded.

=. ot 2 SE byl i - .

- Im -

-— sm S
Probs, 5-55/56

*5-57. The smooth disks D and £ have a weight of 200 b
and 100 Ib, respectively. If a horizontal force of P = 200 Ib
is applied to the center of disk E. determine the normal
reactions at the points of contact with the ground at A. B,
and C.

5-58. The smooth disks D and E have a weight of 200 |b
and 100 b, respectively. Determine the largest horizontal
force P that can be applied to the center of disk E without
causing the disk D to move up the incline,

Probs. 5-57/58



5.4 Two- AND THREE-FORCE MEMBERS 235

5-59. A man stands out at the end of the diving board, *5-61. If spring BC is unstretched with # = 0° and the bell

which is supported by two springs A and B, each having a crank achieves its equilibrium position when # = 15°,
stiffness of k£ = 15 kKN/m. In the position shown the board determine the force F applied perpendicular to segment
is horizontal. If the man has a mass of 40 kg. determine the AD and the horizontal and vertical components of reaction
angle of tilt which the board makes with the horizontal after at pin A. Spring BC remains in the horizontal postion at all
he jumps off. Neglect the weight of the board and assume it times due to the roller at C.

is rigid.

Prob. 5-59 Prob. 5-61

*5-60. The uniform rod has a length / and weight W. It is 5-62. The thin rod of length / is supported by the smooth
supported at one end A by a smooth wall and the other end tube. Determine the distance a needed for equilibrium if
by a cord of length s which is attached to the wall as the applied load is P.

shown. Show that for equilibrium it is required that

h= (s ~ P32

Prob. 5-60 Prob, 5-62
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| | CONCEPTUAL PROBLEMS

P5-5. The tie rod is used to support this overhang at the
entrance of a building. If it is pin connected to the building
wall at A and to the center of the overhang 8, determine if
the force in the rod will increase. decrease. or remain the
same if (a) the support at A is moved to a lower position 2,
and (b) the support at B is moved to the outer position C.
Explain your answer with an equilibrium analysis, using
dimensions and loads. Assume the overhang is pin
supported from the building wall.

5>

P5-5
P5-6. The man attempts to pull the four wheeler up the
incline and onto the truck bed. From the position shown. is
it more effective to keep the rope attached at A, or would it
be better to attach it to the axle of the front wheels at 57
Draw a free-body diagram and do an equilibrium analysis
to explain your answer.

P5-7. Like all aircraft, this jet plane rests on three wheels.
Why not use an additional wheel at the tail for better
support? (Can you think of any other reason for not
including this wheel?) If there was a fourth tail wheel, draw
afree-body diagram of the plane from a side (2 D) view, and
show why one would not be able to determine all the wheel
reactions using the equations of equilibrium.

P5-7

*P5-8. Where is the best place to arrange most of the logs
in the wheelbarrow so that it minimizes the amount of force
on the backbone of the person transporting the load” Do an
equilibrium analysis to explain your answer.

P3-8



EQUILIBRIUM IN THREE DIMENSIONS

5.5 Free-Body Diagrams

The first step in solving three-dimensional equilibrium problems, as in the
case of two dimensions, is to draw a free-body diagram. Before we can do
this, however, it is first necessary to discuss the types of reactions that can
occur at the supports.

Support Reactions. The reactive forces and couple moments
acting at various types of supports and connections, when the members
are viewed in three dimensions, are listed in Table 5-2. It is important to
recognize the symbols used 1o represent each of these supports and 1o
understand clearly how the forces and couple moments are developed.
As in the two-dimensional case:

e A force is developed by a support that restricts the translation of its
attached member.

* A couple moment is developed when rotation of the attached
member is prevented.

For example. in Table 5-2, item (4), the ball-and-socket joint prevents
any translation of the connecting member; therefore, a force must act on
the member at the point of connection. This force has three components
having unknown magnitudes, £, F, F. Provided these components are
known, one can obtain the magnitude of force, F = VF? + F? + FZ,
and the force’s orientation defined by its coordinate direction angles a,
B. y. Egs. 2-7.% Since the connecting member is allowed to rotate freely
about any axis, no couple moment is resisted by a ball-and-socket joint.

It should be noted that the single bearing supports in items (5) and (7).
the single pin (8). and the single hinge (9) are shown to resist both foree
and couple-moment components. If, however, these supports are used in
conjunction with ether bearings, pins, or hinges to hold a rigid body in
cquilibrium and the supports are properly aligned when
connected to the body, then the force reactions at these supports alone
are adequate for supporting the body. In other words, the couple
moments become redundant and are not shown on the free-body
diagram. The reason for this should become clear after studying the
examples which follow.

* The three unknowns may also be represented as an unknown force magnitude F and
two unknown coordinate direction angles. The third direction angle is obtained using the
iy 1 1 )
identity cos” a + cos” B + cos”y = 1, Eq. 2-8.

5.5 Free-Booy DIAGRAMS
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Types of Connection Reaction Number of Unknowns
(48] 3
?( One unknown. The reaction is a force which acts away
\ from the member in the known direction of the cable.
A
cable
2)

N

smooth surface support

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

(3

3)

I.
—

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

roller
& ¥, /A_,
/ Three_unknowns. The reactions are three rectangular
force components.
F; Fy
ball and socket

single journal bearing

Four unknowns. The reactions are two force and two
couple-moment components which act perpendicular to
the shaft. Note: The couple moments are generally not
applied if the body is supported elsewhere. See the
examples,

continued
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Types of Connection Reaction Number of Unknowns
6
(6) ; = <b
“ *F. Five unknowns. The reactions are two force and three
" oA M couple-moment components. Nore: The couple moments
M, F"Q\; are generally not applied if the body is supported
si.n\%{f h]‘s);;nn:i !;;:gng F, elsewhere. See the examples.
(7 M.
"‘t"_?" F. Five unknowns. The reactions are three force and two
»M f:;_-«ﬁ couple-moment components. Note: The couple moments
SN are generally not applied if the body is supported
elsewhere. See the examples.
single thrust bearing

Five unknowns. The reactions are three force and two
couple-moment components. Note: The couple moments
are generally not applied if the body is supported
elsewhere. See the examples.

single smooth pin

Five unknowns. The reactions are three force and two
couple-moment components. Nore: The couple moments
are generally not applied if the body is supported
elsewhere. See the examples.

£

single hinge M,

(10)

Six unknowns. The reactions are three force and three
couple-moment components.

m
— .
my o

|

fixed support
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Typical examples of actual supports that are referenced to Table 5-2 are
shown in the following sequence of photos.

This ball-and-socket joint provides a This journal bearing supports the end of
connection for the housing of an earth the shaft. (5)
grader to its frame. (4)

This thrust bearing 1s used to support the  This pin is used to support the end of the
drive shaft on a machine. (7) strut used on a tractor. (8)

Free-Body Diagrams. The general procedure for establishing the
free-body diagram of a rigid body has been outlined in Sec. 5.2.
Essentially it requires [irst “isolating” the body by drawing its outlined
shape. This is followed by a careful labeling of all the forces and couple
moments with reference to an established x, y z coordinate system. It is
suggested to show the unknown components of reaction as acting on the
free-body diagram in the positive sense, In this way, if any negative values
are obtained. they will indicate that the components act in the negative
coordinate directions.
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EXAMPLE |5.14

Consider the two rods and plate. along with their associated free-body
diagrams shown in Fig. 5-23. The x, y,  axes are established on the

positive sense. The weight is neglected.

SOLUTION

Properly aligned journal
hearingsat A, 8. C.

2001b - ft '
300 b B

Pin at A and cable BC.

400 1b

B

Properly aligned journal bearing
at A and hinge at C. Roller at B.

diagram and the unknown reaction components are indicated in the z

. | s
SN m e N NG
,’/?;::)f . :;?:‘\‘.':-‘
I /T& ¥ B, i B ¥
A,

500N

The force reactions developed by
the bearings are sufficient for
equilibrium since they prevent the
shuft from rotating about

each of the coordinate axes,

300 1b

Moment componenis are developed
by the pin on the rod to prevent
rotation about the x and z axes.

Only force reactions are developed by

the bearing and hinge on the plate to
prevent rotation about each coordinate axis,
No moments at the hinge are developed.

Fig. 5-23
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5.6 Equations of Equilibrium

As stated in Sec. 5.1, the conditions for equilibrium of a rigid body
subjected to a three-dimensional force system require that both the
resultant force and resultant couple moment acting on the body be equal
to zero.

Vector Equations of Equilibrium. The two conditions for
equilibrium of a rigid body may be expressed mathematically in vector

form as
EF =0 J
My = 0 (5-3)

where EF is the vector sum of all the external forces acting on the body
and XM, is the sum of the couple moments and the moments of all the
forces about any point O located either on or off the body.

Scalar Equations of Equilibrium. If all the external forces and
couple moments are expressed in Cartesian vector form and substituted
into Eqs. 5-5, we have

Z EFi+ IFj+ ZFk=0

Mo = M, + EM,j + SMk =0

Since the i, j, and k components are independent from one another. the
above equations are satisfied provided

IF; =0
EF, =0 (5-6a)
EF.=0

and
M, =0
EM,=0 (5-6b)
IM.=0

These six scalar equilibritun equations may be used to solve for at most
six unknowns shown on the free-body diagram. Equations 5-6a require
the sum of the external force components acting in the x. y, and z
directions to be zero, and Eqs. 5-6b require the sum of the moment
components about the x, y, and z axes to be zero.
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5.7 Constraints and Statical Determinacy

To ensure the equilibrium of a rigid body, it is not only necessary to satisly
the equations of equilibrium, but the body must also be properly held or
constrained by its supports. Some bodies may have more supports than are
necessary for equilibrium, whereas others may not have enough or the
supports may be arranged in a particular manner that could cause the
body to move. Each of these cases will now be discussed.

Redundant Constraints. When a body has redundant supports,
that is, more supports than are necessary 1o hold it in equilibrium, it
becomes statically indeterminate. Statically indeterminate means that
there will be more unknown loadings on the body than equations of
equilibrium available for their solution. For example, the beam in
Fig. 5-24a and the pipe assembly in Fig. 5-24b, shown together with
their free-body diagrams, are both statically indeterminate because of
additional (or redundant) support reactions. For the beam there are five
unknowns, M 4. A, A,, B, and C,, for which only three equilibrium
equations can be written (XF, = 0, £F, = 0, and XM, = 0, Egs. 5-2).
The pipe assembly has eight unknowns, for which only six equilibrium
equations can be written, Eqs. 5-6.

The additional equations needed to solve statically indeterminate
problems of the type shown in Fig. 5-24 are generally obtained from the
deformation conditions at the points of support. These equations involve
the physical properties of the body which are studied in subjects dealing
with the mechanics of deformation, such as “mechanics of materials,”*

(b)

* See R. C. Hibbeler, Mechanics of Materials, Tth edition, Pearson Education/Prentice
Hall, Inc.

243
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Improper Constraints. Having the same number of unknown
reactive forces as available equations of equilibrium does not always
guarantee that a body will be stable when subjected to a particular
loading. For example, the pin support at A and the roller support at B for
the beam in Fig. 5-25a are placed in such a way that the lines of action of
the reactive forces are concurrent at point A. Consequently, the applied
loading P will cause the beam to rotate slightly about A, and so the beam
is improperly constrained, M, # 0.

In three dimensions, a body will be improperly constrained if the
lines of action of all the reactive forces intersect a common axis. For
example, the reactive forces at the ball-and-socket supports at A and B
in Fig. 5-25b all intersect the axis passing through A and B. Since the
moments of these forces about A and B are all zero, then the loading P
will rotate the member about the AB axis, M 5 # 0.

(b)

Fig. 5-25
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(a)

100 N

Fig. 5-26

Another way in which improper constraining leads to instability
occurs when the reactive forces are all parallel. Two- and three-
dimensional examples of this are shown in Fig. 5-26. In both cases, the
summation of forces along the x axis will not equal zero.

In some cases, a body may have fewer reactive forces than equations of
equilibrium that must be satisfied. The body then becomes only partially
constrained. For example, consider member AB in Fig. 5-27a with its
corresponding free-body diagram in Fig. 5-27h. Here £F, = 0 will not
be satisfied for the loading conditions and therefore equilibrium will not
be maintained.

To summarize these points, a body is considered improperly
constrained if all the reactive forces intersect at a common point or pass
through a common axis, or if all the reactive forces are parallel. In
engineering practice, these situations should be avoided at all times since
they will cause an unstable condition.

()

100N

(b)

Fig. 5-27

Fy
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Important Points

* Always draw the free-body diagram first when solving any
equilibrium problem.

® If a support prevents translation of a body in a specific direction,
then the support exerts a force on the body in that direction.

* If a support prevents rotation about an axis, then the support
exerts a couple moment on the body about the axis.

# If a body is subjected to more unknown reactions than available
equations of equilibrium, then the problem is statically indeterminate.

= A stable body requires that the lines of action of the reactive
forces do not intersect a common axis and are not parallel to one
another.

Procedure for Analysis

Three-dimensional equilibrium problems for a rigid body can be

solved using the following procedure.

Free-Body Diagram.

& Draw an outlined shape of the body.

» Show all the forces and couple moments acting on the body.

s Establish the origin of the x, y, z axes at a convenient point and
orient the axes so that they are parallel to as many of the external
forces and moments as possible.

® Label all the loadings and specify their directions. In general,
show all the unknown components having a positive sense along
the x, y, 7 axes.

¢ Indicate the dimensions of the body necessary for computing the
moments of forces.

Equations of Equilibrium.

# If the x, v z force and moment components seem casy 1o
determine, then apply the six scalar equations of equilibrium;
otherwise use the vector equations.

# Itis not necessary that the set of axes chosen for force summation
coincide with the set of axes chosen for moment summation.
Actually, an axis in any arbitrary direction may be chosen for
summing forces and moments.

# Choose the direction of an axis for moment summation such that
it intersects the lines of action of as many unknown forces as
possible. Realize that the moments of forces passing through
points on this axis and the moments of forces which are parallel
to the axis will then be zero.

# If the solution of the equilibrium equations yields a negative
scalar for a force or couple moment magnitude, it indicates that
the sense is opposite o that assumed on the free-body diagram.
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The homogeneous plate shown in Fig. 5-284 has a mass of 100 kg and

is subjected to a force and couple moment along its edges. If it is
supported in the horizontal plane by a roller at A, a ball-and-socket
joint at B, and a cord at C, determine the components of reaction at
these supports.

SOLUTION (SCALAR ANALYSIS)

Free-Body Diagram. There are five unknown reactions acting on the
plate, as shown in Fig. 5-28bh. Each of these reactions is assumed 1o act
in a positive coordinate direction.

Equations of Equilibrium. Since the three-dimensional geometry is i
rather simple, a scalar analvsis provides a direct solution to this N 200N - m
problem. A force summation along each axis yields ._'-"b‘ N ‘f%g____"l‘r
= PP Tt o
SF, = 0; B.,=0 Ans. IRl & SAlsm
| PN
SE, = B, =0 Ans. 7o 4 Sm

> “B.| B, ,
SF. =0 A, +B.+Te~300N-981N=0 () G T

L

Recall that the moment of a force about an axis is equal to the product
of the force magnitude and the perpendicular distance (moment arm) Fig. 5-28
from the line of action of the force to the axis. Also, forces that are
parallel to an axis or pass through it create no moment about the axis.

Hence, summing moments about the positive x and v axes, we have

M, = 0; Te(2m) — 981 N(1m) + B.2m) =0 2)
IM, =0;
300N(1L5m)+ 981 N(1.5m)— B.3m) — A.(3m) — 200N-m=0 (3)

The components of the force at B can be eliminated if moments are
summed about the ¥’ and y' axes. We obtain

EM,=0; 981N(Im)+300N(2m)—- A (2m) =0 (4)

EM,. =0

~300N(1.5m) — 981 N(1.5m)— 200N-m + Te(3m)=0 (5)

Solving Egs. 1 through 3 or the more convenient Egs. 1,4, and 5 yields
A, =T790N B.=-21TN T¢=T707N Ans.

The negative sign indicates that B. acts downward.

NOTE: The solution of this problem does not require a summation of
moments about the z axis. The plate is partially constrained since the
supports cannot prevent it from turning about the z axis if a force is
applied to it in the x=y plane.
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EXAMPLE |5.16

Determine the components of reaction that the ball-and-socket joint
at A, the smooth journal bearing at B, and the roller support at C
exert on the rod assembly in Fig. 5-2%.

Fig. 5-29
SOLUTION
Free-Body Diagram. As shown on the free-body diagram, Fig. 5-295,
the reactive forees of the supports will prevent the assembly from
rotating about each coordinate axis. and so the journal bearing at B
only exerts reactive forces on the member.
Equations of Equilibrium. A direct solution for A, can be obtained
by summing forces along the y axis.

IF, =0 Ay =0 Ans.
The force F can be determined directly by summing moments about
the y axis.

M, =0 Fe(0.6 m) — 900 N(0.4m) = 0

Fr = 600N Ans.
Using this result, B. can be determined by summing moments about
the x axis.
IM,=0; B.(0.8m) + 600 N(1.2m) — 900 N(0.4m) = 0
B. = —450N Ans.

The negative sign indicates that B. acts downward. The force B, can
be found by summing moments about the z axis,

IM. =0 -B(0.8m)=0 B,=0 Ans.
Thus,

IF, = A, +0=10 Ay =10 Ans.
Finally, using the results of B. and Fe.

ZF.= 0 A+ (—450N) + 600N — 900N =0

A. =T750N Ans.




5.7 CONSTRAINTS AND STATICAL DETERMINACY 249

EXAMPLE |5.17

The boom is used to support the 75-Ib flowerpot in Fig. 5-30a.
Determine the tension developed in wires AB and AC.

SOLUTION

Free-Body Diagram. The free-body diagram of the boom is shown in
Fig. 5-30b.

Equations of Equilibrium. We will use a vector analysis.

TaB
Fap = F:m(_)
Fag

{2i — 6j + 3k} ft
leﬂ( 5 1 el 7)
2 2R + (—6f1)° + (3 M)

2z . 5 " 3
$Fygi — $Fypj + 3 Fagk

=2i—6j + 3k} 1t
Fac= FA(‘(rdc) £ FAC( { 1' ! 1} )
Tac 2 (=211 + (=6 f1)° + (3f1)°

Fig. 5-30

=% Fach — § Faci+ 5 Fack

We can eliminate the force reaction at O by writing the moment
equation of equilibrium about point O.

EMg =0, fAaX (Fag+ Fye+W)=10

(6§) X K% Eui — 5 Eypj + 3 &sk)+ (—% Ed = $Eci+3 Eu‘k) + (—751&)} =0

ra

(-1;-‘-&3 + B Fyc - 459)i + (--'.%-FAB - JﬁFM-)k =0

M, =0 SEz+ $Ec-450=0 (1)
=My =0 0=0
=M. =0; ~LFap+ $Fac=0 )

Solving Eqs. (1) and (2) simultancously,

Fag=Fyc=8751b Ans,
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EXAMPLE |5.18

Rod AB shown in Fig. 5-31a is subjected to the 200-N force.
Determine the reactions at the ball-and-socket joint A and the
tension in the cables BD and BE.

SOLUTION (VECTOR ANALYSIS)

Free-Body Diagram. Fig. 5-31h.

Equations of Equilibrium. Representing each foree on the free-body
diagram in Cartesian vector form, we have

Fy=Aji+ Aj+ Ak

Te =Tgi
Tp = Tpj
F= {—200k} N
Applying the force equation of equilibrium.
EF=0; F,+Te+Tp+F=0
(A + Te)i + (A, + Tp)j + (A — 200)k = 0

SF, =0 A+ Te=0 (1)
EF, =0 A, +Tp=0 (2)
SF,=0; A, =200 =0 (3)

Summing moments about point A vields
SM, = 0 te X F+ g X (Tg+Tp) =0
Since rp = %rs. then
(0.5i + 1j — 1k) X (—200k) + (1i + 2j — 2k) X (Tpi + Tpj) = 0
Expanding and rearranging terms gives
(2T — 200)i + (2T + 100)j + (Tp — 2Tk = 0

ZM,=0; 2Tp — 200 =0 (4)

M, =0 2T + 100 =0 (5)

IM,. =0 Tp—2T=0 (6)

(b Solving Eqs. 1 through 3, we get

Tp=100N Ans.

Fig. 531 Tg=50N Ans.
A, =-50N Ans.

A, =—100N Ans.

A.= 200N Ans.

NOTE: The negative sign indicates that A, and A have a sense which
is opposite to that shown on the free-body diagram, Fig. 5-315.
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The bent rod in Fig. 5-32a is supported at A by a journal bearing, at
D by a ball-and-socket joint, and at B by means of cable BC. Using
only one equilibrium equation, obtain a direct solution for the
tension in cable BC. The bearing at A is capable of exerting lorce
components only in the z and y directions since it is properly aligned
on the shaft.

SOLUTION (VECTOR ANALYSIS)

Free-Body Diagram. As shown in Fig. 5-325, there are six unknowns.

Equations of Equilibrium. The cable tension Ty may be obtained
directly by summing moments aboutl an axis that passes through
points D and A. Why? The direction of this axis is defined by the unit
vector u, where

—0.7071i — 0.7071j
Hence, the sum of the moments about this axis is zero provided
EMDA = l.l'z:{l.' X F) =1

Here r represents a position vector drawn from any point on the axis
DA to any point on the line of action of force F (see Eq. 4-11). With
reference to Fig. 5-32b. we can therefore write

u(rg X Tg+reXW)=0
(—0.7071i — 0.7071§) - [(=1j) X (Tpk)
+ (—05j) x (~981k)| = 0
(—0.7071i — 0.7071§) - [(=Tp + 490.5)i] = 0
~ 0.7071(—Tp + 490.5) + 0+ 0 =0 (h)

Tg = 4905 N Ans. Fig. 5-32

Since the moment arms from the axis to Ty and W are easy to obtain,
we can also determine this result using a scalar analysis. As shown in
Fig. 5-32b,

SMp, = 0; Ty(1 msin457) — 981 N(0.5 m sin 45°) = 0
Ty = 4905 N Ans.
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. FUNDAMENTAL PROBLEMS

All problem solutions must include an FBD. F5-10. Determine the support reactions at the smooth

journal bearings A, B, and C of the pipe assembly.
F5-7. The uniform plate has a weight of 500 1b. Determine ’ 3 s ?
the tension in each of the supporting cables.

F5-10

: F5-11. Determine the force developed in cords BD, CE,
_ and CF and the reactions of the ball-and-socket joint A
F5-7 on the block.

F5-8. Determine the reactions at the roller support A,
the ball-and-socket joint D, and the tension in cable BC
for the plate.

F5-11
F5-8
F5-12. Determine the components of reaction that the

Y8 Throd esupparied by smotih jouma) beartapyat thrust bearing A and cable BC exert on the bar.

A. B and C and is subjected to the two forces. Determine
the reactions at these supports.
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Clrromiems

All problem solutions must include an FBD.

5-63. The cart supports the uniform crate having a mass of
85 kg. Determine the vertical reactions on the three casters
at A, B, and C. The caster at B is not shown. Neglect the
mass of the cart.

*5-64. The pole for a power line is subjected to the two
cable forces of 60 Ib. each force lying in a plane parallel 10
the x—y plane. If the tension in the guy wire AB is 80 Ib,
determine the x, v, z components of reaction at the fixed
base of the pole. O.

*

60 1b

Prob. 5-64

o565 If P=6kN.x=075mand y = 1 m. determine
the tension developed in cables AB, CD, and EF. Neglect
the weight of the plate.

5-66. Determine the location x and y of the point of
application of force P so that the tension developed in
cables AB, CD, and EF is the same, Neglect the weight of
the plate.

Probs. 5-65/66

5-67. Due to an unequal distribution of fuel in the wing
tanks, the centers of gravity for the airplane fuselage A
and wings B and C are located as shown. If these
components have weights W, = 45 000 Ib, W5 = 8000 Ib.
and W, = 6000 Ib, determine the normal reactions of the
wheels D, E.and F on the ground.

Prob. 5-67
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*5-68. Determine the magnitude of force F that must be
exerted on the handle at € to hold the 75-kg crate in the
position shown. Also, determine the components of reaction
at the thrust bearing A and smooth journal bearing B.

<

EauiLisrium oF A RiGiID Bopy

5-70. Determine the tension in cables BD and €D and
the x, v. z components of reaction at the ball-and-socket
jointat A,

e

*5-69. The shaft is supported by three smooth journal
bearings at A, B. and C. Determine the components of
reaction at these bearings.

Prob. 5-70

5-71. The rod assembly is used to support the 250-1b cylinder.
Determine the components of reaction at the ball-and-
socket joint A, the smooth journal bearing E, and the force
developed along rod CD. The connections at C and D are
ball-and-socket joints.

Prob. 5-69

Prob. 5-71
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*5-72. Determine the components of reaction acting at the 5-74. i the load has a weight of 200 Ib, determine the x, y,
smooth journal bearings A. B.and C. 7 components of reaction at the ball-and-socket joint A and
the tension in each of the wires.

Prob. 5-74

#5-73. Determine the force components acting on the ball- §-75. If the cable can be subjected to a maximum tension
and-socket at A, the reaction at the roller B and the tension of 300 Ib, determine the maximum force F which may be
on the cord €D needed for equilibrium of the quarter applied to the plate. Compute the x, ¥ = components of
circular plate. reaction at the hinge A for this loading.

Prob. 5-73 Prob. 3-75
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*5-76. The member is supported by a pin at A and a cable
BC. If the load at D is 300 Ib, determine the x, » z
components of reaction at the pin A and the tension in
cable B C.

Prob. 5-76

#5-77. The plate has a weight of W with center of gravity at
G. Determine the distance d along line GH where the
vertical force P = 0.75W will cause the tension in wire CD to
become zero.

5-78. The plate has a weight of W with center of gravity at
G. Determine the tension developed in wires AB, CD, and
EF if the force P =0.75W is applied at d = L2,

Probs. 5-77/78

EauiLisrium oF A RiGiID Bopy

5-79. The boom is supported by a ball-and-socket joint at A
and a guy wire at B. If the 5-kN loads lie in a plane which is
parallel to the x—y plane, determine the x. v. z components of
reaction at A and the tension in the cable at B.

Prob. 5-79

*5-80. The circular door has a weight of 55 Ib and a center
of gravity at G. Determine the x, v, z components of
reaction at the hinge A and the force acting along strut CB
needed to hold the door in equilibrium. Set # = 457,

*5-81. The circular door has a weight of 55 1b and a center
of gravity at G. Determine the x. v, z components of
reaction at the hinge A and the force acting along strut CB
needed to hold the door in equilibrium. Set 8 = 90°,

Probs. 5-80/81



5-82. Member AB is supported at B by a cable and at A by
a smooth fixed square rod which fits loosely through the
square hole of the collar. If F = [20i — 40j — 75k} Ib,
determine the x, y, z components of reaction at A and the
tension in the cable,

5-83. Member AB is supported at B by a cable and at A by
a smooth fixed square rod which fits loosely through the
square hole of the collar. Determine the tension in cable BC
if the force F = {—45k} Ib.

*5-84. Determine the largest weight of the oil drum that
the floor crane can support without overturning. Also, what
are the vertical reactions at the smooth wheels A, B, and €
for this case. The floor crane has a weight of 300 Ib, with its
center of gravity located at Gi.

L2
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*5-85. The circular plate has a weight W and center of
gravity at its center. If it is supported by three vertical cords
tied to its edge. determine the largest distance o from the
center to where any vertical force P can be applied so as not
to cause the force in any one of the cables to become zero.

5-86. Solve Prob. 5-85 if the plate’s weight W is neglected.

Probs. 5-85/86

5-87. A uniform square table having a weight W and sides
a is supported by three vertical legs. Determine the smallest
vertical force P that can be applied to its top that will cause
it to tip over.

Prob. 5-87
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. CHAPTER REVIEW

Equilibrium
A body in equilibrium does not rotate but ZF =10
can translate with constant velocity, or it SM =0

does not move at all.

Two Dimensions

Before analyzing the equilibrium of a body, it is
first necessary to draw its free-body diagram.
This is an outlined shape of the body, which
shows all the forces and couple moments that
act onit.

Couple moments can be placed anywhere on
a free-body diagram since they are free
vectors. Forces can act at any point along their
line of action since they are sliding vectors.

Angles used to resolve forces, and dimensions
used to take moments of the forces, should
also be shown on the free-body diagram.

Some common types of supports and their
reactions are shown below in two dimensions,

Remember that a support will exert a force on
the body in a particular direction if it prevents
translation of the body in that direction, and it
will exert a couple moment on the body if it

prevents rotation.
F}
Jr. ‘
by PN =
F
roller fixed support

The three scalar equations of equilibrium 2E, =0
can be applied when solving problems in two SE =0
dimensions. since the geometry is easy to s M('; =

visualize.
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For the most direct solution; try to sum forces
along an axis that will eliminate as many
unknown forces as possible. Sum moments
about a point A that passes through the line of
action of as many unknown forces as possible.

IF, =0
J‘l;*P}_:O AJ=P3
EMA =0;
P)_dz =+ B“d,g — Pidy =0
Bl= Rd, — Bd,

dy

Three Dimensions
Some common types of supports and their
reactions are shown here in three dimensions.

roller ball and socket fixed support
In three dimensions, it is often advantageous to SF =140
use a Cartesian vector analysis when applying :
the equations of equilibrium. To do this, first My =0
cxpress each known and unknown force and 2
couple moment shown on the free-body ZF, =
diagram as a Cartesian vector. Then set the 2F;, =
force summation equal to zero. Take moments e
about a point O that lies on the line of action of i
as many unknown force components as SM. =0
possible. From point @ direct position vectors %
to each force, and then use the cross product to M, =0
determine the moment of each force. IM. =0
The six scalar equations of equilibrium are
established by setting the respective i, j. and k
components of these force and moment
summations equal to zero.
Determinacy and Stability
1f a body is supported by a minimum number of 500N SN i
constraints to ensure equilibrium, then it is Dy

statically determinate. If it has more constraints
than required. then it is statically indeterminate.

To properly constrain the body. the reactions
must not all be parallel 10 one another or
concurrent.

Statically indeterminate,
five reactions, three
equilibrium equations

100N
Proper constraint, statically determinate
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- REVIEW PROBLEMS

*5-88. Determine the horizontal and vertical components 591 Determine the normal reaction at the roller A and
of reaction at the pin A and the force in the cable BC. horizontal and vertical components at pin B for equilibrium
Neglect the thickness of the members, of the member.

10kN

Prob. 5-91
*5-89. Determine the horizontal and vertical components *5-92. The shaft assembly is supported by two smooth
of reaction at the pin A and the reaction at the roller B journal bearings A and B and a short link DC. If a couple
required to support the truss. Set F = 600 N moment is applied to the shaft as shown, determine the

components of force reaction at the journal bearings and the
force in the link. The link lies in a plane parallel to the y—z
plane and the bearings are properly aligned on the shaft.

5-90. If the roller at B can sustain a maximum load of
3 kN, determine the largest magnitude of each of the three
forces F that can be supported by the truss.

Prob, 5-92



#5-93. Determine the reactions at the supports A and B of
the frame.

10 ki
skip 7 'IUP %

2 kip

Prob. 5-93

594, A skeletal diagram of the lower leg is shown in the
lower figure. Here it can be noted that this portion of the leg
is lifted by the quadriceps muscle attached to the hip at A
and to the patella bone at B. This bone slides freely over
cartilage at the knee joint. The quadriceps is further
extended and attached to the tibia at €. Using the
mechanical system shown in the upper figure to model the
lower leg. determine the tension in the quadriceps at (' and
the magnitude of the resultant force at the femur (pin), D,
in order to hold the lower leg in the position shown. The
lower leg has a mass of 3.2 kg and a mass center at Gy: the
foot has a mass of 1.6 kg and a mass center at G».
75 mm

-
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5-95. A vertical force of 80 Ib acts on the crankshaft.
Determine the horizontal equilibrium force P that must be
applied to the handle and the x, y, z components of force at
the smooth journal bearing A and the thrust bearing B. The
bearings are properly aligned and exert only force reactions
on the shaft.

#5-96. The symmetrical shelf is subjected to a uniform
load of 4 kPa. Support is provided by a bolt (or pin) located
at each end A and A’ and by the symmetrical brace arms.
which bear against the smooth wall on both sides at B and
B'. Determine the force resisted by each bolt at the wall
and the normal force at B for equilibrium.

Proh. 5-94

Prob. 5-96






Structural Analysis

CHAPTER OBJECTIVES

®* To show how to determine the forces in the members of a truss
using the method of joints and the method of sections.

® To analyze the forces acting on the members of frames and
machines composed of pin-connected members.

6.1 Simpl_e Trusses

A truss is a structure composed of slender members joined together at
their end points. The members commonly used in construction consist of
wooden struts or metal bars. In particular, planar trusses lie in a single
plane and are often used to support roofs and bridges. The truss shown in
Fig. 6-1a is an example of a typical roof-supporting truss. In this figure, the
roof load is transmitted to the truss ar the joints by means of a series of
purlins. Since this loading acts in the same plane as the truss, Fig. 6-1b,
the analysis of the forces developed in the truss members will be
two-dimensional.

Purlin

Fig. 6-1

Rool truss

(b)
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Fig. 6-2

In the case of a bridge, such as shown in Fig. 6-2a. the load on the deck
is first transmitted to stringers, then to floor beams, and finally to the
Joints of the two supporting side trusses. Like the roof truss, the bridge
truss loading is also coplanar, Fig. 6-2b.

‘When bridge or roof trusses extend over large distances, a rocker or
roller is commonly used for supporting one end, for example, joint A in
Figs. 6-1a and 6-2a. This type of support allows freedom for expansion or
contraction of the members due to a change in temperature or application
of loads.

Assumptions for Design. To design both the members and the
connections of a truss, it is necessary first 1o determine the force
developed in cach member when the truss is subjected to a given
loading. To do this we will make two important assumptions:

e All loadings are applied at the joints. In most situations, such as
for bridge and roof trusses, this assumption is true. Frequently the
weight of the members is neglected because the force supported by
cach member is usually much larger than its weight. However, if the
weight is to be included in the analysis, it is generally satisfactory to
apply it as a vertical force, with half of its magnitude applied at each
end of the member,

o The members are joined together by smooth pins. The joint
connections are usually formed by bolting or welding the ends of
the members to a common plate, called a gusset plate, as shown in
Fig. 6-3a, or by simply passing a large bolt or pin through each of
the members, Fig. 6-3b. We can assume these connections act as pins
provided the center lines of the joining members are concurrent, as
in Fig. 6-3.
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Fig. 6-4

Because of these two assumptions, each truss member will act as a two-
force member, and therefore the force acting at each end of the member
will be directed along the axis of the member. If the force tends to
elongate the member, it is a tensile force (T), Fig. 6-4a; whereas if it tends
to shorten the member, it is a compressive force (C), Fig. 6-4b. In the
actual design of a truss it is important to state whether the nature of the
force is tensile or compressive. Often, compression members must be
made thicker than tension members because of the buckling or column
effect that occurs when a member is in compression.

Simple Truss. [Ifthree members are pin connected at their ends they
form a triangular truss that will be rigid, Fig. 6-5. Attaching two more
members and connecting these members to a new joint D forms a larger
truss, Fig. 6-6. This procedure can be repeated as many times as desired
to form an even larger truss. If a truss can be constructed by expanding
the basic triangular truss in this way, it is called a simple truss.

Fig. 6-5 Fig. 6-6
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The use of metal gusset plates in the
construction of these Warren trusses is
clearly evident.
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6.2 The Method of Joints

In order to analyze or design a truss, it is necessary to determine the force
in each of its members. One way to do this is to use the method of joints.
This method is based on the fact that if the entire truss is in equilibrium,
then each of its joints is also in equilibrium. Therefore, if the free-body
diagram of each joint is drawn, the force equilibrium equations can then
be used to obtain the member forces acting on each joint. Since the
members of a plane truss are straight two-force members lying in a single
plane, each joint is subjected to a force system that is coplanar and
concurrent. As aresult,only £F, = Oand XF, = 0 nced to be satisfied for
equilibrium,

For example, consider the pin at joint B of the truss in Fig. 6-7a.
Three forces act on the pin, namely, the 500-N force and the forces
exerted by members BA and BC. The [ree-body diagram of the pin is
shown in Fig. 6-7b. Here, Fg,4 is “pulling” on the pin, which means that
member BA is in tension; whereas Fge is “pushing” on the pin, and
consequently member BC is in compression. These effects are clearly
demonstrated by isolating the joint with small segments of the member
connected to the pin, Fig. 6-7¢. The pushing or pulling on these small
segments indicates the effect of the member being cither in compression
or tension.

‘When using the method of joints, always start at a joint having at least
one known force and at most two unknown forces, as in Fig. 6-7b. In this
way, application of XF =0 and XF, =0 yields two algebraic
equations which can be solved for the two unknowns. When applying
these e¢quations, the correct sense of an unknown member force can be
determined using one of two possible methods.

B B :
SO0 N - 500N

. l“ls’ Fge (compression)
Fya(tension)

ib) (3]

Fy (compression)

Fig. 6-7
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® The correct sense of direction of an unknown member force can, in
many cases, be determined “by inspection.” For example, Fge in
Fig. 6-7h must push on the pin (compression) since its horizontal
component, Fge sin 45°, must balance the 500-N force (£F, = 0).
Likewise, Fg, 15 a tensile force since it balances the vertical
component, Fge cos 457 (2F, = 0). In more complicated cases, the
sense of an unknown member force can be assumed; then, after
applying the equilibrium equations, the assumed sense can be
verified from the numerical results. A positive answer indicates that
the sense is correct, whereas a negative answer indicates that the
sense shown on the free-body diagram must be reversed.

*  Always assume the unknown member forces acting on the joint's
free-body diagram to be in tension; i.c., the forces “pull™ on the pin. The forces in the members of this
If this is done, then numerical solution of the equilibrium equations  simple roof truss can be determined
will yield positive scalars for members in tension and negative scalars Y518 the method of joints.
for members in compression. Once an unknown member force is
found, use its correct magnitude and sense (T or C) on subsequent
joint free-body diagrams.

Procedure for Analysis

The following procedure provides a means for analyzing a truss
using the method of joints.

¢ Draw the free-body diagram of a joint having at least one known
force and at most two unknown forces. (If this joint is at one of
the supports, then it may be necessary first to calculate the
external reactions at the support.)

# Use one of the two methods described above for establishing the
sense of an unknown force.

# Orient the x and y axes such that the forces on the free-body
diagram can be easily resolved into their x and y components and
then apply the two force equilibrium equations £F, = 0 and
2F, = 0. Solve for the two unknown member forces and verify
their correct sense.

e Using the calculated results, continue to analyze each of the other
joints. Remember that a member in compression *pushes” on the
joint and a member in fension “pulls” on the joint. Also, be sure to
choose a joint having at most two unknowns and at least one
known force.
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707.1 N
452:3
b
F{ A
C,

(c)
Fuy = 500N

Fc',g =500 N

(d)

R SOON
00N LN
45 % 0
R,
sl V%

500

500N

2  Tensi
- -
g
-
=
S
>

SO N
(e)

Fig. 6-8

: r C
500N S00N A 500 N

Determine the force in each member of the truss shown in Fig. 6-8a
and indicate whether the members are in tension or compression.

SOLUTION

Since we should have no more than two unknown forces at the joint
and at least one known force acting there, we will begin our analysis at
joint B.

Joint B.  The [ree-body diagram of the joint at B is shown in Fig. 6-8b.
Applying the equations of equilibrium, we have

S5EF, =0, S00N — Fgesinds® =0  Fge = 707.1 N (C) Ans.
+TEF_. = Fgecosd5® — Fgy =0  Fgy=500N(T) Ans

Since the force in member BC has been calculated, we can proceed to
analyze joint C to determine the force in member CA and the support
reaction at the rocker.

Joint C.  From the [ree-body diagram of joint C, Fig. 6-8¢, we have

B EF, =0 —Fey + 707.1c0s45°N =0  Fry = 500N (T) Ans
+13F, =0, C,-7071sn45°N=0 C,=500N  Ans

Joint A. Although it is not necessary, we can determine the
components of the support reactions at joinl A using the results of
Feaand Fg,. From the free-body diagram, Fig. 6-8d, we have

5 XF,
+T2Ey

]

500N
500N

0; SION-—A,=0 A,
0:  S00N-—A,=0 A,

NOTE: The results of the analysis are summarized in Fig. 6-8¢. Note
that the free-body diagram of each joint (or pin) shows the effects of
all the connected members and external [orces applied to the joint,
whereas the free-body diagram of each member shows only the
effects of the end joints on the member.
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EXAMPLE |6.2

Determine the force in each member of the truss in Fig. 6-9a and 400 N
indicate if the members are in tension or compression.

SOLUTION

Since joint € has one known and only two unknown forces acting on
it, it is possible to start at this joint, then analyze joint D, and finally
joint A. This way the support reactions will not have to be determined
prior to starting the analysis.

Joint C. By inspection of the force equilibrium, Fig. 6-9b, it can be
seen that both members BC and €D must be in compression.

+1ZF =0 Fyesin45° — 400N = 0 :
Fge = 56569N = 566N (C)  Ans. e
L IF, =0; Fep — (565.69N) cos 45° = 0 Fen L-
——— b ———x
Fep = 400N (©) Ans. I\ 450

Joint D. Using the result Fep = 400 N (C), the force in members
BD and AD can be found by analyzing the equilibrium of joint D. We (b)
will assume F,; and Fyp are both tensile forces, Fig. 6-9¢. The x', y'
coordinate system will be established so that the x' axis is directed
along Fgp,. This way, we will eliminate the need to solve two equations
simultancously. Now F;; can be obtained directly by applying
SF = 0.

+2ZF, = (; — Fyp sin 157 — 400 sin 30° = 0
Fup=—T7274N = TI3N(C)  Ans.

The negative sign indicates that F,p, is a compressive force. Using this
result,

+NEF =00 Fyp + (77274 cos 157) — 400 cos 30° = 0
FBD = 109282 N = 1.09kN {T) Ans.

Joint A. The force in member AB can be found by analyzing the
equilibrium of joint A, Fig. 6-9d. We have

HIF, =0 (77274 N) cos 45° — Fyg = 0
Fus = 54641 N (C) = 546 N (C) Ans.

A
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EXAMPLE |6.3

()

Determine the foree in each member of the truss shown in Fig. 6-10a.
Indicate whether the members are in tension or compression.

C,
; /” \ 410
e h
,.j:'l_( AN \
{1 l-f_f 4 \:‘ .

600 N

= —fm - o |

~

Fig. 6-10

SOLUTION

Support Reactions. No joint can be analyzed until the support
reactions are determined, because each joint has more than three
unknown forees acting on it, A free-body diagram of the entire truss is
given in Fig. 6-10b. Applying the equations of equilibrium, we have

L IF =0 600N — C, =0 C, = 600N
C+EMc=0;  —A(6m) + 400N(3m) + 600N(dm) =0
A, = 600N
+1SF,=0; 600N -400N—-C,=0 Cy = 200N

The analysis can now start at either joint A or C. The choice is
arbitrary since there are one known and two unknown member forces
acting on the pin at each of these joints.

Joint A. (Fig. 6-10c¢). As shown on the free-body diagram, Fp is
assumed to be compressive and Fyp 1s tensile. Applying the equations
of equilibrium, we have

+12Fy=0;, G6ON-3Fp=0 Fyp
BIF, =0, Fap—3750N)=0 Fyp

750N (C) Ans
450N (T) Ans
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Joint D. (Fig. 6-10d). Using the result for F ,j; and summing forces
in the horizontal direction, Fig. 6-10d, we have

BIYF, =0, —450N +3Fpy + 600N =0 Fpz= —250N

The negative sign indicates that Fpg acts in the opposite sense to that

shown in Fig. 6-10d.* Hence,

Fpg = 250N (T) Ans.

To determine Fpe, we can either correct the sense of Fpy on the free-
body diagram, and then apply XF, = 0, or apply this equation and
retain the negative sign for Fpp, i.e..

+1EF, =0, —Fpe— {~250N) =0 Fpe=200N (C) Ans
Joint C. (Fig. 6-10¢).

HIF =0
+12F, = 0;

F(-,;—GDUN=(] FCB=60[IN
200N — 200N = 0 (check)

(C) Ans.

NOTE: The analysis is summarized in Fig. 6-10f, which shows the
free-body diagram for each joint and member.

400N 200N
" 600N Compression 600 N

; B —— -?-»4—600 N
750N 250N *ZUU N
= s \\_ |
:-»é\_z;’ \.\\\\).«’. | g
& &, £
B W% Z
& I E
, W
£ " |2
750N 250N 200N
/ Tension
A < 600 N
450N 450N D
600 N

(1)

*The proper sense could have been determined by inspection, prior to applying £F, = 0.

450N D 600N
(d)

200N

- -

Wi G
ci g ‘MJN

TZ(IDN

(e}

—
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6.3 Zero-Force Members

Truss analysis using the method of joints is greatly simplified if we can
first identify those members which support no loading. These zero-force
members are used to increase the stability of the truss during construction
and to provide added support if the loading is changed.

The zero-force members of a truss can generally be found by
inspection of each of the joints. For example, consider the truss shown
in Fig. 6-1la. If a free-body diagram of the pin at joint A is drawn,
Fig. 6-11b, it is seen that members AB and AF are zero-force members.
(We could not have come to this conclusion if we had considered the
free-body diagrams of joints F or B simply because there are five
unknowns at each of these joints.) In a similar manner, consider the free-
body diagram of joint D, Fig. 6-11c¢. Here again it is seen that DC and
DE are zero-force members. From these observations, we can conclude
that if enly two members form a truss joint and no external load or
support reaction is applied to the joint, the two members must be zero-
force members. The load on the truss in Fig. 6-11a is therefore supported
by only five members as shown in Fig. 6-11d.

+NEF, =0 Fpesinf=0; Fpye = Osincesiné # 0
YESF, =0 Fpp +0=0; Fyp=0

D 'i
. Far
E_ i
A —
Fag
o pC
—— + ;
B = XEF, =0, Fap=0
y +TEF, =0 Fyp=0
= (b)
(a)

()

Fig. 6-11
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Now consider the truss shown in Fig. 6-12a. The free-body diagram of
the pin at joint D is shown in Fig. 6-12b. By orienting the y axis along
members DC and DE and the x axis along member DA, it is seen that
DA is a zero-force member. Note that this is also the case for member
CA, Fig. 6-12¢. In general then, if three members form a truss joint for
which two of the members are collinear, the third member is a zero-force
member provided no external force or support reaction is applied to the
joint. The truss shown in Fig. 6-124 is therefore suitable for supporting
the load P.

Foc

A

+¢ XF,

X

O Fpa=0

*NEF, =0 Fpe=Fpg
(b)

+¢XF, =0 Feysind=0; Fe,=Osincesind #0;
NEF, =0 Fep=Fep
(c)

Fig. 6-12
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il"
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(b)

(d)
2kN P
o4 F"r

EXAMPLE |6.4

Using the method of joints, determine all the zero-force members of
the Fink roof truss shown in Fig. 6-13a. Assume all joints are pin
connected.

SkN

G

(a)
Fig. 6-13
SOLUTION

Look for joint geometries that have three members for which two are
collinear. We have

Joint G. (Fig. 6-13h).

+12F, =0; Fae=0 Ans.
Realize that we could not conclude that GC is a zero-force member
by considering joint C, where there are five unknowns. The fact that

GC is a zero-force member means that the 5-kN load at C must be
supported by members CB, CH. CF,and CD.

Joint D. (Fig. 6-13¢).
+/2F, =0 Fpr=10 Ans.

Joint F. (Fig. 6-13d).

+T}ZF,. =0 Feccosf =10 Since § # 9°, Frpe =0 Ans
NOTE: If joint B is analyzed. Fig. 6-13e,
+\EF| = 2kN - an =0 F.B.h’ = 2kN {C]

Also, Fyye must satisfy 2 F, = 0, Fig. 6-13f, and therefore HC is not a
zero-force member.
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. FUNDAMENTAL PROBLEMS

F6-1. Determine the force in each member of the truss
State if the members are in tension or compression.

F6—4. Determine the greatest load £ that can be applied to the
truss so that none of the members are subjected to a force
exceeding either 2 kN in tension or 1.5 kN in compression.

— g 4 -

Fo-1

F6-2. Determine the force in each member of the truss.
State if the members are in tension or compression.

300 b
F6-2
F6-3. Determine the force in members AE and DC. State if
the members are in tension or compression.
e £ p

F6-6. Determine the force in each member of the truss.
State if the members are in tension or compression.

800 b

F6-3
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“leromiems

*6-1. Determine the force in each member of the truss,
and state if the members are in tension or compression.

Prob. 6-1

. 6-2. The truss. used to support a balcony, is subjected to

the loading shown. Approximate each joint as a pin and
determine the force in each member. State whether the
members are in tension or compression. Set £, = 600 Ib.
Py =400 Ib.

6-3. The truss, used to support a balcony, is subjected to
the loading shown. Approximate each joint as a pin and
determine the force in each member. State whether the
members are in tension or compression. Set Py = 800 b,
P;-_ ={.

4n

D
e

41t =

I 4f

Probs. 6-2/3Prob. 6-1

*6—4. Determine the force in each member of the truss
and state if the members are in tension or compression.
Assume each joint as a pin. Set P =4 kN,

*6-5. Assume that each member of the truss is made of steel
having a mass per length of 4 kg/m. Set P = (). determine the
force in each member, and indicate if the members are in
tension or compression. Neglect the weight of the gusset plates
and assume each joint is a pin. Solve the problem by assuming
the weight of each member can be répresented as a vertical
force, half of which is applied at the end of each member.

¥

Probs. 6-4/5
6-6. Determine the force in each member of the truss and
state if the members are in tension or compression. Set
Py =2kNand P, = 1.5kN.
6-7. Determine the force in each member of the truss and
state if the members are in tension or compression. Set
Py =P, =4kN.

Probs. 6-6/7



*6-8. Determine the force in each member of the truss.
and state if the members are in tension or compression. Set
P = 800 1b.

*6-9. Remove the 500-lb force and then determine the
greatest force # that can be applied to the truss so that none
of the members are subjecied to a force exceeding either
800 Ib in tension or 600 Ib in compression.

Probs. 6-8/9

6-10. Determine the force in each member of the truss
and state if the members are in tension or compression. Set
Py =8001b, P; = 0.

6-11. Determine the force in each member of the truss
and state if the members are in tension or compression. Set
Py = 600 1b, £, = 400 b,

[ Rt R —— T4 11—

Probs. 6-10/11
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#6-12. Determine the force in each member of the truss
and state if the members are in tension or compression. Set
Py =2401b, P, = 100 1b.

*6-13. Determine the largest load P that can be applied
1o the truss so that the force in any member does not exceed
5001b (T) or 350 1b (C). Take P, = 0.

. 120 1.

Probs. 6-12/13

6-14. Determine the force in each member of the truss,
and state if the members are in tension or compression. Set
P = 2500 Ib.

6-15. Remove the 1200-Ib forces and determine the
greatest force P that can be applied to the truss so that none
of the members are subjected to a force exceeding either
2000 Ib in tension or 1500 Ib in compression.

P

Probs. 6-14/15
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*6-16. Determine the force in each member of the truss,
and state if the members are in tension or compression. Set
P = 5kN.

#6-17. Determine the greatest force P that can be applied
to the truss so that none of the members are subjected to a
force exceeding either 25kN in tension or 2KkN in
compression.

Probs. 6-16/17

6-18. Determine the force in each member of the truss,
and state if the members are in tension or compression,

6-19. The truss is fabricated using members having a
weight of 101b/ft. Remove the external forces from the
truss, and determine the force in each member due to the
weight of the members. State whether the members are in
tension or compression. Assume that the total force acting
on a joint is the sum of half of the weight of every member
connected to the joint.

*6-20. Determine the force in each member of the truss
and state if the members are in tension or compression. The
load has a mass of 40 kg.

*6-21. Determine the largest mass m of the suspended
block so that the force in any member does not exceed
30kN (T)or 25kN (C).

A1 m

35m F

25m

-—

6m

Probs. 6-20/21

6-22. Determine the force in each member of the truss,
and state if the members are in lension or compression.

6-23. The truss is fabricated using uniform members
having a mass of 5 kg/m. Remove the external forces from
the truss, and determine the force in each member due to
the weight of the truss. State whether the members are in
tension or compression. Assume that the total force acting
on a joint is the sum of half of the weight of every member
connected to the joint.

Probs. 6-18/19



#6-24. Determine the force in each member of the truss.
and state if the members are in tension or compression. Set
P = 4KkN,

*6-25., Determine the greatest force P that can be applied
to the truss so that none of the members are subjected to a
force exceeding either L5kN in tension or 1kN in
compression.

P—3m—r—3Im———3m—
' il

| F,

6-26. A sign is subjected to a wind loading that exerts
horizontal forces of 300 Ib on joints B and C of one of the
side supporting trusses. Determine the force in each
member of the truss and state if the members are in tension
or compression.
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6-27. Determine the force in each member of the double
scissors truss in terms of the load P and state if the members
are in tension or compression.

Prob. 6-27
*6-28. Determine the force in each member of the truss in
terms of the load P, and indicate whether the members are
in tension or compression.

*6-29, If the maximum force that any member can support
is 4 kN in tension and 3 kN in compression, determine the
maximum force P that can be applied at joint B. Take
d=1m P B

P T =l

-+

|
4= Probs. 6-28129
6-30. The two-member truss is subjected to the force of
300 1b. Determine the range of # for application of the load so
that the force in either member does not exceed 400 Ib (T) or
200 1b (C).

bt Ak d

ft

300 1b Prob. 6-30
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6.4 The Method of Sections

‘When we need to find the force in only a few members of a truss, we can
analyze the truss using the method of sections. 1t is based on the principle
that if the truss is in equilibrium then any segment of the truss is also in
equilibrium. For example, consider the two truss members shown on the
left in Fig. 6-14.If the forces within the members are to be determined, then
an imaginary section, indicated by the blue line, can be used to cut each
member into two parts and thereby “expose™ each internal force as
“external” to the free-body diagrams shown on the right. Clearly, it can be
seen that equilibrium requires that the member in tension (T) be subjected
to a “pull.” whereas the member in compression (C) is subjected to a “push.”

The method of sections can also be used to “cut™ or section the members
of an entire truss. If the section passes through the truss and the free-body
diagram of cither of its two parts is drawn, we can then apply the equations
of equilibrium to that part to determine the member forces at the “cut
section.” Since only three independent equilibrium equations (£F, = 0,
XF, =0, ZMg = 0) can be applied to the free-body diagram of any
segment, then we should try to select a section that, in general, passes
through not more than three members in which the forces are unknown,
For example, consider the truss in Fig. 6-15a. If the forces in members BC,
GC, and GF are 1o be determined, then section aa would be appropriate.
The [ree-body diagrams of the two segments are shown in Figs. 6-15b and
6~15¢. Note that the line of action of each member force is specified from
the geometry of the truss, since the force in a member is along its axis. Also,
the member forces acting on one part of the truss are equal but opposite to
those acting on the other part —Newton’s third law. Members BC and GC
are assumed to be in tension since they are subjected to a “pull.” whereas
GFin compression since it is subjected to a “push.”

The three unknown member forces Fye, Fie., and Fi;¢ can be obtained
by applying the three equilibrium equations to the free-body diagram in
Fig. 6-15b. If, however, the free-body diagram in Fig. 6-15¢ is considered,
the three support reactions Dy, D, and E, will have to be known,
because only three equations of equilibrium are available. (This, of
course, is done in the usual manner by considering a free-body diagram
of the entire truss.)
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When applying the equilibrium equations, we should carefully
consider ways of writing the equations so as to yield a direct solution for
each of the unknowns, rather than having to solve simultaneous
equations. For example. using the truss scgment in Fig. 6-15b and
summing moments about C would yield a direct solution for Fg;p since
Fpe and Fge create zero moment about C. Likewise. Fyge can be directly
obtained by summing moments about G. Finally, Fge can be found
directly from a force summation in the vertical direction since F5p and
Fye have no vertical components. This ability to determine directly the
force in a particular truss member is one of the main advantages of using
the method of sections.*

As in the method of joints, there are two ways in which we can
determine the correct sense of an unknown member force:

e The correct sense of an unknown member force can in many
cases be determined “by inspection.” For example, Fge is a tensile
force as represented in Fig. 6-15b since moment equilibrium
about G requires that Fge create a moment opposite to that of
the 1000-N foree. Also, F¢ is tensile since its vertical component
must balance the 1000-N force which acts downward. In more
complicated cases, the sense of an unknown member force may
be assumed. 1f the solution yields a negative scalar, it indicates
that the force’s sense is opposite to that shown on the free-body
diagram.

e Alwavs assume that the unknown member forces at the cul section
are tensile forces. i.e., “pulling” on the member. By doing this, the
numerical solution of the equilibrium equations will yield positive
scalars for members in tension and negative scalars for members in
compression.

*Notice that if the method of joints were used to determine, say, the force in member
GC, it would be necessary to analyze joints A, B, and & in sequence,

(b)
Fig. 6-15

The forces in selected members of this
Pratt truss can readily be determined
using the method of sections.
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Simple trusses are often used in the
construction of large cranes in order
to reduce the weight of the boom

and tower.
Procedure for Analysis

The forces in the members of a truss may be determined by the
method of sections using the following procedure.

Free-Body Diagram.

* Make a decision on how to “cut” or section the truss through the
members where forces are to be determined.

# Before isolating the appropriate section, it may first be necessary
to determine the truss’s support reactions. If this is done then the
three equilibrium equations will be available to solve for member
forces at the section.

# Draw the free-body diagram of that segment of the sectioned
truss which has the least number of forces acting on it.

# Use one of the two methods described above for establishing the
sense of the unknown member forces.

Equations of Equilibrium.

* Moments should be summed about a point that lies at the
intersection of the lines of action of two unknown forces, so that
the third unknown force can be determined directly from the
moment equation.

# If two of the unknown forces are parallel, forces may be summed
perpendicular to the direction of these unknowns to determine
directly the third unknown force.




6.4 Tue METHOD OF SECTIONS 283

EXAMPLE |6.5

Determine the force in members GE, GC, and BC of the truss shown
in Fig. 6-16a. Indicate whether the members are in tension or
compression.

SOLUTION

Section aa in Fig. 6-16a has been chosen since it cuts through the three
members whose forces are to be determined. In order to use the 1200 N
method of sections, however, it is first necessary to determine the (a)
external reactions at A or D. Why? A [ree-body diagram of the entire

truss is shown in Fig. 6-16b. Applying the equations of equilibrium,

we have
HEF =0 400N — A, =0 A, = 400N . A 400N
G+EM,=0; —1200N(8m)—400N(3m) + Dy(12m) = 0 im0 | |
D, = 900N = s
+1ZF, =0 A, — 1200N + 900N = 0 Ay = 300N 'A 2 "_4,,,40

Free-Body Diagram. For the analysis the free-body diagram of the
left portion of the sectioned truss will be used, since it involves the
least number of forces, Fig. 6-16¢.

Equations of Equilibrium. Summing moments about point G
climinates Fgp and Fge and yields a direct solution for Fye.

T — =
CH+ISMg=0; —300N(4m) — 400N(3m) + Fyge(3m) =0 oy ﬁ
Fge = 800N (T) Ans. P A B e
400N Fe |
In the same manner, by summing moments about point € we obtain a | [
direct solution for Fgg. 300 N
C+EMe=0; —300N(8m) + Fsx(3m) =0 )
Fop= 800N (C) Ans. Fig. 6-16

Since Fye and Fi;p have no vertical components, summing forces in
the y direction directly yields Fge, ie.,

+12F;=0; 300N — 3Fge =0
Fge = S00N (T) Ans.

NOTE: Here it is possible to tell, by inspection, the proper direction
for each unknown member force. For example, M~ = 0 requires
Fg i 1o be compressive because it must balance the moment of the
300-N force about C.
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EXAMPLE |6.6

Determine the force in member CF of the truss shown in Fig. 6-17a.
Indicate whether the member is in tension or compression. Assume
cach member is pin connected.

Fig. 6-17
SOLUTION

Free-Body Diagram. Section aa in Fig. 6-17a will be used since this
section will “expose™ the internal force in member CF as “external™
on the free-body diagram of either the right or left portion of the
truss. It is first necessary, however, to determine the support reactions
on either the left or right side. Verify the results shown on the free-
body diagram in Fig. 6-17h.

The free-body diagram of the right portion of the truss, which is the
easiest to analyze, is shown in Fig. 6-17¢. There are three unknowns,
Frg, Fep.and Fep.

Equations of Equilibrium. We will apply the moment equation
:F 4m about point O in order to eliminate the two unknowns Frq and Fep.
"'u *‘“451 B ATSEN The location of point @ measured from E can be determined from

(© proportional triangles, i.e. 4/(4 + x) = 6/(8 + x), x =4m. Or,
stated in another manner, the slope of member GF has a drop of 2 m
to a horizontal distance of 4 m. Since FD is 4 m, Fig. 6-17¢, then from
D to O the distance must be 8 m.

An casy way to determine the moment of Fep about point O is to use
the principle of transmissibility and slide Fip to point C, and then
resolve Fep into its two rectangular components. We have
C+EMp = 0;
—Fepsind5°(12m) + (3kN)(8 m) — (475kN)(4m) =0
Ferp =0589kN (C) Ans.
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EXAMPLE [6.7

Determine the force in member EB of the roof truss shown in 1000 N
Fig. 6-18a. Indicate whether the member is in tension or compression.

SOLUTION

Free-Body Diagrams. By the method of sections, any imaginary
section that cuts through EB, Fig. 6-18a, will also have to cut through
three other members for which the forces are unknown, For example,
section aa cuts through ED, EB, FB.and AB. If a free-body diagram of
the left side of this section is considered. Fig. 6-18b, it is possible to
obtain Fgp by summing moments about B to eliminate the other
three unknowns: however, Fg; cannot be determined from the
remaining two equilibrium equations. One possible way of obtaining
Fp is first to determine Fyp from section aa, then use this result on
section bb, Fig. 6~18a, which is shown in Fig. 6-18¢. Here the force
system is concurrent and our sectioned free-body diagram is the same
as the free-body diagram for the joint at E.

1000 N

(] ‘_' T
S _WV\: (1S 30°
5 o9 5 3(}”  ~ -
.C_Frpcos J\(

Fir I Fep =3000N

=2~ 4m—o- |
4000 N Fgpsin 307 (€)
(b)
Fig. 6-18
Equations of Equilibrium. In order to determine the moment of
Fgp about point B, Fig. 6-18b, we will use the principle of
transmissibility and slide the force to point € and then resolve it into
its rectangular components as shown. Therefore,

C+SMy=0;  1000N(4m) + 3000 N(2 m) — 4000 N(4 m)

+ Fepsin30°(4m) = 0
Fep = 3000N (C)
Considering now the free-body diagram of section bb, Fig. 6-18¢, we have
SLIF. =0 Fepcos 30° — 3000 cos 30°N = 0
Fgrp=3000N (C)
+1ZF, =0;  2(3000sin30°N) — 1000N — Fgz =0

Feg = 2000N (T) Ans.
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. FUNDAMENTAL PROBLEMS

F6-7. Determine the force in members BC, CF. and FE,
State if the members are in tension or compression.

F6-7

F6-8. Determine the force in members LK, KC, and CD
of the Pratt truss. State if the members are in tension or
compression.

F6-9. Determine the force in members KJ, KD, and CD
of the Pratt truss. State if the members are in tension or
compression.

F6-10. Determine the force in members EF, CF, and BC
of the truss. State if the members are in tension or
compression.

F6-10

F6-11. Determine the force in members GF, GD,and CD
of the truss. State if the members are in tension or
compression.

Fo-11

F6-12. Determine the force in members DC, HI, and JI
of the truss. State if the members are in tension or
compression.

5-—9lt—-’r~asn-~v-au--i«-—-m—-:
_Gl | F | .

oy iy

Fo-12
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Sleromiews

6-31. The internal drag truss for the wing of a light
airplane is subjected to the forces shown. Determine the
force in members BC, BH. and HC, and state if the
members are in tension or compression.

|

Prob. 6-31

*6-32. ‘The Howe bridge truss is subjected to the loading
shown. Determine the force in members HD, CD. and GD,
and state if the members are in tension or compression.

*6-33. The Howe bridge truss is subjected to the loading
shown. Determine the force in members HI. HB, and BC,
and state if the members are in tension or compression,

40 kN

Probs. 6-32/33

6-34. Determine the force in members JK, CJ, and CD of
the truss, and state if the members are in tension or
compression.

6-35. Determine the force in members HI, FI, and EF of
the truss, and state if the members are in tension or
compression.

Probs. 6-34/35

*6-36. Determine the force in members BC, CG, and GF
of the Warren truss. Indicate if the members are in tension
or compression.

*6-37. Determine the force in members CD, CF, and FG
of the Warren rruss, Indicate if the members are in tension
or compression.

Probs. 6-36/37
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6-38. Determine the force in members DC, HC. and HI of
the truss, and state if the members are in tension or
compression.

6-39. Determine the force in members ED, EH, and GH
of the truss, and state if the members are in tension or
compression.

6-42. Determine the force in members /C and CG of the
truss and state if these members are in tension or
compression. Also, indicate all zero-force members.

6-43. Determine the force in members JE and GF of the
truss and state if these members are in tension or
compression. Also, indicate all zero-force members,

Probs. 6-38/39

*6-40. Determine the force in members GF, GD,and CD
of the truss and state if the members are in tension or
compression.

*6—41. Determine the force in members BG, BC, and HG
of the truss and state if the members are in tension or
compression.

\

At Al —ep— A fl o 4 1 —=

Probs. 6-40/41

6 kN 6 kN

Probs. 6-42/43

*6-44. Determine the force in members /I, EF. El. and JE
of the truss, and state if the members are in tension or
compression.

*6-45, Determine the force in members CD, LD, and KL
of the truss, and state if the members are in tension or
compression.

1500 Ib
1000 1ty 1000 Ib

TR SN 8ft s &

Probs. 6—44/45



6~46, Determine the force developed in members BC and
CH of the roof truss and state if the members are in tension
or compression.

6—47. Determine the force in members CD and GF of the
truss and state if the members are in tension or
compression. Also indicate all zero-force members.

*6-48. Determine the force in members I/, EJ, and CD of
the Howe truss, and state if the members are in tension or
compression.

*6—49. Determine the force in members KJ, KC, and BC
of the Howe truss, and state if the members are in tension or
compression.

6 kN
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6-50. Determine the force in each member of the truss
and state if the members are in tension or compression. Set
Py =20kN,. P; = 10kN.

6-51. Determine the force in each member of the truss
and state if the members are in tension or compression. Set
Py = 40kN, P, = 20kN,

Probs, 6-50/51

*6-52. Determine the force in members KJ. NJ, ND. and
CD of the K truss. Indicate if the members are in tension or
compression. Hint: Use sections aa and bb.

*6-53. Determine the force in members J/ and DE of
the K truss. Indicate if the members are in tension or
compression.

‘ 15001h e
20 {1 20 {1420 f1--20 1= 20 ft==- 20 fr~

Probs. 6-52/53
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Typical roof-supporting space
truss. Notice the use of ball-and-
socket joints for the connections

For economic reasons, large electrical
transmission towers are often constructed
using space trusses.

*6.5 Space Trusses

A space truss consists of members joined together at their ends to form a
stable three-dimensional structure. The simplest form of a space trussis a
tetrahedron, formed by connecting six members together, as shown in Fig.
6-19. Any additional members added to this basic element would be
redundant in supporting the force P. A simple space truss can be built
from this basic tetrahedral element by adding three additional members
and a joint, and continuing in this manner to form a system of
multiconnected tetrahedrons.

Assumptions for Design The members of a space truss may be
treated as two-force members provided the external loading is applied at
the joints and the joints consist of ball-and-socket connections. These
assumptions are justified if the welded or bolted connections of the
joined members intersect at a common point and the weight of the
members can be neglected. In cases where the weight of a member is to
be included in the analysis, it is generally satisfactory to apply it as a
vertical foree, half of its magnitude applied at cach end of the member.

Procedure for Analysis

Either the method of joints or the method of sections can be used to
determine the forces developed in the members of a simple space truss.

Method of Joints.

If the forces in all the members of the truss are to be determined, then
the method of joints is most suitable for the analysis. Here it is
necessary to apply the three equilibrium equations XF, =0,
XF, = 0. 2F. = 01o the forces acting at each joint. Remember that
the solution of many simultancous equations can be avoided if the
force analysis begins at a joint having at least one known force and at
most three unknown forces. Also, if the three-dimensional geometry of
the force system at the joint is hard to visualize, it is recommended that
a Cartesian vector analysis be used for the solution.

Method of Sections.

If only a few member forces are to be determined, the method of
sections can be used. When an imaginary section is passed through a
truss and the truss is separated into two parts, the force system acting
on one of the segments must satisfy the six equilibrium equations:
BF, =0, 2F, =0, F, =0, SM, =0, SM, =0, SM. =0
(Egs. 5-6). By proper choice of the section and axes for summing forces
and moments, many of the unknown member forces in a space truss
can be computed directly, using a single equilibrium equation.
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EXAMPLE |6.8

Determine the forces acting in the members of the space truss shown
in Fig. 6-20a. Indicate whether the members are in tension or
compression.

SOLUTION

Since there are one known force and three unknown forces acting at
joint A, the force analysis of the truss will begin at this joint.

Joint A. (Fig. 6-20b). Expressing each force acting on the free-body
diagram of joint A as a Cartesian vector, we have

P = {—4j} kN, Eis = Fagl, Fac = —Fack,

Far = F_.w( 5‘~E) = F,p(0.577i + 0577j — 0.577K)

TAE
For equilibrium,
SF=0; Pt Fyp + Bp+ Ege=1
—dj + Fygj — Fyck + 057TF i + 0.577Fgj — 0.57TF, k= 0
SF. = 0; 0.577Fsp = 0
IF =0 —4 + Fap + 0577Fpg = 0
SE =0 —Far = 0577F, =0

Fae = Fapg =0 Ans.
Fag=4kN (T) Ans.

Since F, 5 is known, joint B can be analyzed next.

Joint B.  (Fig. 6-20c).

XF, =0 —Rycos45° + 0.707Fgr = 0
2R =0 —4 + Rgsind5® =0
IF. = 2+ Fgp— 0707Fge =0
Ry = Fyp = S66kN (T), Fsp =2KN (C)  Ans
Fpp
The scalar equations of equilibrium may also be applied directly to ©
the forces acting on the free-body diagrams of joints D and C since
the force components are easily determined. Show that Fig. 6-20

Fpp = Fpe = Fep =10 Ans.
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“leromiems

6-54. The space truss  supports a force
F = {=500i + 600j + 400k} Ib. Determine the force in
each member, and state if the members are in tension or
compression.

6-55. The space truss  supports a force
F = {600i + 450j — 750k} Ib. Determine the force in each
member, and state if the members are in tension or
compression.

Probs, 6-54/55

“6-56. Determine the force in each member of the space
truss and state if the members are in tension or
compression. The truss is supported by ball-and-socket
joints at A, B.and E. Set F = {800j} N. Hint: The support
reaction at [ acts along member £C. Why?

*6-57. Determine the force in each member of the space
truss and state if the members are in tension or
compression. The truss is supported by ball-and-socket
joints at A, B,and E.Set F = {-200i + 400j} N. Hint: The
support reaction at E acts along member EC. Why?

Probs. 6-56/57

6-58. Determine the force in members BE, DF, and BC of
the space truss and state if the members are in tension or
compression.

6-59. Determine the force in members AB, CD, ED. and
CF of the space truss and state if the members are in tension
or compression,

Prohs, 6-38/59

*6-60. Determine the force in the members AB. AE. BC.
BF.BD,and BE of the space truss, and state if the members
are in tension or compression.

Prob, 6-60
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*6-61. Determine the force in the members EF, DF, CF, *6-64. Determine the force developed in each member of
and CD of the space truss, and state if the members are in the space truss and state if the members are in tension or
tension or compression. compression. The crate has a weight of 150 Ib.

T~ . g ¥
0o -ut‘ S |B
3001 z“‘v
400 1b
Prob. 6-61 Prob. 6-64
6-62. If the truss supports a force of F = 200N, *6-65. Determine the force in members FE and ED of the
determine: the force in each member and state if the space truss and state if the members are in tension or
members are in tension or compression. compression. The truss is supported by a ball-and-socket
joint at C and short links at A and B.

6-63, If each member of the space truss can support a
maximum force of 600 N in compression and 800 N in 6-66. Determine the force in members GD, GE, and FD
tension, determine the greatest force F the truss can of the space truss and state if the members are in tension or
support. compression.

Probs. 6-62/63



294 CHAPTER & STRUCTURAL ANALYSIS

6.6 Frames and Machines

Frames and machines are two types of structures which are often
composed of pin-connected muliiforce members. i.c., members that are
subjected to more than two forces. Frames are used to support loads,
whereas machines contain moving parts and are designed to transmit and
alter the effect of forces. Provided a frame or machine contains no more
supports or members than are necessary to prevent its collapse, the forces
acting at the joints and supports can be determined by applying the
equations of equilibrium to cach of its members. Once these forces are
obtained, it is then possible to design the size of the members, connections,
and supports using the theory of mechanics of materials and an
appropriate engineering design code.

Free-Body Diagrams.  In order to determine the forces acting at
the joints and supports of a frame or machine, the structure must be
disassembled and the free-body diagrams of its parts must be drawn. The
following important points must be observed:

* Isolate each part by drawing its outlined shape Then show all the
This large cranc is a typical forees and/or couple moments that act on the part. Make sure to
exhmple of & (ramework, label or identify each known and unknown force and couple
moment with reference to an established x, y coordinate system.
Also, indicate any dimensions used for taking moments. Most often
the equations of equilibrium are easier to apply if the forces are
represented by their rectangular components. As usual, the sense of
an unknown force or couple moment can be assumed.

* Identify all the two-force members in the structure and represent
their free-body diagrams as having two equal but opposite collinear
forces acting at their points of application. (See Sec. 54.) By
recognizing the two-force members, we can avoid solving an
unnecessary number of equilibrium equations.

* Forces common to any two contacting members act with equal
magnitudes but opposite sense on the respective members. If the
two members are treated as a “svstem” of connected members, then
these forces are “iternal” and are not shown on the free-body
diagram of the system: however, if the free-body diagram of each
member is drawn, the forces are “external” and must be shown on
cach of the free-body diagrams.

Common tols such as these pliers act as The following examples graphically illustrate how to draw the free-
simple machines. Here the applied force 4,4y diagrams of a dismembered frame or machine. In all cases, the

:::tl::jl;:iidlcs creates a much larger foree weight of the members is neglected.



EXAMPLE |6.9

For the frame shown in Fig. 6-21a, draw the free-body diagram of
(a) each member, (b) the pin at B, and (c) the two members connected
together.

B" Bl
1 nll I
. ' —.-1—];‘ _h-.‘."\ P
M * " Effect of pin : 3
\/ on member XA\
A—IT T-— c,
A, C,
()]
SOLUTION
Part (a). By inspection, members BA and BC are not two-force

members. Instead, as shown on the free-body diagrams, Fig. 6-21b, BC
is subjected to a force from the pins at B and C and the external force
P. Likewise, AB is subjected to a force from the pins at A and B and
the external couple moment M. The pin forces are represented by
their x and y components.

Part (b). The pin at B is subjected to only two forees, i.c., the
force of member BC and the force of member AB. For equilibrium
these forces or their respective components must be equal but
opposite, Fig. 6-21c. Realize that Newton's third law is applied
between the pin and its connected members, i.e., the effect of the
pin on the two members, Fig. 6-21b, and the equal but opposite
effect of the two members on the pin, Fig. 6-21c.

Part (c). The free-body diagram of both members connected
together. yet removed from the supporting pins at A and C.is shown
in Fig. 6-21d. The force components B, and B, ar¢ not shown on this
diagram since they are internal forces (Fig. 6-21b) and therefore
cancel out. Also, to be consistent when later applying the equilibrium
equations, the unknown force components at A and C must act in the
same sense as those shown in Fig. 6-215b.

6.6 Frames aND MACHINES

(a)

Effect of
member BC
on the pin

= =0 B,
B, 1

s BI "s,
g Effectof

: member AB
Equilibrium  onthe pin
(c)

(d)

Fig. 6-21

295
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EXAMPLE [6.10

A constant tension in the conveyor belt is maintained by using the
device shown in Fig. 6-22a. Draw the free-body diagrams of the frame
and the cylinder that the belt surrounds. The suspended block has a
weight of W.

z

(h)

SOLUTION

The idealized model of the device is shown in Fig. 6-22h. Here the
angle # is assumed to be known. From this model, the free-body
diagrams of the cylinder and frame are shown in Figs. 6-22¢ and 6-22d,
respectively. Note that the force that the pin at B exerts on the cvlinder
can be represented by either its horizontal and vertical components B,
and B, which can be determined by using the force equations of
equilibrium applied to the cylinder, or by the two components 7, which
provide equal but opposite moments on the cylinder and thus keep it
from turning. Also, realize that once the pin reactions at A have been
determined, hall of their values act on each side of the frame since pin
connections occur on ¢ach side, Fig. 6-22a.




6.6 FrRAMES AND MACHINES 297

EXAMPLE 16.11

For the frame shown in Fig. 6-23a, draw the free-body diagrams of (a)
the entire frame including the pulleys and cords, (b) the frame without
the pulleys and cords, and (c) each of the pulleys.

SOLUTION

Part (a). When the entire frame including the pulleys and cords is
considered. the interactions at the points where the pulleys and cords
are connected to the frame become pairs of internal forces which
cancel each other and therefore are not shown on the free-body
diagram, Fig. 6-23b.

Part (b). When the cords and pulleys are removed, their effect on
the frame must be shown, Fig. 6-23¢.

Part (c). The force components B,. B, C,, C, of the pins on the
pulleys, Fig. 6-23d, are equal but opposite to the force components
exerted by the pins on the frame. Fig. 6-23¢. Why? T

751b 1 —C,
Ry o
TV

Fig. 6-23
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EXAMPLE |6.12

Draw the free-body diagrams of the bucket and the vertical boom of
the backhoe shown in the photo, Fig. 6-24a. The bucket and its
contents have a weight W, Neglect the weight of the members.

SOLUTION

The idealized model of the assembly is shown in Fig. 6-24h. By
inspection, members AB, BC, BE, and HI are all two-force members
since they are pin connected at their end points and no other forces
act on them, The free-body diagrams of the bucket and the boom are
shown in Fig. 6-24¢. Note that pin C is subjected to only two forces,
whereas the pin at B is subjected to three forces, Fig. 6-24d. These
three forces are related by the two equations of force equilibrium
applied to each pin. The free-body diagram of the entire assembly is
shown in Fig. 6-24e.

Fig. 6-24

m

lh} Fm— !.‘ BC

F (d)

(<)
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EXAMPLE |6.13

Draw the free-body diagram of each part of the smooth piston and link
mechanism used to crush recycled cans, which is shown in Fig. 6-25a.

’_30" F=800N

E

Fig. 6-25

SOLUTION

By inspection. member AB is a two-force member. The free-body
diagrams of the parts are shown in Fig. 6-25b. Since the pins at B and 30, F=800N
D connect only two parts together, the forces there are shown as equal ‘

but opposite on the separate free-body diagrams of their connected
members. In particular, four components of force act on the piston: D,
and D, represent the cffect of the pin (or lever EBD), N, is the
resultant force of the support, and P is the resultant compressive force
caused by the can C,

NOTE: A free-body diagram of the entire assembly is shown in
Fig. 6-25¢. Here the forces between the components are internal and N
are not shown on the [ree-body diagram.

Before proceeding, it is highly recommended that you cover the
solutions to the previous examples and attempt to draw the requested free-
body diagrams. When doing so, make sure the work is neat and that all the
forces and couple moments are properly labeled. When finished, challenge
yourself and solve the following four problems.
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| | CONCEPTUAL PROBLEMS

P6-1. Draw the free-body diagrams of each of the crane
boom segments AB, BC, and BD. Only the weights of AB
and BC are significant. Assume A and B are pins.

P6-3. Draw the free-body diagrams of the boom ABCDF

and the stick FGH of the bucket lift. Neglect the weights of
the member. The bucket weighs W.The two force members
are BI, CE, DE and GE. Assume all indicated points of
connection are pins.

Po-1
P6-2. Draw the free-body diagrams of the boom ABCD
and the stick EDFGH of the backhoe. The weights of these
two members are significant. Neglect the weights of all
the other members, and assume all indicated points of
connection are pins.

Po-3

P6-4. To operate the can crusher one pushes down on the
lever arm ABC which rotates about the fixed pin at B.This
moves the side links CD downward, which causes the guide
plate E to also move downward and thereby crush the can.
Draw the free-body diagrams of the lever, side link, and
guide plate. Make up some reasonable numbers and do an
equilibrium analysis to shown how much an applied vertical
force at the handle is magnified when it is transmitted to the
can, Assume all points of connection are pins and the guides
for the plate are smooth.

P6-4



Procedure for Analysis

The joint reactions on frames or machines (structures) composed of
multiforce members can be determined using the following
procedure.

Free-Body Diagram.

# Draw the free-body diagram of the entire frame or machine, a
portion of it, or each of its members. The choice should be made
so that it leads to the most direct solution of the problem.

* When the free-body diagram of a group of members of a frame
or machine is drawn, the forces between the connected parts of
this group are internal forces and are not shown on the free-body
diagram of the group.

e Forces common to two members which are in contact act with
equal magnitude but opposite sense on the respective free-body
diagrams of the members.

* Two-force members, regardless of their shape, have equal bul
opposite collinear forces acting at the ends of the member.

= In many cascs it is possible to tell by inspection the proper sense
of the unknown forces acting on a member; however, if this seems
difficult, the sense can be assumed.

# Remember that a couple moment is a free vector and can act at
any point on the free-body diagram. Also, a force is a sliding
vector and can act at any point along its line of action.

Equations of Equilibrium.

# Count the number of unknowns and compare it to the total
number of equilibrium equations that are available. In two
dimensions, there are three equilibrium equations that can be
wrilten for each member.

# Sum moments about a point that lies at the intersection of the
lines of action of as many of the unknown forces as possible.

® If the solution of a force or couple moment magnitude is found to
be negative, it means the sense of the force is the reverse of that
shown on the free-body diagram.

6.6 Frames aND MACHINES
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EXAMPLE |6.14

2000 N Determine the horizontal and vertical components of force which the
pin at C exerts on member BC of the [rame in Fig. 6-26a.
SOLUTION |

Free-Body Diagrams. By inspection it can be seen that AB is a
two-force member. The free-body diagrams are shown in Fig. 6-26b.

Equations of Equilibrium. The three unknowns can be determined
by applying the three equations of equilibrium to member CB.

C+EMe = 0; 2000N(2m)—(Fypsin60°)(4m) =0 Fyz=11547N
B EF, =0; 11547 cos60°N — C, =0 C,=57IN Ans.
+13F, = 0; 1154.7 sin 60° N —2000 N+ C, =0 C, = 1000 N Ans.

SOLUTION II

Free-Body Diagrams. If onc does not recognize that AB is a two-
force member, then more work is involved in solving this problem.

Fou The free-body diagrams are shown in Fig. 6-26¢,
Equations of Equilibrium. The six unknowns are determined by
: / applying the three equations of equilibrium to each member.

(/ Member AB
C+EM, = 0; B(3sin60°m) — By(3cos60°m) =0 (1)
HIF, =0, A,—B,=0 (2)
Fan " +12F,=0; A, —B,=0 (3)

( ) ; !

Member BC
2000 N C+EMe = 0; 2000N(2m) — By(4m) =0 (4)
J’ H5F.=0;. B,—Cy=0 (5)
B, o L .S +13F,=0; B,—2000N+C,=0 (6)
T = f The results for €, and C, can be determined by solving these

i R R S F e equations in the following sequence: 4. 1, 5. then 6. The results are
3 B.\' = 1000 N
- L B, B, =57IN
& C,=57TN Ans.
3m Sy

v C, = 1000N Ans.
) f‘:‘"‘ By comparison, Solution I is simpler since the requirement that Fygz in
Ay hd” Fig. 6-26b be equal, opposite, and collinear at the ends of member AB
A automatically satisfies Eqgs. 1. 2, and 3 above and therefore eliminates

the need to write these equations. As a result, save yourself some time
(© and effort by always identifying the two-force members before starting
Fig. 6-26 the analysis!




The compound beam shown in Fig. 6-27a is pin connected at B.
Determine the components of reaction at its supports. Neglect its
weight and thickness.

10 kN

iy AKN/m

Hil

e
Ouagual,
ENEr
w

i

o
LY
- =

Fig. 6-27

SOLUTION

Free-Body Diagrams. By inspection, if we consider a free-body
diagram of the entire beam ABC, there will be three unknown
reactions at A and one at C. These four unknowns cannot all be
obtained from the three available equations of equilibrium, and so for
the solution it will become necessary to dismember the beam into its
two segments, as shown in Fig. 6-27h.

Equations of Equilibrium. The six unknowns are determined as
follows:

Segment BC

EIF =0 B, =10
C+EMg=0; —8kN(lm) + C,(2m) =0

+1ZF, = 0; B, —8kN +C, =0

Segment AB

S IF =0 A, - (10kN)() + B, =0
C+EM, = 0; M, — (10kN)(2)(2m) - By(4m) =0

+13F, = 0; A, — (10kN)(3) - B, =0

Solving each of these equations successively, using previously
calculated results, we obtain

A, = 6kN Ay = 12kN My=32kN'm  Ans

B, =0 y = 4kN

Cy =4kN Ans.

6.6 Frames aND MACHINES
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EXAMPLE |6.16

A 500-kg elevator car in Fig. 6-284 is being hoisted by motor A using
the pulley system shown. If the car is traveling with a constant speed,
determine the force developed in the two cables. Neglect the mass of
the cable and pulleys.

T
&
Ny
N',—--!..
% 0
¥

500 (9.81) N

(b)

Fig. 6-28

SOLUTION

Free-Body Diagram. We can solve this problem using the free-
body diagrams of the elevator car and pulley C, Fig. 6-28b. The tensile
forces developed in the cables are denoted as Ty and T,.

Equations of Equilibrium. For pulley C,
2R, =0 T=-i=0 o T3=2T (1)

For the elevator car,
+12F, =0; 3Ty + 2T, — 500(981) N =0 (2)

Substituting Eq. (1) into Eq. (2) vields
3T, + 2(2Ty) — 500(981)N =0
Ty=T0071N =701 N Ans.

Substituting this result into Eq. (1).
T, = 2(700.71) N = 1401 N = 1.40kN Ans.
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The smooth disk shown in Fig. 6-294 is pinned at D and has a weight
of 20 1b. Neglecting the weights of the other members, determine the
horizontal and vertical components of reaction at pins B and D.
201h
o
e N ,
y. 4 | S| 3sn
(a) & L8 b _L
|
SOLUTION _} 3f—
A
Free-Body Diagrams. The free-body diagrams of the entire frame
and each of its members are shown in Fig. 6-29b,
Equations of Equilibrium. The cight unknowns can of course be
obtained by applying the eight equilibrium equations to ecach
member—three to member AB, three to member BCD, and two to
the disk. (Moment equilibrium is automatically satisfied for the disk.)
If this is done, however, all the results can be obtained only from a
simultancous solution of some of the equations, (Try it and find out.)
To avoid this situation, it is best first to determine the three support
reactions on the entire frame: then, using these results, the remaining
five equilibrium equations can be applied to two other parts in order
to solve successively for the other unknowns.
Entire Frame
C+EM,=0; —20Ib(3ft) + C,(35f) =0 C,=1711b
BEF, =0 A, —1711b=0 A, =1711b
+1ZF, =0 Ay —201b=0 A, =201b K 2
Member AB ; ff}'/n“‘;{ B
i W
L3F, =0 1711b— B, =0 B, =17.11b Ans V4 B\
171016 /| e |
C+EMg=0; —201b(6ft) + Np(3ft)=0 Np=401b "_"‘T: T
+13F, = 0; 201b - 401b + B, =0 B,=201b Ans ¥ gy
. : 201h (b) i
Disk
Fig. 6-29
SHIF, =0 D.=0 Ans. *
+15F, =0 401b —201b - D, =0 D, =20l Ans
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EXAMPLE |6.18

Determine the tension in the cables and also the force P required to
support the 600-N force using the [rictionless pulley system shown in

Fig. 6-30a.
Ar
LI
A4
1
&8
ot Ve
PT 4 TP
( ﬂ:‘j A
600N
(b)
Fig. 6-30
SOLUTION

Free-Body Diagram. A free-body diagram of each pulley including
its pin and a portion of the contacting cable is shown in Fig. 6-30b.
Since the cable is continuous, it has a constant tension P acting
throughout its length. The link connection between pulleys B and Cis
a two-force member, and therefore it has an unknown tension T
acting on it, Notice that the principle of action, equal but opposite
reaction must be carefully observed for forces P and T when the
separate free-body diagrams are drawn.

Equations of Equilibrium. The three unknowns are obtained as
follows:
Pulley A

+12F, =0 3P - 600N =0 P=200N  Ans
Pulley B
+12F, =0 T-2P=0 T =400N  Ans
Pulley C
+12F, =0 R-2P-T=0 R=800N  Ans
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EXAMPLE |6.19

The two planks in Fig. 6-31a are connected together by cable BC and
a smooth spacer DE. Delermine the reactions at the smooth supports
A and F.and also find the force developed in the cable and spacer.

100 1b
200 1b

w2t 20t 26t

100 Ib " 200 1b
Fae | Fpi lh
D C F
2[141 2 *-!'-th -1|--2n {
FDJ Nf
(b)
Fig. 6-31

SOLUTION
Free-Body Diagrams. The free-body diagram of each plank is
shown in Fig. 6-315. It is important to apply Newton's third law to the
interaction forces as shown.
Equations of Equilibrium. For plank AD,
C+EM, =0 Fpp(6ft) — Fye(4ft) — 1001b(211) = 0
For plank CF,
C+EMp =0 Fp(4ft) — Fe(6t) + 20016 (2f1) = 0
Solving simultancously,
For = 1401b  Fyge = 160 1b Ans.
Using these results, for plank AD,
+12F =0:  Ny+ 1401b — 1601b — 1001b = 0

N, = 1201b Ans
And for plank CF,
+13F =0, Np+1601b— 1401b — 2001b = 0

Ng = 1801b Ans.
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EXAMPLE | 6.20

The 75-kg man in Fig. 6-32a attempts to lift the 40-kg uniform beam
off the roller support at B. Determine the tension developed in the
cable attached to B and the normal reaction of the man on the beam
when this is about to occur.

SOLUTION

Free-Body Diagrams. The tensile force in the cable will be denoted
as 1. The free-body diagrams of the pulley E, the man, and the beam
are shown in Fig. 6-32b. The beam has no contact with roller B, so
Ny = 0.When drawing cach of these diagrams, it is very important to
apply Newton's third law.

(1 1 Equations of Equilibrium. Using the free-body diagram of pulley £,
75 (981) N +12F, = 0; Ti—Te=0 or =27 (1)

Referring to the free-body diagram of the man using this result.
+1SF,=0; N, +2T, - 759.81)N = 0 (2)

Summing moments about point A on the beam,
C+EM, = 0; Ty(3m)— N,(0.8m) — [40(9.81) N](1L.5m) = 0 (3)

40 (98N Solving Egs. 2 and 3 simultancously for T) and N, then using
b) Eq. (1) for T, we obtain

AR T)=256N Npy=224N T, =512N Ans.

SOLUTION 1i

A direct solution for 7'y can be obtained by considering the beam, the
man, and pulley E as a single system. The free-body diagram is shown
in Fig. 6-32¢. Thus,

CHEM, =0; 27(0.8 m) — [75(9.81) N](0.8 m)
—[40(9.81) N](1.5m) + T,(3m) = 0
40 (98N T, =256N Ans.

(<)
Fig. 6-32

With this result Egs. | and 2 can then be used to find N, and 7.
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EXAMPLE |6.21

The frame in Fig. 6-33a supports the 50-kg cylinder. Determine the
horizontal and vertical components of reaction at A and the force at C.

- 1.2m =
T= 50(981)N

D,= 495N
D, = 490.5N

09m

S0(OSUN | 120m -
(a) (b)

Fig. 6-33

SOLUTION

Free-Body Diagrams. The free-body diagram of pulley D, along with
the cylinder and a portion of the cord (a system), is shown in Fig. 6-33b.
Member BC is a two-force member as indicated by its free-body
diagram. The free-body diagram of member ABD is also shown.

Equations of Equilibrium. We will begin by analyzing the
cquilibrium of the pulley. The moment equation of equilibrium is
automatically satisfied with 7'= 50(9.81) N, and so

LFF. =0, D,—5008)N=0 D,=4905N

+13F, =0; Dy—350(98)N=0 D, =490.5N Ans.

Using these results, Fp,. can be determined by summing moments

about point A on member ABD.

C+SM 4 = 0; Fye (0.6m) + 4905 N(0.9 m) — 490.5N(1.20m) = 0
Fge= 24525 N Ans

Now A and A can be determined by summing forces,

HIF, =0; A, —24525N —4905N =0 A, =736N  Ans

+1ZF, = 0; A, —4905N =0 , =490.5N  Ans
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- FUNDAMENTAL PROBLEMS

F6-13. Determine the force P needed to hold the 60-Ib F6-16. Determine the horizontal and vertical components
weight in equilibrium. of reaction at pin C. 400N

e i

F6-17. Determine the normal force that the 100-1b plate
A exerts on the 30-1b plate B.

F6-13
F6-14. Determine the horizontal and vertical components
of reaction at pin C.
500 1b

400 T

B
AR Ll ft ! 4t ! :nJ F6-17
o | F6-18. Determine the force P needed to lift the load.
33— 310 3f— Also, determine the proper placement x of the hook for
F6—4 equilibrium. Neglect the weight of the beam.
F6-15. If a 100-N force is applied to the handles of the i 0.9m i

pliers, determine the clamping force exerted on the smooth
pipe B and the magnitude of the resultant force at pin A.

100N

100N
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Clrromiems

6-67. Determine the force P required to hold the *6-69. Determine the force P required to hold the 50-kg
100-1b weight in equilibrium. mass in equilibrium.

Prob. 6-67 Proh. 669 .

*6-68. Determine the force P required to hold the 6-70. Determine the force P needed to hold the 20-1b block
150-kg crate in equilibrium, in equilibrium,

Prob. 668 Prob. 670
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6-7L.  Determine the force P needed to support the 100-Ib
weight. Each pulley has a weight of 10 Ib. Also, what are the
cord reactions at A and B?

Prob. 6-71

*6-72. The cable and pulleys are used to lift the 600-Ib
stone. Determine the force that must be exerted on the cable
at A and the corresponding magnitude of the resultant force
the pulley at € exerts on pin B when the cables are in the
position shown.

Prob. 6-72

*6-73. If the peg at B is smooth. determine the
components of reaction at the pin A and fixed support C.

800 mm B cy
45

900 Nom

Prob. 6-73

6-74. Determine the horizontal and vertical components

of reaction at pins A and C.

150 1

Prob. 6-74
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6-75. The compound beam is fixed at A and supported by 6-78. Determine the horizontal and vertical components
rockers at B and C. There are hinges (pins) at D and E. of reaction at pins A and € of the two-member frame.
Determine the components of reaction at the supports.

15 kN __200N/m

Prob. 6-75

*6-76. The compound beam is pin-supported at C and =
supported by rollers at A and B. There is a hinge (pin) at D. i
Determine the components of reaction at the supports.
Neglect the thickness of the beam.

Prob. 6-78

skip 12 kip

6-79. If a force of F = 50N acts on the rope, determine .
the cutting force on the smooth tree limb at D and the
horizontal and vertical components of force acting on pin A.

The rope passes through a small pulley at € and a smooth

ring at E.

; e e B 81 =81~
4 kip 4n20

Prob. 6-76

*(~77. ‘The compound beam is supported by a rocker at B

and is fixed to the wall at A.If it is hinged (pinned) together 30 mmj
at €. determine the components of reaction at the supports.

Neglect the thickness of the beam.

‘I[li—-ﬂl-—-L—SH ~— 4

Prob. 6-77 Prob. 6-79
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*6-80. Two beams are connected together by the short
link BC. Determine the components of reaction at the fixed
support A and at pin D.

12kN

10 kN

Prob. 6-80

*—81. The bridge frame consists of three segments which
can he considered pinned at A. D. and £. rocker supported
at € and F, and roller supported at B. Determine the
horizontal and vertical components of reaction at all these
supports due to the loading shown.

2kip/ft

Prob. 6-81

6-82. I the 300-kg drum has a center of mass at point G,
determine the horizontal and vertical components of force
acting at pin A and the reactions on the smooth pads ¢
and D. The grip at B on member DARB resists both
horizontal and vertical components of force at the rim of
the drum.

Prob, 6-82

6-83. Determine the horizontal and vertical components
of reaction that pins A and C exert on the two-member arch.

Prob, 6-83



“6-84. The truck and the tanker have weights of 8000 Ib
and 20000 Ib respectively. Their respective centers of
gravity are located at points G and G. If the truck is at
rest, determine the reactions on both wheels at A.at B, and
at C.The tanker is connected to the truck at the turntable
D which acts as a pin.

Prob. 6-84

*6-85. The platform scale consists of a combination of
third and first class levers so that the load on one lever
becomes the effort that moves the next lever. Through this
arrangement, a small weight can balance a massive object.
If x =450 mm, determine the required mass of the
counterweight § required to balance a 90-kg load, L.

6-86. The platform scale consists of a combination of
third and first class levers so that the load on one lever
becomes the effort that moves the next lever. Through this
arrangement, a small weight can balance a massive object. If
x = 450 mm and, the mass of the counterweight § is 2 kg,
determine the mass of the load L required to maintain the
balance.
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6-87. The hoist supports the 125-kg engine. Determine
the force the load creates in member DB and in member
FB, which contains the hydraulic cylinder H.

Prob. 6-87

*6-88. 'The frame is used to support the 100-kg cylinder £.
Determine the horizontal and vertical components of
reaction at A and D.

Prob. 6-88
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*6-89. Determine the horizontal and vertical components
of reaction which the pins exert on member AB of the frame.

6-90. Determine the horizontal and vertical components of
reaction which the pins exert on member EDC of the frame.

300 Ib

Probs. 6-89/90

6-91. The clamping hooks are used to lift the uniform
smooth 300-kg plate. Determine the resultant compressive
force that the hook exerts on the plate at A and B, and the
pin reaction at C.

S
B

Prob. 6-91

*6-92. The wall crane supports a load of 700 Ib. Determine
the horizontal and vertical components of reaction at the pins
A and D. Also, what is the force in the cable at the winch W?

*6-93. The wall crane supports a load of 700 Ib.
Determine the horizontal and vertical components of
reaction at the pins A and D. Also, what is the force in the
cable at the winch W? The jib ABC has a weight of 100 Ib
and member BD has a weight of 40 Ib. Each member is
uniform and has a center of gravity at its center.

Probs. 6-92/93

6-94. The lever-actuated scale consists of a series of
compound levers. If a load of weight W = 150 Ib is placed
on the platform, determine the required weight of the
counterweight S to balance the load. Is it necessary to place
the load symmetrically on the platform? Explain.

1.25in,
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6-95, 1f P = 75N, determine the force F that the toggle 6-98. A 300-kg counterweight, with center of mass at G. is

clamp exerts on the wooden block. mounted on the pitman crank AB of the oil-pumping unit.
: If a force of F = SkN is to be developed in the fixed cable

*6-96. LI the wooden bi“l_‘ exerts a force of F = 600N attached to the end of the walking beam DEF, determine

En 1dh[c toggle clamp, determine the force P applied to the the torque M that must be supplied by the motor.

andle.

6-99. A 300-kg counterweight, with center of mass at G.1s

mounted on the pitman crank AB of the oil-pumping unit.

1f the motor supplies a torque of M = 2500 N - m, determine

the force F developed in the fixed cable attached to the end

of the walking beam DEF,

175m———250m——

Probs, 6-95/96 Probs. 6-98/99
*6-97. The pipe cutter is clamped around the pipe P. If *6-100. The two-member structure is connected at C hy a
the wheel at A exerts a normal force of F 4 = 80N on the pin. which is fixed to BDE and passes through the smooth
pipe. determine the normal forces of wheels B and € on slot in member AC. Determine the horizontal and vertical
the pipe. The three wheels each have a radius of 7 mm and components of reaction at the supports.

the pipe has an outer radius of 10 mm.
500 1t

i
—3f———3f——2—

Prob. 6-100

Prob. 6-97
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*6-101. The frame is used to support the 50-kg cylinder.
Determine the horizontal and vertical components of
reactionat A and D,

6-102. The frame is used to support the S0-kg cylinder.
Determine the force of the pin at € on member ABC and
on member CD.

Probs. 6-101/102

6-103. Determine the reactions at the fixed support £ and

the smooth support A. The pin, attached to member 8D,

passes through a smooth slot at D.

04 m

—03m——03m—r03 m«LuJ ruJ

Prob. 6-103

*6-104. The compound arrangement of the pan scale is
shown. If the mass on the pan is 4 kg. determine the
horizontal and vertical components at pins A, B.and C and
the distance x of the 25-g mass to keep the scale in balance.

Prob. 6-104

*6-105. Determine the horizontal and vertical components
of reaction that the pins at A, B. and C exert on the frame.
The cylinder has a mass of 80 kg.

Prob. 6-105



6-106. The bucket of the backhoe and its contents have a
weight of 1200 Ib and a center of gravity at G. Determine
the forces of the hydraulic cvlinder AB and in links AC and
AD in order to hold the load in the position shown. The
bucket is pinned at E.
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*6-109. If a clamping force of 300N is required at A,
determine the amount of force F that must be applied 1o the
handle of the toggle clamp.

6-110. If a force of F = 350 N is applied to the handle of
the toggle clamp. determine the resulting clamping force at A.

Prob. 6-106

6-107. A man having a weight of 175 Ib attempts to hold
himself using one of the two methods shown. Determine the
total force he must exert on bar AB in each case and
the normal reaction he exerts on the platform at C. Neglect
the weight of the platform.

*6-108. A man having a weight of 175 Ib attempts to hold
himself using one of the two methods shown. Determine the
total force he must exert on bar AB in each case and the
normal reaction he exerts on the platform at C. The platform
has a weight of 30 Ib.

(a) (b)
Probs. 6-107/108

Probs. 6-109/110

6-111. Two smooth tubes A and B. each having the same
weight, W.are suspended from a common point O by means
of equal-length cords. A third tube, C, is placed between A
and B. Determine the greatest weight of C without
upsetting equilibrium.

Prob. 6-111
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*6-112. The handle of the sector press is fixed to gear G,
which in turn is in mesh with the sector gear C. Note that
AB is pinned at its ends to gear € and the underside of the
table EF, which is allowed to move vertically due to the
smooth guides at £ and F. If the gears only exert tangential
forces between them, determine the compressive force
developed on the cylinder § when a vertical force of 40 N is
applied to the handle of the press.

6-114. The tractor shovel carries a 500-kg load of soil,
having a center of mass at G. Compute the forces developed
in the hydraulic cylinders /J and BC due to this loading.

Prob. 6-112

*6-113. Show that the weight W, of the counterweight at
H required for equilibrium is W, = (b/a)W, and so it is
independent of the placement of the load W on the
platform.

Prob. 6-113

Prob. 6-114

6-115. If a force of P = 100 N is applied to the handle of
the toggle clamp, determine the horizontal clamping force
N that the clamp exerts on the smooth wooden block at E.

*6-116. If the horizontal clamping force that the toggle
clamp exerts on the smooth wooden block at E is
N = 200 N, determine the force P applied to the handle of
the clamp,

Probs. 6-115/116



*6-117. The engine hoist is used to support the 200-kg
engine. Determine the force acting in the hydraulic cylinder
AB, the horizontal and vertical components of force at the
pin C. and the reactions at the fixed support D.

Prob. 6-117

6-118. Determine the force that the smooth roller €
exerts on member AB. Also. what are the horizontal and
vertical components of reaction at pin A? Neglect the
weight of the frame and roller.

Prob. 6-118

6-119. Determine the horizontal and vertical components
of reaction which the pins exert on member ABC.
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#6-120. Determine the couple moment M that must be
applied to member DC for equilibrium of the quick-return
mechanism. Express the result in terms of the angles &
and f, dimension L, and the applied vertical force P. The
block at Cis confined to slide within the slot of member AB.

*6-121. Determine the couple moment M that must be
applied to member DC for equilibrium of the quick-return
mechanism. Express the result in terms of the angles ¢
and #, dimension L. and the applied force P, which should
be changed in the figure and instead directed horizontally
to the right. The block at € is confined to slide within the
slot of member AB.

Probs. 6-120/121

6-122. The kinetic sculpture requires that each of the
three pinned beams be in perfect balance at all times during
its slow motion. If each member has a uniform weight
of 2 Ib/ft and length of 3 fi, determine the necessary
counterweights W, W, and W ; which must be added to the
ends of each member to keep the system in balance for any
position. Neglect the size of the counterweights.

Prob. 6-119

Prob, 6-122
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6-123. The four-member “A” frame is supported at A and
E by smooth collars and at G by a pin. All the other joints
are ball-and-sockets. If the pin at G will fail when the
resultant force there is 800 N, determine the largest vertical
force P that can be supported by the frame. Also, what are
the x, . = force components which member BD exerts on
members EDC and ABC? The collars at A and E and the
pin at G only exert force components on the frame.

*6-125. The three-member frame is connected at its ends
using ball-and-socket joints Determine the x, ¥, z components
of reaction at B and the tension in member ED, The force
actingat Dis F = {135i + 200j — 180k} Ib.

Prob. 6-123

*6-124. The structure is subjected to the loading shown.
Member AD is supported by a cable AB and roller at Cand
fits through a smooth circular hole at D. Member ED is
supported by a roller at 2 and a pole that fits in a smooth
snug circular hole at £. Determine the x, v, 2 components of
reaction at E and the tension in cable AB.

4

Prob. 6-124

Prob. 6-125

6-126. The structure is subjected to the loadings shown.
Member AB is supported by a ball-and-socket at A and
smooth collar at B. Member CD is supported by a pin at C.
Determine the x, ¥, z components of reaction at A and C.

Prob. 6-126



Simple Truss

A simple truss consists of triangular
elements connected together by pinned
joints. The forces within its members
can be determined by assuming the
members are all two-force members.
connected concurrently at each joint.
The members are either in tension or
compression, or carry no force.
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. CHAPTER REVIEW

Roof truss

Method of Joints

The method of joints states that if a truss
is in equilibrium. then each of its joints
is also in equilibrium. For a plane truss,
the concurrent force system al each
joint must satisfy force equilibrium.

To obtain a numerical solution for the
forces in the members, select a joint that
has a free-body diagram with al most
two unknown forces and one known
force. (This may require first finding the
reactions at the supports.)

Once a member force is determined, use
its value and apply it to an adjacent joint.

Remember that forces that are found to
pull on the joint are tensile forces, and
those that push on the joint are
compressive forces.

To avoid a simultaneous solution of two
equations. set one of the coordinate axes
along the line of action of one of the
unknown forces and sum forces
perpendicular to this axis. This will allow
a direct solution for the other unknown.

The analysis can also be simplified by
first identifying all the zero-force
members.

Fy, (tension)

S00N

S Fy (compression)
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Method of Sections

The method of sections states that if a
truss is in equilibrium, then each
segment of the truss is also in
equilibrium. Pass a section through the
truss and the member whose force is to
be determined. Then draw the free-body
diagram of the sectioned part having the
least number of forces on it.

Sectioned members subjected to pulling
are in temsion, and those that are
subjected to pushing are in compression.

Three equations of equilibrium are
available to determine the unknowns.

If possible, sum forces in a direction that
is perpendicular to two of the three
unknown forces. This will yield a direct
solution for the third force.

Sum moments about the point where
the lines of action of two of the three
unknown forces intersect, so that the
third unknown force can be determined
directly.

+1ZF=0
—1000N + Fgesin45° =10
Fec = 141 KN (T)

C+EM-=0
1000 N(4m) — Fpe(2m) = 0
Far = 2kN (C)
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Space Truss

A space truss is a three-dimensional truss
built from tetrahedral elements, and is
analyzed using the same methods as for
plane trusses. The joints are assumed to
be ball and socket connections.

Frames and Machines

Frames and machines are structures that
contain one or more multiforce members,
that is, members with three or more
forces or couples acting on them.
Frames are designed to support loads.
and machines transmit and alter the
effect of forces.

The forces acting at the joints of a frame
or machine can be determined by
drawing the free-body diagrams of each
of its members or parts. The principle of
action-reaction should be carefully
observed when indicating these forces
on the free-body diagram of each
adjacent member or pin. For a coplanar
force system. there are three equilibrium
equations available for each member.

To simplify the analysis, be sure to
recognize all two-force members. They
have equal but opposite collinear forces
at their ends.

2000N

Muilti-force

& member
Two-force

member

L G

/// Fug
Action-reaction
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. REVIEW PROBLEMS

6-127. Determine the clamping force exerted on the
smooth pipe at B if a force of 20 Ib is applied to the handles
of the pliers. The pliers are pinned together at A.

201b

Proh, 6-127

*6-128. Determine the forces which the pins at A and
B exert on the two-member frame which supports the
100-kg crate.

Prob. 6-128

*6-129. Determine the force in each member of the truss
and state if the members are in tension or compression,

3Im——-o-

Prob. 6-129

6-130.  The space truss is supported by a ball-and-socket
joint at 2 and short links at € and E. Determine the force in
cach member and state if the members are in tension or
compression. Take F; = {500k} Iband F, = {400j} Ib.

6-131. The space truss is supported by a ball-and-socket
joint at £ and short links at ' and E. Determine the force
in each member and state if the members are in tension
or compression. Take F; = {200i + 300j — 500k} Ib and
F. = {400j} Ib.

Probs. 6-130/131



*6-132. Determine the horizontal and vertical components
of reaction that the pins A and B exert on the two-member
frame. Set F = 0.

*6-133. Determine the horizontal and vertical components
of reaction that pins A and B exert on the two-member
frame. Set ' = 500N,

~ - 1m-
y C
L.5m £
I o
o
400 N/m oA+
Probs. 6-132133

6-134.  The two-bar mechanism consists of a lever arm AB
and smooth link €D, which has a fixed smooth collar at its
end C and a roller at the other end D. Determine the force P
needed to hold the lever in the position . The spring has a
stiffness k& and unstretched length 2L. The roller contacts
either the top or bottom portion of the horizontal guide.

Prob, 6-134
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6-135. Determine the horizontal and vertical components

of reaction at the pin supporis A and E of the compound
beam assembly.

Prob, 6-135

*6-136. Dectermine the force inmembers AB. AD,and AC
of the space truss and state if the members are in tension or
compression.

F = (—600K] Ib

Prob. 6-136
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These reinforcing rods will be encased in concrete in order to create a building column.

The internal loadings developed within the material resist the external loading that is
to be placed upon the column.




Internal Forces

CHAPTER OBJECTIVES

* To show how to use the method of sections to determine the
internal loadings in a member.

* To generalize this procedure by formulating equations that can be
plotted so that they describe the internal shear and moment
throughout a member.

® To analyze the forces and study the geometry of cables supporting
a load.

7.1 Internal Forces Developed in
Structural Members

To design a structural or mechanical member it is necessary to know the
loading acting within the member in order to be sure the matenial can
resist this loading. Internal loadings can be determined by using the
method of sections. To illustrate this method, consider the cantilever beam
in Fig. 7-1a. If the internal loadings acting on the cross section at point B
are to be determined, we must pass an imaginary section g-a perpendicular
to the axis of the beam through point B and then separate the beam into
two segments. The internal loadings acting at B will then be exposed and
become external on the free-body diagram of each segment, Fig. 7-1b.

P

A
y My
‘—b
A, e — Ny
. Va

A i M,

(a)

Fig. 7-1
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P, 5
Mg Mg /
- -

M, Va Vg
(b)
Fig. 7-1

The force component Ny that acts perpendicular 1o the cross section, is
termed the normal force. The force component Vg that is tangent to the
cross section is called the shear force, and the couple moment My is
referred to as the bending moment. The force components prevent the
relative translation between the two segments, and the couple moment
prevents the relative rotation. According to Newton's third law, these
loadings must act in opposite directions on each segment, as shown in
Fig. 7-1b. They can be determined by applying the equations of
cquilibrium to the free-body diagram of either segment. In this case,
however, the right segment is the better choice since it does not involve
the unknown support reactions at A. A direct solution for Ny is obtained
by applying XF, = 0, Vg is obtained from F, = 0, and Mg can be
obtained by applying My = 0, since the moments of Ny and Vg about
B are zero.

In two dimensions, we have shown that three internal loading
resultants exist, Fig. 7-2a; however in three dimensions, a general
internal force and couple moment resultant will act at the section. The x,
¥, z components of these loadings are shown in Fig. 7-2b. Here N, is the
In cach case, the link on the backhoe is a normal force, and V, and V. are shear force components. M, is a
two-foree member. In the top photo itis — yopcional or twisting moment, and M, and M. are bending moment
cubjected fo both h"‘“d"'?g 3Rd A ixist components. For most applications, these resultant loadings will act at the
load at its center. By making the member L - ! gl %
straight. as in the bottom photo, thenonly ~ £e0ometric center or centroid (C) of the section’s cross-sectional area.
an axial force acts within the member. Although the magnitude for cach loading generally will be different at
various points along the axis of the member, the method of sections can
always be used to determine their values.

Bending moment l
components M.
Normal force p /T__\ 2
)_‘_ N \._T' . Normal force
M L V: Torsional moment

Shear force —y ;
Bending moment

N,_()_l\:: ;

(@) i .\'\/ v,

¥ (b)

« Shear force components
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Sign Convention. Engineers generally use a sign convention to
report the three internal loadings N, V, and M. Although this sign
convention can be arbitrarily assigned, the one that is widely accepted
will be used here, Fig. 7-3. The normal force is said to be positive if it
creales fension, a positive shear force will cause the beam segment on
which it acts to rotate clockwise, and a positive bending moment will
tend to bend the segment on which it acts in a concave upward manner.
Loadings that are opposite to these are considered negative.

If the member is subjected to a three-dimensional external loading.,
then the internal loadings are usually expressed as positive or negative,
in accordance with an established x, v, z coordinate system such as shown
in Fig. 7-2.

Procedure for Analysis

The method of sections can be used to determine the internal
loadings on the cross section of a member using the following
procedure,

Support Reactions.

® Before the member is sectioned, it may first be necessary 10
determine its support reactions, so that the equilibrium equations
can be used to solve for the internal loadings only after the
member is sectioned.

Free-Body Diagram.

* Keep all distributed loadings, couple moments, and forces acting
on the member in their exact locations, then pass an imaginary
section through the member, perpendicular to its axis at the point
where the internal loadings are to be determined.

® After the section is made, draw a free-body diagram of the
segment that has the least number of loads on it, and indicate the
components of the internal force and couple moment resultants
at the cross section acting in their postive directions to the
established sign convention,

Equations of Equilibrium.

* Moments should be summed at the section. This way the normal
and shear forces at the section are elminated, and we can obtain a
direct solution for the moment.

® If the solution of the equilibrium equations yields a negative
scalar, the sense of the quantity is opposite to that shown on the
free-body diagram.

Positive normal force

. .
ol ___I*

Positive shear

M

Positive moment

The designer of this shop crane
realized the need for additional
reinforcement around the joint in
order 1o prevent severe intcrnal
bending of the joint when a large load
is ded from the chain hoist.

331
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InTERNAL FORCES

EXAMPLE | 7.1

(b)

Determine the normal force, shear force, and bending moment acting
just to the left, point B, and just to the right, point C, of the 6-kN force
on the beam in Fig, 7-4a.

SOLUTION

Support Reactions. The free-body diagram of the beam is shown
in Fig. 7-4b. When determining the external reactions, realize that the
9-kN-m couple moment is a free vector and therefore it can be
placed anywhere on the free-body diagram of the entire beam. Here
we will only determine A, since the left segments will be used for the
analysis.

C+EMp=0; 9kN-m + (6kN)(6m) — A,(9m) =0

A, =5kN
Free-Body Diagrams. The free-body diagrams of the left scgments
AB and AC of the beam are shown in Figs. 7-4¢ and 7-4d. In this case
the 9-kN - m couple moment is net included on these diagrams since it

must be kept in its original position until after the section is made and
the appropriate segment is isolated.

Equations of Equilibrium.

Segment AB
L ¥F =0 Ny =0 Ans.
+13F, =0 5kN —V3=0 Vgz=5kN Ans.
CH+HEMg =0; —(5kN)(3m) + Mz=0 Mz=15kN-m Ans
Segment AC
SEF =10 Ne=0 Ans.
+1SF,=0; SKN-6kN-V.=0 Ve.=-1kN Ans
CHEIMe=0; —(S5kN)(3m) + Mc=0 Mc=15kN-m Ans

NOTE: The negative sign indicates that V. acts in the opposite sense
to that shown on the free-body diagram. Also, the moment arm for the
5-kN force in both cases is approximately 3 m since B and C are
“almost” coincident.
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Determine the normal force, shear force. and bending moment at €
of the beam in Fig. 7-5a.

1200 N /m
L : . L
1200 N /m =n
- 1L5m -
- 3m- =
e LM =] S =4 (b)
(a)
Fig. 7-5
SOLUTION —.l,—(&nu N/m)(1.5m)

Free-Body Diagram. It is not necessary to lind the support
reactions al A since segment BC of the beam can be used 1o
determine the internal loadings at C. The intensity of the triangular
distributed load at C is determined using similar triangles from the
geometry shown in Fig. 7-5b.1.c..

1.5m

3m

we = (1200 N/m) ( ) = 600 N/m

The distributed load acting on segment BC can now be replaced by its
resultant force, and its location is indicated on the free-body diagram,

Fig. 7-5¢.
Equations of Equilibrium
=% XF, =0 Ne=0 Ans.
+1SF, = 0; Ve — 4600 N/m)(1.5m) = 0
Vi = 450N Ans.

CHEMe=0; —Mcq— %{600me)(1.5 m)(0.5m) =0
M-= -225N Ans.

The negative sign indicates that M- acts in the opposite sense to that
shown on the free-body diagram.
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EXAMPLE | 7.3

Determine the normal force, shear force, and bending moment acting
at point B of the two-member frame shown in Fig. 7-6a.

lﬂu};L( SOLUTION

Support Reactions. A free-body diagram of each member is
shown in Fig. 7-6b. Since CD is a two-force member, the equations of
equilibrium need to be applied only to member AC.

i- 41t -»- 4
smhml H 1 Ml

_ A

CHEM, =0; —4001b (410) + (3) Fuc (81) = 0 Fpe = 3333 1b
BHEF =0 ~A+ (3)(33331) =0 A, =26671b

; +13F, =0; A, —4001b + (3)(33331) =0 A, =2001b
()

Vo 3333+
(e)

Free-Body Diagrams. Passing an imaginary section perpendicular
to the axis of member AC through point B vields the free-body
diagrams of segments AB and BC shown in Fig. 7-6¢c. When
constructing these diagrams it is important to keep the distributed
loading where it is until after the section is made. Only then can it be
replaced by a single resultant force.

(b)
Fig. 7-6 Equations of Equilibrium. Applying the equations of equilibrium
to segment A B, we have
BEF, = Ng—2667Ib=0 Ng=267lb  Ans
+1SF, =0; 2001b-200lb—Vz=0 Vz=0 Ans.
C+3Mp =0 Mg—2001b(4ft) +2001b(2f) =0
My = 400 1b-f1 Ans.

NOTE: As an exercise, try to obtain these same results using segment BC.
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EXAMPLE | 7.4

Determine the normal force, shear force, and bending moment acting
at point £ of the frame loaded as shown in Fig. 7-7a.

—
0.5m
i 5
|
05m P P
= D c
¢
600N

600N

(b)

(a)

SOLUTION

Support Reactions. By inspection, members AC and CD are two-
force members, Fig. 7-7b. In order to determine the internal loadings
at E, we must first determine the force R acting at the end of member
AC.To obtain it, we will analyze the equilibrium of the pin at C.

Summing forces in the vertical direction on the pin, Fig. 7-7b, we
have

+13F,=0; Rsind5°—600N=0 R=8485N

Free-Body Diagram. The free-body diagram of segment CE is
shown in Fig. 7-7c.

Equations of Equilibrium.

L3k, =0 848.5¢0s45° N — V=0 Ve = 600N  Ans.
+1SF,=0; -8485sind5°N+ Np =0 Ng=600N  Ans
C+EMg = 0; 848.5 cos 45 N(0.S m)=Mx=0 Mz=300N-m Ans.

NOTE: These results indicate a poor design. Member AC should be
straight (from A to C) so that bending within the member is
eliminated. 1T AC were straight then the internal force would only
create tension in the member.
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EXAMPLE | 7.5

(b)

-——3m

|
|
=
135KN /" ¥6376 kN
[
Fy

525m

Fig. 7-8

The uniform sign shown in Fig. 7-8a has a mass of 650 kg and is
supported on the fixed column. Design codes indicate that the
expected maximum uniform wind loading that will occur in the area
where it is located is 900 Pa. Determine the internal loadings at A.

SOLUTION

The idealized model for the sign is shown in Fig. 7-8b. Here the
necessary dimensions are indicated. We can consider the free-body
diagram ol a section above point A since it does not involve the
support reactions.

Free-Body Diagram. The sign has a weight of W = 650(9.81) N =
6.376 kN, and the wind creates a resultant force of F,, =
900 N/m*(6 m)(2.5m) = 13.5 kN, which acts perpendicular to the
face of the sign. These loadings are shown on the free-body diagram,
Fig. 7-8c.

Equations of Equilibrium. Since the problem is three dimensional,
a vector analysis will be used.

SF = 0; F, — 13.5i — 6.376k = 0
F, = {13.5i + 6.38k} kN Ans.
M, =0 M,+rX(F,+W)=0
T T

M, + 0 3 525 |=0
=135 0 —6376

M, = {19.1i + 70.9j — 40.5k} kN -m Ans.

NOTE: Here F; = {6.38k} kN represents the normal force, whereas
F,, = {135i} kN is the shear force. Also, the torsional moment is
M, = {—405k} kN-m. and the bending moment is determined from
its components M,y = {19.1i} kN-m and M, = {709} kN-m:




7.1 InTeErnAL ForCEs DEVELOPED iN STRUCTURAL MEMBERS

337

. FUNDAMENTAL PROBLEMS

F7-1. Determine the normal force. shear force. and
moment at point C.

15 kN

10kN

e

' . | |
|——I.Sm e 15m =—15m ——15m —-

F7-1

F7-2. Determine the normal force, shear force, and
moment at point C.

10 kN

| A C _ J
r—l.ﬁm-i-—l.ﬁm—-:—-r-ljm—-.l-ljm

F1-2

F7-3. Determine the normal force. shear force. and
moment at point C.

3kip/it

B
i— A | €
61 A4St 45t

F1-3

F7-4. Determine the normal force. shear force. and
moment at point C.

~lim-r-15m e 15m-r-15m

k74

F7-5. Determine the normal force. shear force, and
moment at point C.

F7-6. Determine the normal force. shear force, and
moment at point C. Assume A is pinned and B is a roller.
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| | PROBLEMS

*7-1. Determine the internal normal force and shear *7-4. Determine the internal normal force, shear foree,
force. and the bending moment in the beam at points C and and moment at points £ and F in the beam.

D. Assume the support at 8 is a roller. Point C is located just

to the right of the 8-Kip load.

8 kip

40 kip - ft

—Y300 N/m
=lSm==1lSm-=-LSm-=15m~-

Prob. 7-1

7-2. Determine the shear force and moment at points €
and D.

Prob. 74

*7-5. Determine the internal normal force, shear force,
and moment at point C.

bl 6t~

Prob. 7-2

7-3. Determine the internal normal force, shear force, and
moment at point C in the simply supported beam. Point Cis
located just to the right of the 1500-1b + ft couple moment.

500 1b /1t

€ 150016 - 11

61 61

Prob. 7-3 Prob. 7-5
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7-6. Determine the internal normal force, shear force, and
moment at point C in the simply supported beam.

4kN/m

7-7. Determine the internal normal force. shear force, and
moment at point C in the cantilever beam.

Wy

L L A L -
2

Prob. 7-7

*7-8. Determine the internal normal force, shear force,
and moment at points C and D in the simply supported
beam. Point D is located just to the left of the 5-kN force.

SkN

. C D
lSme==15m = Im -

Prob. 7-8

339

*7-9. The bolt shank is subjected 1o a tension of 80 Ib.
Determine the intermal normal force. shear force. and
moment at point C.

Prob. 7-9

7-10. Determine the internal normal force, shear force.
and moment at point C in the double-overhang beam.

3kN/m

A C B
—ldm—r—lSm——1l5Sm——15m—

Prob. 7-10

7-11. Determine the internal normal force, shear force,
and moment at points C and D in the simply supported
beam. Point D is located just to the left of the 10-kN
concentrated load.

[ D

ISm-tr-1lSm-t-1l5Sm-T-15m-

Prob. 7-11
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*7-12. Determine the internal normal force, shear force,

and moment in the beam at points C and D. Point D is just
to the right of the 5-Kkip load.

Ski
0.5 kip/it i3

ala C ‘ D el
.[——-6 ft -J—-s ft—e—bft 4—&{:-—

Prob. 7-12

*7-13. Determine the internal normal force, shear force,
and moment at point D of the two-member frame.

7-14. Determine the internal normal force, shear force,
and moment at point £ of the two-member frame.

*7-16. Determine the internal normal force, shear force,
and moment in the cantilever beam at point B.

in 121t

Prob. 7-16

*7-17. Determine the ratio of a/b for which the shear force
will be zero at the midpoint C of the double-overhang beam.

Probs. 7-13/14

7-15. Determine the internal normal force, shear force,
and moment acting at point C and at point D, which is
located just to the right of the roller support at B,

001/

200 1b/ft

A

[ f —n J
Al — A — 4 1 —

Prob. 7-15

Prob. 7-17

7-18. Determine the internal normal force, shear force,
and moment at points D and E in the overhang beam. Point
D is located just to the left of the roller support at B, where
the couple moment acts,

_okNfm . OkN

Prob. 7-18
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7-19. Determine the distance a in terms of the beam’s
length L between the symmetrically placed supports A
and B so that the internal moment at the center of the
beam is zero.

e 8 __ ]
2 2
I L
Prob, 7-19

*7-20. Determine the internal normal force, shear force,
and moment at points P and E in the compound beam.
Point £ is located just to the left of the 10-kN concentrated
load. Assume the support at A is fixed and the connection at
Bisapin.

10 kN

b1Sme-15m-—-15m--=15m

Prob. 7-20

#7-21. Determine the internal normal force, shear force,
and moment at points F and G in the compound beam. Point
Fis located just to the right of the 50{-Ib force, while point ¢
is located just to the right of the 600-1b force.

341

7-22. The stacker crane supports a 1.5-Mg boat with the
center of mass at (G. Determine the internal normal force,
shear force. and moment at point D in the girder. The trolley
is free to roll along the girder rail and is located at the
position shown. Only vertical reactions occur at A and B.

Prob. 7-22

7-23. Determine the internal normal force, shear force.
and moment at points ) and £ in the two members.

20

—2ft

Prob. 7-21
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*7-24. Determine the internal normal force, shear force, 7-26. The beam has a weight w per unit length. Determine
and moment at points F and E in the frame. The crate the internal normal force, shear force, and moment at point
weighs 300 Ib. C due to its weight.

Prob. 7-24 Prob. 7-26
*7-25. Determine the internal normal force, shear force, 7-27. Determine the internal normal force, shear force,
and moment at points D and E of the frame which supports and moment acting at point €. The cooling unit has a total
the 200-Ib crate. Neglect the size of the smooth peg at C. mass of 225 kg with a center of mass at G.

Prob. 7-25 Prob. 7-27
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*7-28. The jack AB is used to straighten the bent beam
DE using the arrangement shown. If the axial compressive
force in the jack is 5000 b, determine the internal moment
developed at point C of the top beam. Neglect the weight of
the beams.

*7-29. Solve Prob. 7-28 assuming that each beam has a
uniform weight of 150 Ib/f1.

Probs. 7-28/29

7-30. The jib crane supports a load of 750 Ib from the
trolley which rides on the top of the jib. Determine the
internal normal force, shear force, and moment in the jib at
point C when the trolley is at the position shown. The crane
members are pinned together at B, E and F and supported
by a short link BH.

7-31. The jib crane supports a load of 750 Ib from the
trolley which rides on the top of the jib. Determine
the internal normal force, shear force, and moment in the
column at point D when the trolley is at the position shown.
The crane members are pinned together at 8, £ and F and
supported by a short link BH.

1R 3ft sh 3

Probs. 7-30/31

*7-32. Determine the internal normal foree, shear force,
and moment acting at points B and C on the curved rod.

500 Ib

Prob. 7-32

#7-33. Determine the internal normal force. shear force,
and moment at point 2 which is located just to the right of

the 50-N force. .
7

Prob. 7-33
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7-3. Determine the x, y, z components of internal loading
at point C in the pipe assembly, Neglect the weight of the
pipe. The load is Fy; = {-24i —10k} Ib, F, = {-80i} Ib.
and M= {30k} lb-ft.

7-35. Determine the x, y, 2 components of internal loading
at a section passing through point C in the pipe assembly.
Neglect the weight of the pipe. Take F; = {350j — 400k} Ib
and F, = {150i — 300k} Ib.

*7-36. Determine the x, y, 2 components of internal loading at
asection passing through point C in the pipe assembly. Neglect
the weight of the pipe. Take Fy = {—80i + 200j — 300k} Ib
and Fy = {250i — 150j — 200k} Ib.

*7-37. The shaft is supported by a thrust bearing at A and
a journal bearing at 8. Determine the x, y. z components of
internal loading at point C.

Prob. 7-37

7-38. Determine the v, v,  components of internal loading
in the rod at point D. There are journal bearings at A, B,
and C.Take F = {7i — 12j — 5k} kN.

7-39. Determine the x, y, z components of internal loading
in the rod at point £.Take F = {7i — 12j — 5k} kN.

Probs. 7-35/36

Probs. 7-38/39
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*7.2 Shear and Moment Equations and
Diagrams

Beams are structural members designed to support loadings applied
perpendicular to their axes. In general, they are long and straight and have
a constant cross-sectional area. They are often classified as to how they are
supported. For example, a simply supported beam is pinned at one end
and roller supported at the other, as in Fig. 7-Ya, whereas a cantilevered
beam is fixed at one end and free at the other. The actual design of a beam
requires a detailed knowledge of the variation of the internal shear force
V and bending moment M acting at each point along the axis of the beam.*

These variations of V and M along the beam's axis can be obtained by
using the method of sections discussed in Sec. 7.1. In this case, however, it
is necessary to section the beam at an arbitrary distance x from one end
and then apply the equations of equilibrium to the segment having the
length x. Doing this we can then obtain V and M as functions of x.

In general, the internal shear and bending-moment functions will be
discontinuous, or their slopes will be discontinuous, at points where a
distributed load changes or where concentrated forces or couple
moments are applied. Because of this, these functions must be
determined for each segment of the beam located between any two
discontinuities of loading. For example, segments having lengths x,, x,,
and x; will have to be used to describe the variation of V and M along
the length of the beam in Fig. 7-9a. These functions will be valid only
within regions from O to a for xy, from a to b for x,, and from b to L for
x3. If the resulting functions of x are plotted. the graphs are termed the
shear diagram and bending-moment diagram, Fig. 7-9b and Fig. 7-Y¢,
respectively.

To save on material and thereby produce
an efficient design, these beams, also called
girders, have been tapercd, since the
internal moment in the beam will be larger
at the supports, or piers, than at the center
of the span.

M

e L - v
L b - P
—a—
Jir
by i i b T
Xy
t Xyt
13 7 (b)
w Fig. 7-9

“The internal normal force is not considered for two reasons. In most cases, the loads
applied 10 a beam act perpendicular to the beam’s axis and hence produce only an internal
shear force and bending moment. And for design purposes, the beam’s resistance to shear,
and particularly to bending, is more important than its ability to resist a normal force.

{c)
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. .
ol ¢

Positive shear

M M

__DIg

Positive moment

¢ )

Beam sign convention

Fig. 7-10

This extended towing arm must resist both
bending and shear loadings throughout its
length due to the weight of the vehicle. The
vartation of these loadings must be known
if the arm is 1o be properly d d

Procedure for Analysis

The shear and bending-moment diagrams for a beam can be
constructed using the following procedure.

Support Reactions.

* Determine all the reactive forces and couple moments acting on
the beam and resolve all the forces into components acting
perpendicular and parallel to the beam’s axis.

Shear and Moment Functions.

* Specify separate coordinates x having an origin at the beam’s left
end and extending to regions of the beam berween concentrated
forces and/or couple moments, or where the distributed loading is
continuous.

* Section the beam at each distance x and draw the free-body
diagram of one of the segments. Be sure 'V and M are shown
acting in their positive sense, in accordance with the sign
convention given in Fig. 7-10.

® The shear V is obtained by summing forces perpendicular to the
beam's axis.

* The moment M is obtained by summing moments about the
sectioned end of the segment.

Shear and Moment Diagrams.

* Plot the shear diagram (V versus x) and the moment diagram (M
versus x). If computed values of the functions describing V and M
are positive, the values are plotted above the x axis, whereas
negative values are plotted below the v axis.

* Generally, it is convenient to plot the shear and bending-moment
diagrams directly below the free-body diagram of the beam.
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Draw the shear and moment diagrams for the shaft shown in Fig. 7-11a.
The support at A is a thrust bearing and the support at C is a journal
bearing.

SOLUTION

Support Reactions. The support reactions are shown on the shaft’s
free-body diagram, Fig. 7-114.

Shear and Moment Functions. The shaft is sectioned at an
arbitrary distance x from point A, extending within the region AB,
and the free-body diagram of the left segment is shown in Fig, 7-11h.
The unknowns ¥ and M are assumed to act in the positive sense on the
right-hand face of the segment according to the established sign
convention. Applying the equilibrium equations yields

+T}2FI‘.={I: V =25kN (1)
C+EM =0 M =25xkN-m (2)

A free-body diagram for a left segment of the shaft extending a
distance x within the region BC is shown in Fig. 7-11¢. As always, V
and M are shown acting in the positive sense. Hence,

+12F, =0 25kN —SkN—-V =0
V = —2.5kN 3)
C+EM =0; M+ 5kN(x—2m) —25kN(x) =0

M = (10 — 25¢) kN-m (4)

Shear and Moment Diagrams. When Eqs. | through 4 are plotted
within the regions in which they are valid, the shear and moment
diagrams shown in Fig. 7-11d are obtained. The shear diagram indicates
that the internal shear force is always 2.5 kN (positive) within segment
AB. Just to the right of point B, the shear force changes sign and remains
at a constant value of —2.5 kN for segment BC. The moment diagram
starls al zero, increases linearly to point B at x = 2m, where
My = 25 kN(2m) = 5 kN - m, and thereafter decreases back to zero.

NOTE: It is seen in Fig. 7-11d that the graphs of the shear and
moment diagrams are discontinuous where the concentrated force
acts, i.e., at points A, B, and C. For this reason, as stated earlier, it is
necessary to express both the shear and moment functions separately
for regions between concentrated loads. It should be realized,
however, that all loading discontinuities are mathematical, arising
from the idealization of a concentrated force and couple moment.
Physically, loads arc always applied over a finite area, and if the actual
load variation could be accounted for, the shear and moment
diagrams would then be continuous over the shaft’s entire length.

25 kN
0=x<2Zm
(b)
5kN
r—Zm
R 2m—- -
A ]
B
X -

Fig. 7-11

SKN
Al Ill 1¢
wp—
25kN 25kN
V (kN)
V=25
2 -. X (m)
M (KN -m) V=-25
M =25 o Mua=3
. A M= {10—25%)
2 w x(m)
(d)
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EXAMPLE | 7.7

Draw the shear and moment diagrams for the beam shown in
Fig. 7-12a.

SOLUTION

Support Reactions. The support reactions are shown on the
beam’s free-body diagram, Fig. 7-12c¢.

Shear and Moment Functions. A free-body diagram for a left
segment of the beam having a length x is shown in Fig. 7-12b. Due to
proportional triangles, the distributed loading acting at the end of this
segment has an intensity of w/x = 6/9 or w = (2/3) x. It is replaced by

L.
7 kN’_ 2 kN /m a resultant force after the segment is isolated as a free-body diagram.
el v The magnitude of the resultant force is equal to (. !‘}(11) =1%% This
B _-LT_-'l‘)M force acts through the centroid of the distributed loading area, a
F3e distance 1x from the right end. Applying the two equations of
| R #
T equilibrium yields
9kN
1
{®) +13F, =0 = V=0
2
V= (9 ‘-;;—) (1)
“16 kN/m :
. ll l ! C+EM =0, M + ,l:\"(:) -9%x=0
=t | l l ] ;
‘[ ] M = (9r = “) kN+m (2)
9kN
V(kN) Shear and Moment Diagrams. The shear and moment diagrams

9 V=9~ {— I8 kN shown in Fig. 7-12¢ are obtained by plotting Eqs. 1 and 2.
The point of zero shear can be found using Eq. 1:

. x(m)
|‘— S20m—
x:
1. Y =29 ===
M (kN -m) 50 | 18 3
M=0y-+ ! =
. *=9 My = 312 x=520m

NOTE: It will be shown in Sec. 7-3 that this value of x happens to
represent the point on the beam where the maximum moment occurs.
v(m) Using Eq.2,we have

5.20 9 (5 20)3
(c) Moy = (9{5.20) - T) kN -m
Fig. 7-12

=312kN-m
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. FUNDAMENTAL PROBLEMS

F7-7. Determine the shear and moment as a function of x,
and then draw the shear and moment diagrams.

6 kN

" 3m 1

F1-7

F7-8. Determine the shear and moment as a function of x,
and then draw the shear and moment diagrams.

F7-9. Determine the shear and moment as a function of x.
and then draw the shear and moment diagrams.

F7-10. Determine the shear and moment as a function of
x.and then draw the shear and moment diagrams.

12kN-m
AEE\
fe- Hm-—— -
F7-10

F7-11. Determine the shear and moment as a function of
x,where 0= x < 3mand3m < x = 6m, and then draw
the shear and moment diagrams.

30KN-m
A B
fad
= B | |
)
F7-11

F7-12. Determine the shear and moment as a function of
x.,where 0 = x < Imand3m =< x = 6 m, and then draw
the shear and moment diagrams.
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“leromiems

*7-40. Draw the shear and moment diagrams for the
beam (a) in terms of the parameters shown: (b) set
P=800Ib,a=5ft. L =121t

r P
- — i —
[ L -
Prob. 7-40

*7-4l. Draw the shear and moment diagrams for the
simply supported beam.

9kN
A B
e d4m- —=r—3m—
Prob. 741

7-42. Draw the shear and moment diagrams for the beam
ABCDE.All pulleys have a radius of 1 ft. Neglect the weight
of the beam and pulley arrangement. The load weighs 500 Ib.

st

Prob. 7-42

7-43. Draw the shear and moment diagrams for the
cantilever beam.

2kN/m

A [6KN-m
- 2m -

Prob. 743

*7-44. Draw the shear and moment diagrams for the
beam (a) in terms of the parameters shown: (b) set
My;=500N-m.L =8m.

*7-45. If L = 9 m, the beam will fail when the maximum
shear force is V.. =35 kN or the maximum bending
momentis M, = 22 kN -m. Determine the largest couple
moment M;, the beam will support.

My
Afe [ B
L LR ; L2 y
Probs, 7-44/45

7-46. Draw the shear and moment diagrams for the
simply supported beam.

Wy

Prob. 746
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he

7-47. Draw the shear and moment diagrams for
simply supported beam.

300 N/m

| 4m

Prob. 7-47

*7-48. Draw the shear and moment diagrams for the
overhang beam,

*7-49. Draw the shear and moment diagrams for the
beam.

Prob, 7-49

7-50. Draw the shear and moment diagrams for the beam.

20/

(4

1501b - f1|

201t

Prob. 7-50

7-51. Draw the shear and moment diagrams for the beam.

LSKN/m

Prob. 7-51

*7-52. Draw the shear and momem diagrams for the
simply supported beam.

150 b/

- 1Zn |

Prob, 7-52
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#7-53. Draw the shear and moment diagrams for the beam.

Prob. 7-53

7-54. If L = I8 ft, the beam will fail when the maximum
shear force is V,,, = 800 Ib. or the maximum moment is
M., = 12001b- ft. Determine the largest intensity w of the
distributed loading it will support.

#7-56. Draw the shear and moment diagrams for the
cantilevered beam.

Hin 200 1b /1t

61t . |

Prob. 7-56

*7-57. Draw the shear and moment diagrams for the
overhang beam.

I L '3

Prob. 7.54

7-55. Draw the shear and moment diagrams for the beam.

Prob. 7-55

Prob, 7-57

7-58. Determine the largest intensity wy, of the distributed
load that the beam can support if the beam can withstand a
maximum shear force of V., = 12001b and a maximum

bending moment of M, = 600 b - ft.

2wy

6t : 6t

Prob. 7-58
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7-59. Determine the largest intensity wy of the distributed 7-62. The frustum of the cone is cantilevered from point
load that the beam can support if the beam can withstand a A. If the cone is made from a material having a specific
maximum bending moment of M, = 20kN-m and a weight of y. determine the internal shear force and moment
maximum shear force of Vi, = 80 kN, in the cone as a function of x.

345 m-

i—— L5m—

Prob. 7-59 Prob. 7-62
*7-60. Determine the placement a of the roller support B 7-63. Express the internal shear and moment components
so that the maximum moment within the span AB is acting in the rod as a function of y, where 0 = y = 41t

equivalent to the moment at the support B,

Wy

L
Prob. 7-60
Prob. 7-63
*7-61. The compound beam is fix supported at A, pin *7-64. Determine the normal force, shear force, and
connected at B and supported by a roller at C. Draw the moment in the curved rod as a function of .

shear and moment diagrams for the beam.

500 Ib /1t

Proh. 7-61
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*7.3 Relations between Distributed
Load, Shear, and Moment

If a beam is subjected to several concentrated forces, couple moments.
and distributed loads, the method of constructing the shear and bending-
moment diagrams discussed in Sec. 7-2 may become quite tedious. In this
section a simpler method for constructing these diagrams is discussed —a
method based on differential relations that exist between the load, shear.
and bending moment.

Distributed Load. Consider the beam AD shown in Fig. 7-13a,
which is subjected to an arbitrary load w = w(x) and a series of
concentrated forces and couple moments. In the following discussion, the
the et Jices Tt 3 distributed load will be considered positive when the loading acts upward
icse power lines, 1l 1s Il'.l'l])()ﬂﬂﬂl to first 3 »
draw the shear and moment diagrams for a8 sShown. A free-body diagram for a small segment of the beam having a
the beam. length Ax is chosen at a point x along the beam which is nor subjected 1o
a concentrated force or couple moment, Fig. 7-13h. Hence any results
obtained will not apply at these points of concentrated loading. The
internal shear force and bending moment shown on the free-body
diagram are assumed to act in the positive sense according to the
established sign convention. Note that both the shear force and moment
acting on the right-hand face must be increased by a small, finite amount
in order to keep the segment in equilibrium. The distributed loading has
been replaced by a resultant force AF = w(x) Ax that acts at a
fractional distance k(Ax) from the right end, where 0 < k < 1 [for

example, if w(x) is wniform, k = 1.

In order to design the beam used to support

AF () A Relation Between the Distributed Load and Shear. 1fwe
apply the force equation of equilibrium to the segment, then

Lk (Ax) +T):F_‘. =10 V +wx)Adx —(V + AV) =0

¥ AV = w(x)Ax
¥ " —t l +
‘"( I ; 1 3’“ AM Dividing by Ax, and letting Ax — 0, we get

Veav Vv

_ PRt
(b) slopeof distributed load (7-1)
shear diagram intensity

Fig. 7-13
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If we rewrite the above equation in the form dV = w(x)dx and perform
an integration between any two points B and C on the beam, we see that

AV = ] w(x) dx
(7-2)
Change in _ Area under
shear  loading curve

Relation Between the Shear and Moment. If we apply the
moment equation of equilibrium about point @ on the free-body
diagram in Fig. 7-13h, we get

C+IMy=0: (M + AM) — [w(x)Ax]kAx—VAx—M = 0
AM = VAx + kw(x)Ax?

Dividing both sides of this equation by Ax, and letting Ax — 0, yiclds

dM

dx

Slope of
moment diagram

(7-3)
= Shear

In particular, notice that the absolute maximum bending moment
[M| ¢ occurs at the point where the slope dM/dx = 0, since this is
where the shear is equal to zero.

If Eq. 7-3 is rewritten in the form dM = [V dx and integrated
between any two points B and C on the beam, we have

AM = f Vdx
(74)
Changein _  Area under
moment shear diagram

As stated previously, the above equations do not apply at points where
a concentrated force or couple moment acts. These two special cases
create discontinuities in the shear and moment diagrams, and as a result.
cach deserves separate treatment.

Force. A free-body diagram of a small segment of the beam in
Fig. 7-13a. taken from under one of the forces, is shown in Fig. 7-14a.
Here force equilibrium requires

+12F, = 0; AV =F (7-5)

Since the change in shear is positive, the shear diagram will “jump”
upward when F acts upward on the beam. Likewise, the jump in shear
(AV) is downward when F acts downward.

-

V+AV

Ax
(a)

Fig. 7-14
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M,
M o — M+AM
(@D

V4 AV
Tav

(b)
Fig. 7-14

This conerete beam is used to support the
deck. Its size and the placement of steel
reinforcement within it can be determined
once the shear and moment diagrams have
been established.

Couple Moment. If we remove a segment of the beam in Fig.
7-13a that is located at the couple moment My, the free-body diagram
shown in Fig. 7-14b results. In this case letting Ax — (0, moment
equilibrium requires

C+EM=0; AM =M, (7-6)

Thus, the change in moment is positive, or the moment diagram will
“jump” upward if M, is clockwise. Likewise, the jump AM is downward
when My is counterclockwise.

The examples which follow illustrate application of the above
equations when used to construct the shear and moment diagrams. After
working through these examples, it is recommended that you solve
Examples 7.6 and 7.7 using this method.

Important Points

* The slope of the shear diagram at a point is equal to the intensity
of the distributed loading, where positive distributed loading is
upward, 1.e.,dV/dx = w(x).

* If a concentrated force acts upward on the beam, the shear will
jump upward by the same amount.

* The change in the shear AV between two points is equal to the
area under the distributed-loading curve between the points.

* The slope of the moment diagram at a point is equal to the shear,
Le,dM/fdx = V.

* The change in the moment AM between two points is equal to
the area under the shear diagram between the two points.

* If a clockwise couple moment acts on the beam, the shear will not

be affected; however, the moment diagram will jump upward by

the amount of the moment.

Points of zero shear represent points of maximum or minimum

moment since dM/dx = 0.

Because two integrations of w = w(x) are involved to first
determine the change in shear, AV = [ w(x)dx, then to
determine the change in moment, AM = [ V dx, then if the
loading curve w = w(x) is a polynomial of degree n, V = V(x)
will be a curve of degree n + 1, and M = M(x) will be a curve of
degree n + 2.
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EXAMPLE | 7.8

Draw the shear and moment diagrams for the cantilever beam in
Fig. 7-15a.

[
~
Zz

. 1.5kN/m

A

SOLUTION

The support reactions at the fixed support B are shown in
Fig. 7-15b.

Shear Diagram. The shear at end A is -2 kN. This value is plotted
at x = 0, Fig. 7-15¢. Notice how the shear diagram is constructed by
following the slopes defined by the loading w. The shear at x =4 m is
—5 kN, the reaction on the beam. This value can be verified by finding
the area under the distributed loading; 1.c.,

Vigesm = Vigam + AV = —2kN — (1.5kN/m)(2m) = —5kN

Moment Diagram. The moment of zero at x = 0 is plotted in
Fig. 7-15d. Construction of the moment diagram is based on knowing
its slope which is equal to the shear at each point. The change of
moment from x =0 to x = 2 m is determined from the area under the
shear diagram. Hence, the moment at x = 2 mis

M|z =M|ig+ AM =0 + [-2kN@2m)] = —4kN-m

This same value can be determined from the method of sections,
Fig. 7-15e.

Myg=11kN m
2kN \

AN L5kN/m
LLW all
be2m-|——2m B, = SKN

/(b)
w=10 W = negative constant

slope =0 slope = negative constant
V(kN) |

\ (c)
V = negative constant
slope = negative constant

. V = negative increasing
M (KN -m)| slope = negative increasing
\ s ) .

l}‘ Hh!"‘—‘-L — x (m)
=

-11
(d)

V=2kN
T‘,M=4kN-m
b—2m—
(e}
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EXAMPLE | 7.9

4kN/m

—2 M
Ay =2kN| Hy=10%H
A
p=4 W = negative constant
slope =0 gjope = negative constant
V(kN)

(¢)
V = positive decreasing
slope = positive decreasing

V = negative constant
slope = negative constant
M (kN m) |

Draw the shear and moment diagrams for the overhang beam in
Fig. 7-16a.

Fig. 7-16

SOLUTION
The support reactions are shown in Fig. 7-16b.

Shear Diagram. The shear of -2 kN at end A of the beam is plotted
at x = 0, Fig. 7-16¢. The slopes are determined from the loading and
from this the shear diagram is constructed. as indicated in the figure.
In particular, notice the positive jump of 10 kN at x =4 m due to the
force By, as indicated in the figure.

Moment Diagram. The moment of zero at x = 0 is plotted,
Fig. 7-16d, then following the behavior of the slope found from the
shear diagram, the moment diagram is constructed. The moment at
x = 4 mis found from the area under the shear diagram.

Mlyugm = Mo+ AM =0+ [-2kN(@m)] = —8kN-m

We can also obtain this value by using the method of sections, as
shown in Fig, 7-16e.

V=2kN

A?T‘w:sm-m
¢ 4m

2kN

()
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The shalt in Fig. 7-17a is supported by a thrust bearing at A and a

journal bearing at B. Draw the shear and moment diagrams.

SOLUTION
The support reactions are shown in Fig. 7-17b.

Shear Diagram. As shown in Fig. 7-17¢, the shear at x = 0 is +240.
Following the slope defined by the loading, the shear diagram is
constructed, where at B its value is —480 Ib. Since the shear changes
sign, the point where V = 0 must be located. To do this we will use the
method of sections. The free-body diagram of the left segment of the
shaft, sectioned at an arbitrary position x within the region () = x <
9 11, 1s shown in Fig. 7-17¢. Notice that the intensity of the distributed
load at x is w = 10x. which has been found by proportional triangles,
i.e.120/12 = w/x.

Thus, for V =0,
+12F,=0; 2401b —3(10x)x = 0

X =6931

Moment Diagram. The moment diagram starts at 0 since there is
no moment at A, then it is constructed based on the slope as
determined from the shear diagram. The maximum moment occurs at
x = 6.93 1, where the shear is equal to zero. since dM/dx = V = 0,
Fig. 7-17e,

CHEM = 0; My, + 3[(10)(6.93)] 6.93 (1 (6.93))—240(6.93) = 0

My = 11091b- ft

Finally, notice how integration, first of the loading w which is linear,
produces a shear diagram which is parabolic, and then a moment
diagram which is cubic.

M (Ib - ft)

120 1b/ft
linear - l ] l I
; 11‘?1l1[] LY,
——se o —————]
A, =2401b B, =4801b
(b)

W = negative increasing
slope = negative increasing

vawy |/

parabolic

positive

: V' = negative increasing
sdecreasing

slope = negative increasing
|

cubic— . | 1109

= Y |
A R Jl ‘M
X [,

, = 2401b

(e)
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. FUNDAMENTAL PROBLEMS

F7-13. Draw the shear and moment diagrams for the beam.

8 kN

4EN oy

‘ A

—1m t

Im——1m—

F7-13

F7-14.  Draw the shear and moment diagrams for the beam.

; 15m : 15m :

F7-15.  Draw the shear and moment diagrams for the beam.

12 kip

6 b ft ——— 6 [t —]

F7-15

F7-16. Draw the shear and moment diagrams for the beam.

F7-17. Draw the shear and moment diagrams for the beam.

F7-17

F7-18. Draw the shear and moment diagrams for the beam.

F7-14
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Sleromiems

*7-65. The shaft is supported by a smooth thrust bearing
al A and a smooth journal bearing at B. Draw the shear and
moment diagrams for the shaft.

600 Ib
400 b l i
A! L !a
F—2R——2ft——2R—p—20t—
Prob, 7-65

7-66. Draw the shear and moment diagrams for the
double overhang beam.

10 kN

7-67. Draw the shear and moment diagrams for the
overhang beam.

IS kN
OkN

_— M=10kN-m

r—2m—p—Im—p—2Im—

Prob, 7-67

*7-68. Draw the shear and moment diagrams for the
simply supported beam.

*7-69. Draw the shear and moment diagrams for the
simply supported beam.

10 kN

10kN

F—Zm—f—2m—p—2m—

Prob. 7-69

7-70. Draw the shear and moment diagrams for the beam.
The support at A offers no resistance to vertical load.
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7-71. Draw the shear and moment diagrams for the lathe
shaft if it is subjected to the loads shown. The bearing at A is
a journal bearing, and B is a thrust bearing.

Prob. 7-71

*7-72. Draw the shear and moment diagrams for the beam.

10 kN

*7-73. Draw the shear and moment diagrams for the
shaft. The support at A is a thrust bearing and at B itis a
journal bearing.

HfT’Tm, ’
E =

Prob. 7-73

7-74. Draw the shear and moment diagrams for the beam.

S kN S KN

1SkN/m

e 0T me=— I m———1m—
025m

Prob, 7-74

7-75. 'The shaft is supported by a smooth thrust bearing at
A and a smooth journal bearing at B. Draw the shear and
moment diagrams for the shaft.

S00 N
300 N/m

pnnEnIIny

I -1.5m- e 1.5m -1

Prob. 7-75

*7-76. Draw the shear and moment diagrams for the beam,

10 kN

2kN/m

“3m = 2m

Prob. 7-76
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*7-77. Draw the shear and moment diagrams for the
shaft. The support at A is a journal bearing and at B itis a
thrust bearing.

T T T
=+ 4=

7-78. 'The beam consists of two segments pin connected at
B. Draw the shear and moment diagrams for the beam.

700 b

Prob. 7-78

7-79. Draw the shear and moment diagrams for the
cantilever beam.

300 1b 200 Ib/1t

__.-i

Prob. 7-79

363

*7-80. Draw the shear and moment diagrams for the
simply supported beam.

*7-81. Draw the shear and moment diagrams for the
beam.

2000 b
500 1b/ft

- 90 - 9 -

Prob, 7-81

7-82. Draw the shear and moment diagrams for the beam.

Prob, 7-82
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7-83. Draw the shear and moment diagrams for the beam.

*7-84. Draw the shear and moment diagrams for the beam.

*7-85. The beam will fail when the maximum moment
is M., = 30 kip-ft or the maximum shear is V,,,, = 8 kip.
Determine the largest intensity w of the distributed load the
beam will support.

7-86. Draw the shear and momem diagrams for the
compound beam.

im——15m—~15m~

Prob. 7-86

7-87. Draw the shear and moment diagrams for the shalt.
‘The supports at A and B are journal bearings.

Ell L T

T300mm

|
- 600 mm :

450 mm-—

Prob. 7-87

*7-88. Draw the shear and moment diagrams for the beam.

15kip-1t__~ ISkip- it

101t — G J

Prob. 7-88



*7.4 Cables

Flexible cables and chains combine strength with lightness and often are
used in structures for support and to transmit loads from one member to
another. When used to support suspension bridges and trolley wheels,
cables form the main load-carrying element of the structure. In the foree
analysis of such systems, the weight of the cable itself may be neglected
because it is often small compared to the load it carries. On the other
hand, when cables are used as transmission lines and guys for radio
antennas and derricks, the cable weight may become important and must
be included in the structural analysis.

Three cases will be considered in the analysis that follows. In each case
we will make the assumption that the cable is perfectly flexible and
inextensible. Due to its flexibility, the cable offers no resistance to
bending. and therefore, the tensile force acting in the cable is always
tangent to the cable at points along its length. Being inextensible, the
cable has a constant length both before and after the load is applied. As a
result, once the load is applied, the geometry of the cable remains
unchanged, and the cable or a segment of it can be treated as a rigid body.

Cable Subjected to Concentrated Loads. When a cable of
negligible weight supports several concentrated loads, the cable takes
the form of several straight-line segments, each of which is subjected to a
constant tensile force. Consider, for example, the cable shown in
Fig. 7-18, where the distances h, Ly, L, and L; and the loads Py and P,
are known. The problem here is to determine the mine unknowns
consisting of the tension in cach of the three segments, the four
components of reaction at A and B, and the two sags y¢ and v, at points
C and D. For the solution we can write fwo equations of force
equilibrium at each of points A, B, C, and D.This results in a total of eight
equations.* To complete the solution, we need to know something about
the geometry of the cable in order to obtain the necessary ninth
equation. For example, if the cable's total length L is specified, then the
Pythagorean theorem can be used to relate each of the three segmental
lengths, written in terms of h, v, vp, Ly, Ls, and L, to the total length L.
Unfortunately, this type of problem cannot be solved easily by hand.
Another possibility, however, is to specify one of the sags, cither y¢ or
Vp. instead of the cable length. By doing this, the equilibrium equations
are then sufficient for obtaining the unknown forces and the remaining
sag. Once the sag at each point of loading is obtained, the length of the
cable can then be determined by trigonometry. The following example
illustrates a procedure for performing the equilibrium analysis for a
problem of this type.

*As will be shown in the following example. the eight equilibrium equations alse can be
written for the entire cable, or any part thercof. But no maore than eight equations are
available.
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Each of the cable segments remains
approximately straight as they support
the weight of these traffic lights
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EXAMPLE | 7.11

Determine the tension in each segment of the cable shown in Fig. 7-19a.

ISkKN

e T T el
im 2m

(a)

SOLUTION
By inspection, there are four unknown external reactions (A, A, E,.
and E,) and four unknown cable tensions, one in cach cable s¢gment.
These eight unknowns along with the two unknown sags yg and yp
can be determined from fen available equilibrium equations. One
method 1s to apply the force equations of equilibrium (XF, = 0.
XF, = 0) to each of the five points A through E. Here, however, we
wil] take a more direct approach.

Consider the free-body diagram for the entire cable, Fig. 7-19b. Thus,

B3R =0 —A; + E;=0
CHEMe = 0
—A,(18m) + 4kN (15m) + ISkN (10m) + 3kN (2m) = 0
Ay = 12kN
+13F, = 0; 12kN — 4kN — 15kN - 3kN + E, = 0
E, = 10kN

Since the sag ve = 12 m is known, we will now consider the leftmost
section, which cuts cable BC, Fig. 7-19¢.

C+EMe=0: A, (12m) — 12kN (8m) + 4kN (5m) =0

Ay = E, = 633kN
S IF, =0 Tpecosfye — 6.33kN = 0
+12F, = 0; 12kN — 4kN — Ty sin 050 = 0
Thus,
Oye = 51.6°
Tpe = 102kN Ans.
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12 kN 10 kN

6.33 kN

Proceeding now to analyze the equilibrium of points A, C.and E in
sequence, we have

Point A (Fig. 7-194).

BIF =0; Tapcos bz — 6.33kN =0
+12F, = 0; ~Tpsinbap + 12kN =0
a5 = 622°
Tyg = 13.6kN Ans.

Point C (Fig. 7-19).

S3IF =0 Tep cosBep — 102 cos 51.6°kN = 0
+12F, =0; Tepsinfep + 102sin51.6°kN — 1SkN = 0

Ocp = 47.9°

Tep = 944 kN Ans.
Point E (Fig. 7-19/).
BXF =0 633kN — Tgpcosbpp = 0
+12F, =0; I0kN — TppsinOgp = 0

Bini= 577°

Tgp = 118 kN Ans.

NOTE: By comparison, the maximum cable tension is in segment AB
since this segment has the greatest slope (#) and it is required that for
any cable segment the horizontal component Tcosth = A, = E,
(a constant). Also, since the slope angles that the cable segments make
with the horizontal have now been determined. it is possible 1o
determine the sags vy and yp, Fig. 7-19a, using trigonometry.

= 6.33 kN
E:
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The cable and suspenders are used to
support the uniform load of a gas pipe
which crosses the river.

Fig. 7-20

Cable Subjected to a Distributed Load. Let us now
consider the weightless cable shown in Fig. 7-20a, which is subjected to a
distributed loading w = w(x) that is measured in the x direction. The
free-body diagram of a small segment of the cable having a length Ay is
shown in Fig. 7-20b. Since the tensile force changes in both magnitude
and direction along the cable’s length, we will denote this change on the
free-body diagram by AT Finally, the distributed load is represented by
its resultant force w(x)(Ax), which acts at a fractional distance k(Ax)
from point O, where 0 < k < 1. Applying the equations of equilibrium,
we have

HYF =0 ~Tcos + (T + AT) cos(# + AB) =0
+18F,=0; —Tsing — w(x)(Ax) + (T + AT)sin(0 + A8) =0
C+EMy =0, w(x)(Ax)k(Ax) = Tcos@ Ay + Tsinf Ax =0

Dividing each of these equations by Ax and taking the limit as Ay —0,
and therefore Ay — 0, A0 — 0, and AT — 0, we obtain

d(T cost) "

(7-7)

dx
d(T sin @) Ao 2.8
dx W ("'J = ( )
‘-Il = tan # (7-9)

dx



wix)(Ax)

2

— B
A Y
‘\

& %
\ \

| \

ki W, 3

\

|

e

|

z % I ‘
Ax 1
(b)
Integrating Eq. 7-7, we have
T cos 8 = constant = F; (7-10)

where Fy; represents the horizontal component of tensile force at any
point along the cable.
Integrating Eq. 7-8 gives

Tsinfh = /w(.\') dx (7-11)

Dividing Eq. 7-11 by Eq. 7-10 eliminates 7, Then, using Eq. 7-9, we
can obtain the slope of the cable.

dy
tan# = ﬁ - FL” w(x)dx

Performing a second integration vields

y = -}—:;f(fw(x) d.r) dx (7-12)

This equation is used to determine the curve for the cable. y = f(x). The
horizontal force component Fy; and the additional two constants, say C
and C,. resulting from the integration are determined by applying the
boundary conditions for the curve.
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The cables of the suspension bridge exert
very large forces on the tower and the
foundation block which have to be
accounted for in their design.
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EXAMPLE | 7.12

The cable of a suspension bridge supports half of the uniform road
surface between the two towers at A and B, Fig. 7-21a. If this
distributed loading is wy, determine the maximum force developed in
the cable and the cable’s required length. The span length L and sag
are known.

(a)

Fig. 7-21

SOLUTION

We can determine the unknowns in the problem by first finding the
equation of the curve that defines the shape of the cable using Eq.7-12.
For reasons of symmetry, the origin of coordinates has been placed at
the cable’s center. Noting that w(x) = wy, we have

1
y= F_}:_/( fwu n'.t) dx

Performing the two integrations gives

= _1_(‘_‘:'_'{34_(* +C) 1
W= Fa\ 2 it 2 (1)

The constants of integration may be determined using the boundary
conditions y = O at x = 0 and dy/dx = 0 at x = (). Substituting into
Eq. I and its derivative yields C; = C; = 0. The equation of the curve
then becomes

Wy ,

? = —— 2
¥ ZF,,r (2)
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This is the equation of a parabola. The constant Fy may be obtained
using the boundary condition y = hat x = L/2. Thus,
k]
WnL'
Fy=—""— 3
H="g (3)
Therefore, Eq. 2 becomes
4h
Yo )
Since Fj; is known, the tension in the cable may now be determined
using Eq. 7-10, written as T = Fy/cosf. For 0 = # < w/2, the
maximum tension will occur when 8 is maximum, i.c., at point B,
Fig. 7-21a. From Eq. 2, the slope at this point is
dy Wy
— =1an Oppox = =X
dx|e1p = By lean
or
wol
O = tan" '(2 F”) (5)
Therefore, -
R
Toax = 6
i Coh( I!I‘-‘IKJ { )
Using the triangular relationship shown in Fig. 7-21b, which is based
on Eq. 5, Eq. 6 may be written as
i} ‘l."
VAFE + wil? i
e
2 ull!ﬂl
Substituting Eq. 3 into the above equation yields 2F,
(b)

Ans.

Tonax = ML\/‘ 3 (4&)

For a differential segment of cable length ds, we can write

ds = V(dx)* + (dy)* = \[1 + (g{)L dx

Hence. the total length of the cable can be determined by integration.
Using Eq. 4, we have

¢ = / ds = 2["&,!1 + (%.\')2 d (7

Integrating vields

L (]
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w = w(s)

(a)
Fig. 7-22

Cable Subjected to Its Own Weight. When the weight of a
cable becomes important in the force analysis, the loading function along
the cable will be a function of the arc length s rather than the projected
length x. To analyze this problem, we will consider a generalized loading
function w = w(s) acting along the cable as shown in Fig. 7-22a. The free-
body diagram for a small segment As of the cable is shown in
Fig. 7-22b. Applying the equilibrium equations to the force system on this
diagram, one obtains relationships identical to those given by
Eqs. 7-7 through 7-9, but with ds replacing dx. Therefore, we can show that

T costl = F"

Tsinf = /w{.\‘) ds (7-13)
dy e t
T P w(s)ds (7-14)

To perform a direct integration of Eq. 7-14. 1t is necessary to replace
dy/dx by ds/dx. Since

ds = Vdx* + dy*

then

2. o
dx dx



wis)(Ax)
— & (Ax) =
LY er="
ST ]
P ! T+ AT
Fid |
1 ]
L}
: 0 !h + AP
! - T
1 ’;.J!v'
: B ¥ X Ay
1 | 1\
T 0 -
- Ax -
(b)
Therefore,
ds 1 2713
— = [I + —;-,—( fw{x)ds) ]
dx /]

Separating the variables and integrating we obtain

- d:
. /[l + }I—%;( /:v{.s')d.r)z]m

The two constants of integration, say €, and C,, are found using the
boundary conditions for the curve.

(7-15)
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Electrical transmission towers must be
designed to support the weights of the
suspended power lines The weight and length
of the cables can be determined since they
cach form a catenary curve,
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EXAMPLE | 7.13

Determine the deflection curve, the length, and the maximum fension
in the uniform cable shown in Fig. 7-23. The cable has a weight per unit
length of wy, = 5 N/m.

SOLUTION

Pms For reasons of symmetry, the origin of coordinates is located at the
center of the cable, The deflection curve is expressed as y = f(x). We
can determine it by first applying Eq. 7-15, where w(s) = wy.

d
f [1 + (UF,,)(waﬂ dsﬂm

Integrating the term under the integral sign in the denominator,
we have

= L=20m— =1
v L4

ds
[1 + (1/F7)(wes + C;)'?

Substituting u = (1/Fy)(wys + C;) so that du = (wy/Fy)ds, a
second integration yields

x= F—"(smh_ w+ G;)
Wa
or
F,
x= ”{ inh™ [L(uw + Cy)
Fy

Wy

=H Cg} (1)
To evaluate the constants note that. from Eq. 7-14.

dv +! fu.,d\ or d—:r = —{w‘,,s + Cy)
Since dy/dx = 0 ats = 0, then C; = 0. Thus,
dy _ wes

dx FH

The constant C; may be evaluated by using the condition s = 0 at
x = 0in Eq. 1, in which case C; = 0. To obtain the deflection curve,
solve for s in Eq. 1, which vields

F b
.= lsinh(%x) (3)

Wo H

(2)

Now substitute into Eq. 2, in which case

dy . Wo
dx g \mh(fu )
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Hence,
¥ Wi
y= —ﬁcosh(—-ﬂx) + Gy
L] Fy
If the boundary condition y = 0 at x = 0 is applied, the constant

C5 = —F;/wy, and therefore the deflection curve becomes
Ful ( Wi ) 1
pi=<=tpash{ =] —] 4
=g Fy J @

This equation defines the shape of a catenary curve. The constant Fy
is obtained by using the boundary condition that y = hatx = L/2.in
which case

-S54
h = B ‘cosh 2F, 1‘ (5)
Since wy = SN/m, h = 6m, and L = 20 m, Eqs. 4 and 5 become
- Fy S5N/m ) j’
e SN/m [cmh( Fy X 1 (6)
3 _ft.r._[ (.SE’_E) = ]
6m = SN/m cosh Fy 1 (7)

Equation 7 can be solved for Fy by using a trial-and-error procedure.
The result is

Fn = 459N
and therefore the deflection curve, Eq. 6, becomes
v = 9.19[cosh(0.109x) — 1] m Ans.

Using Eq. 3, with x = 10 m, the half-length of the cable is

F 459N . [5N/m J_
e SN,fmsmhLSSN(m m)|=121m
Hence,

F=242m Ans.

Since T = Fy/cos 6, the maximum tension occurs when 6 is
maximum, i.¢..at s = £/2 = 12.1 m. Using Eq. 2 yields

dy 5N/m(12.1 m)
—= = tan Oy = AT —
dx =121m 459N
Oy = 52.8°
And so,
Fy 459N

FSSZSQ = 759N Ans.

T = —
max COS Byax
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Neglect the weight of the cable in the following problems,

unless specified.

*7-93. Determine the force P needed to hold the cable
in the position shown, ie. so segment BC remains
horizontal. Also. compute the sag vg and the maximum

*7-89. Determine the tension in each segment of the tension in the cable.
cable and the cable’s total length. Set P = 80 Ib.

7-90. If each cable segment can support a maximum tension
of 75 Ib, determine the largest load P that can be applied.

F—4m—r——fm———3m—-2 m-
Prob. 7-93
o} "—“!‘—-‘ = Probs. 7-89/90
7-91. The cable segments support the loading shown. 7-94. Cable ABCD supports the 10-kg lamp £ and the
Determine the horizontal distance xg from the force at B to 15-kg lamp F. Determine the maximum tension in the cable

point A. Set P = 40 1b.

and the sag yg of point B.

*7-92. The cable segments support the loading shown.
Determine the magnitude of the horizontal force P so that

xp =611

Probs, 7-91/92 Prob. 7-94



7-95. 'The cable supports the three loads shown. Determine
the sags vz and yp of points B and D. Take P, = 400 Ib,
Py = 2501b.

*7-96. The cable supports the three loads shown.
Determine the magnitude of Py if /5 = 300 Ib and vy = 8 fi.
Also find the sag yp.
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7-99. Determine the maximum uniform  distributed
loading wy N/m that the cable can support if it is capable of
sustaining a maximum tension of 60 kN,

|
SR 20— S 12t~

Probs. 7-95/9

*7-97. 'The cable supports the loading shown. Determine
the horizontal distance x4 the force at point 8 acts from A.
Set P = 401b.

7-98. The cable supports the loading shown. Determine
the magnitude of the horizontal force P so that x, = 6 fi.

Prob. 7-99

*7-100.  The cable supports the uniform distributed load
of w, = 600 Ib/ft. Determine the tension in the cable at

each support A and B.

*7-101. Determine the maximum uniform distributed
load w; the cable can support if the maximum tension the

cable can sustain is 4000 Ib.

I5n

7
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7-102. The cable is subjected to the triangular loading. If
the slope of the cable at point @ is zero. determine the
equation of the curve v = f(x) which defines the cable
shape OB. and the maximum tension developed in the cable.

Prob. 7-102

7-103. If cylinders € and D each weigh 900 Ib, determine
the maximum sag /1, and the length of the cable between the
smooth pulleys at A and B.The beam has a weight per unit
length of 100 1b/ft.

f 121

Prob. 7-103

*7-104. The bridge deck has a weight per unit length of
80 kN/m. It is supported on each side by a cable. Determine
the tension in each cable at the piers A and 8.

*7-105. If each of the two side cables that support the
bridge deck can sustain a maximum tension of 50 MN.
determine the allowable uniform distributed load wy, caused
by the weight of the bridge deck.

1000 m & |

Probs. 7-104/105

7-106. 1If the slope of the cable at support A is 10°
determine the deflection curve v = f{x) of the cable and the
maximum tension developed in the cable.

40 1ft

500 Ib/ft

Proh. 7-106



7-107. If h = 5 m, determine the maximum tension
developed in the chain and its length. The chain has a mass
per unit length of 8 kg/m.

Prob. 7-107

*7-108. A cable having a weight per unit length of 5 Ib/ft
is suspended between supports A and B. Determine the
equation of the catenary curve of the cable and the cable’s
length.

Prob. 7-108

+7-109. If the 45-m-long cable has a mass per unit length
of 5 kg/m, determine the equation of the catenary curve of
the cable and the maximum tension developed in the cable.

Prob. 7-109

7-110. Show that the deflection curve of the cable discussed
in Example 7-13 reduces to Eq. 4 in Example 7-12 when the
hyperbolic cosine function is expanded in terms of a series
and only the first two terms are retained. (The answer
indicates that the catenary may be replaced by a parabola
in the analysis of problems in which the sag is small. In this
case, the cable weight is assumed to be uniformly distributed
along the horizontal.)
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7-111. The cable has a mass per unit length of 10 kg/m.
Determine the shortest total length L of the cable that can
be suspended in equilibrium.

Prob. 7-111

*7-112. The power transmission cable has a weight per
unit length of 15 Ib/f. If the lowest point of the cable must
be at least 90 fi above the ground, determine the maximum
tension developed in the cable and the cable’s length
between A and B.

Proh. 7-112

#7-113. If the horizontal towing force is =20 kN and the
chain has a mass per unit length of 15 kg/m. determine the
maximum sag /1. Neglect the buoyancy effect of the water
on the chain. The boats are stationary.

Prob. 7-113
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. CHAPTER REVIEW

Internal Loadings

If a coplanar force system acts on a member,
then in general a resultant internal normal
force N, shear force V. and bending moment
M will act at any cross section along the
member. The positive directions of these
Ioadings are shown in the figure.

The resultant internal normal force, shear
force, and bending moment are determined
using the method of sections, To find them,
the member is sectioned at the point C
where the internal loadings are to be
determined. A free-body diagram of one of
the sectioned parts is then drawn and the
internal loadings are shown in their positive
directions.

The resultant normal force is determined
by summing forces normal to the cross
section. The resultant shear force is found
by summing forces tangent to the cross
section, and the resultant bending moment
is found by summing moments about the
geometric center or centroid of the cross-
sectional area,

If the member is subjected to a three-
dimensional loading, then, in general. a
torsional moment will also act on the cross
section. It can be determined by summing
moments about an axis that is perpendicular
to the cross section and passes through its
centroid.

SF =0
F, =0
EMq =0

Normal force
)—b‘N
M
Shear fi -- !
T Bending moment
(a)
F| F:
A, 3 - B
A,

Bending moment
components :
poncnis A M.

| 3 : — Normal force
| el - Torsional moment
. NL(J‘}EJ—IV

“w/ V, I'-.
M,}Z\ “—% Shear force components
e
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Shear and Moment Diagrams

To construct the shear and moment
diagrams for a member, it is necessary to
section the member at an arbitrary point,
located a distance v from the left end.

If the external loading consists of changes
in the distributed load, or a series of
concentrated forces and couple moments act
on the member, then different expressions
for V and M must be determined within
regions between any load discontinuities.

3 P

|
oll.. 1

The unknown shear and moment are
indicated on the cross section in the positive
direction according to the established sign
convention, and then the internal shear and
moment are determined as functions of x.

Each of the functions of the shear and
moment is then plotted to create the shear
and moment diagrams.

. .
oI5

- Md |
¢ I 5

Positive moment
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Relations between Shear and Moment

It is possible to plot the shear and moment
diagrams quickly by using differential
relationships  that exist between the
distributed loading w and V and M.

The slope of the shear diagram is equal to

slope is positive if the distributed load acts
upward, and vice-versa.

The slope of the moment diagram is equal
to the shear at any point. The slope is

The change in shear between any two
points is equal to the area under the
distributed loading between the points.

The change in the moment is equal to the

points.

Cables

performed by using the equations of
equilibrium applied to free-body diagrams

of the loading.

shape of the cable must be determined by
first analyzing the forces on a differential
segment of the cable and then integrating
this result. The two conslants, say €, and
Cs, resulting from the integration are
determined by applying the boundary
conditions for the cable.

the distributed Ioading at any point. The |

area under the shear diagram between the

When a flexible and inextensible cable is |
subjected to a serics of concentrated |
forces, then the analysis of the cable can be |

positive if the shear is positive, or vice-versa. |

of either segments or points of application |

If external distributed loads or the weight |
of the cable are to be considered, then the |

.t=f[

dy

dx

]
T

dm
dx

AV = /wd.\'
AM = [Vrix

=V

y= }:-!;; (fw(.r} d.r) dx

Distributed load

ds

o]

Cable weight

2




Review PROBLEMS 383

. REVIEW PROBLEMS

7-114. A 100-1b cable is attached between two points at a *7-117. Determine the internal normal force, shear force
distance 50 ft apart having equal elevations. If the maximum and moment at points D and E of the frame.

tension developed in the cable is 75 Ib, determine the length

of the cable and the sag.

7-115.  Draw the shear and moment diagrams for beam CD.

Prob. 7-115 Proh. 7-117
#7-116. Determine the internal normal force, shear force. 7-118. Determine the distance o between the supports in
and moment at points 8 and € of the beam. terms of the beam’s length L so that the moment in the

svmumetric beam is zero at the beam'’s center.

Prob. 7-116 Prob, 7-118
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7-119. A chain is suspended between points at the same
elevation and spaced a distance of 60 ft apart. If it has a
weight per unit length of 0.51b/ft and the sag is 3 fi.
determine the maximum tension in the chain.

*7-120. Draw the shear and moment diagrams for the beam.

7-122. The traveling crane consists of a 5-m-long beam
having a uniform mass per unit length of 20 kg/m. The chain
hoist and its supported load exert a force of 8 kN on the
beam when x = 2m. Draw the shear and moment
diagrams for the beam. The guide wheels at the ends A and
B exert only vertical reactions on the beam. Neglect the size
of the trolley at C.

Prob, 7-120

*7-121. Determine the internal shear and moment in
member ABC as a function of x, where the ongin for x isat A.

Prob. 7-121

Prob. 7-122

*7-123. Determine the internal normal force, shear force,
and the moment as a function of 0° = # = 180 and
0 = y = 2t for the member loaded as shown.

Prob. 7-123
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*7-124. 'The vacht is anchored with a chain that has a total 7-126. The uniform beam weighs 500 1b and is held in the
length of 40 m and a mass per unit length of 18 kg/m, and the horizontal position by means of cable AB, which has a
tension in the chain at A is 7 kN. Determine the length of weight of 5 Ib/ft. If the slope of the cable at A is 307,
chain {; which is lying at the bottom of the sea. What is the determine the length of the cable.

distance d? Assume that buovancy effects of the water on
the chain are negligible. Hinr: Establish the origin of the
coordinate system at B as shown in order to find the chain
length BA.

Proh. 7-124

*7-125. Determine the internal normal force, shear force. 7-127. The balloon is held in place using a 400-ft cord that
and moment at points £ and E of the frame. weighs 0.8 Ib/ft and makes a 60° angle with the horizontal. If

the tension in the cord at point A is 150 Ib, determine the

length of the cord. /. that is lying on the ground and the

height /&i. Hint: Establish the coordinate system at B as

shown.

b
L

Prob. 7-125 Prob. 7-127




The effective design of a brake system, such as the one for this bicycle, requires an
efficient capacity for the mechanism to resist frictional forces. In this chapter, we will
study the nature of friction and show how these forces are considered in engineering
analysis and design.




Friction

CHAPTER OBJECTIVES

* To introduce the concept of dry friction and show how to analyze
the equilibrium of rigid bodies subjected to this force.

® To present specific applications of frictional force analysis on wedges,
screws, belts, and bearings.

* To investigate the concept of rolling resistance.

8.1 Characteristics of Dry Friction

Friction is a force that resists the movement of two contacting surfaces
that slide relative to one another. This force always acts tangent to the
surface at the points of contact and is directed so as to oppose the possible
or existing motion between the surfaces.

In this chapter, we will study the effects of dry fricion, which is
sometimes called Conlomb friction since its charactenstics were studied
extensively by C. A. Coulomb in 1781. Dry friction occurs between the
contacting surfaces of bodies when there is no lubricating fluid.*

The heat generated by the abrasive
action of friction can be noticed
when using this grinder to sharpen
a metal blade,

“Another type of friction, called fluid friction, is studied in Auid mechanics.
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Fig. 8-1

Theory of Dry Friction. The theory of dry friction can be
explained by considering the effects caused by pulling horizontally on a
block of uniform weight W which is resting on a rough horizontal surface
that is nonrigid or deformable, Fig. 8-1a. The upper portion of the block,
however, can be considered rigid. As shown on the free-body diagram of
the block, Fig. 8-1b, the floor exerts an uneven distribution of both
normal force AN, and frictional force AF, along the contacting surface.
For equilibrium, the normal forces must act upward to balance the
block’s weight W, and the frictional forees act to the left to prevent the
applied foree P from moving the block to the right. Close examination of
the contacting surfaces between the floor and block reveals how these
[rictional and normal forces develop, Fig. 8-1c. It can be seen that many
microscopic irregularities exist between the two surfaces and, as a result,
reactive forces AR, are developed at each point of contact,* As shown,
cach reactive force contributes both a frictional component AF, and a
normal component AN,

Equilibrium. The effect of the distributed normal and frictional
loadings is indicated by their resultants N and F on the free-body diagram,
Regardless of the weight of the rake or Fig. 8-1d. Notice that N acts a distance x to the right of the line of action
hovel that is suspended. the device has— of W, Fig. 8-1d. This location, which coincides with the centroid or
been designed so that the small roller o 05 metric center of the normal force distribution in Fig. 8-1b, is necessary
holds the handle in equilibrium due to > dev'to bal the “lippi ffect™ od by P: For & le.if P 2
frictional forces that develop at the n 0{ grio ‘anr.:e £ ORPIRE o ICLy CRUS Y O Saamp ‘_"_' ! S
points of contact. A, B, C. applied at a height & from the surface, Fig. 8-1d, then moment equilibrium

about point (@ is satisfied it Wx = Phorx = Ph/W.

*Besides mechanical interactions as explained bere, which is referred to as a classical
approach, a detailed treatment of the nature of frictional forces must also include the
effects of temperature, density, cleanliness, and atomic or molecular attraction between the
contacting surfaces. See L Krim, Sciemific American, October, 1996,
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. Impending
maotion

Impending Motion. In cases where the surfaces of contact are
rather “slippery.” the frictional force F may not be great enough to
balance P, and consequently the block will tend to slip. In other words, as
P is slowly increased, F correspondingly increases until it attains a certain
maxinum value F, called the limiting static frictional force, Fig. 8-le.
When this value is reached, the block is in unstable equilibrium since
any further increase in P will cause the block to move. Experimentally.
it has been determined that this limiting static [rictional force F,
is directly proportional 1o the resultant normal force N. Expressed
mathematically,

Fy=puN (8-1)

coefficient of static friction.

Thus, when the block is on the verge of sliding, the normal force N and
frictional force F, combine to create a resultant R, Fig. 8-le. The angle
¢, (phi “sub” s) that R, makes with N is called the angle of static friction. Table 8-1
From the figure,

where the constant of proportionality, g, (mu “sub™ s), is called the .

Typical Values for p,

_fFs L wsN b Contact Coefficient of
¢, = tan”{ ' ) = tan"{ T = ) = tan” p, Materials Static Friction (s,)

Metal on ice 0.03-0.05

Typical values for p, are given in Table 8-1. Note that these values can

vary since experimental testing was done under variable conditions of ~ Wood on wood 0.30-0.70

roughness .arfd 'c!eanliness of the comacfiing sur(accs. For applicalifms. Leathes on wood 0.20-0.50

therefore, it is important that both caution and judgment be exercised

when selecting a coefficient of friction for a given set of conditions. When ~ Leather on metal 0:30-0.60

a more accurate calculation of F is required, the cocfficient of friction ) oo

should be determined directly by an experiment that involves the two gy 1.10-1.70

materials to be used.
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Motion. If the magnitude of P acting on the block is increased so that
it becomes slightly greater than F,, the [rictional force at the contacting
surface will drop to a smaller value F, called the kinetic frictional force.
The block will begin to slide with increasing speed, Fig. 8-2a. As this
oceurs, the block will “ride™ on top of these peaks at the points of contact,
as shown in Fig. 8-2b. The continued breakdown of the surface is the
dominant mechanism creating kinetic [riction.

Experiments with sliding blocks indicate that the magnitude of the kinetic
friction force is directly proportional to the magnitude of the resultant
normal force, expressed mathematically as

oer

Here the constant of proportionality, u, is called the coefficient of
kinetic friction. Typical values for p, are approximately 25 percent
smaller than those listed in Table 8-1 for u,.

As shown in Fig, 8-2a, in this case, the resultant force at the surface of
contact, Ry, has a lin¢ of action defined by é,. This angle is referred to as
the angle of kinetic friction, where

By comparison. &, = .
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The above effects regarding friction can be summarized by referring to F
the graph in Fig. 8-3, which shows the variation of the frictional force F
versus the applied load P. Here the [rictional force is categorized in three
different ways:

No motion | Maotion

* Fis astatic frictional force if equilibrium is maintained.

e Fis alimiting static frictional force F, when it reaches a maximum

g Sl Fig. 8-3
value needed to maintain equilibrium. '

e Fis termed a kinetic frictional force F, when sliding occurs at the
contacting surface.

Notice also [rom the graph that for very large values of P or for high
speeds, acrodynamic effects will cause Fy and likewise py to begin to
decrease.

Characteristics of Dry Friction. As a result of experiments that
pertain to the foregoing discussion, we can state the following rules
which apply to bodics subjected to dry friction.

¢ The frictional force acts rangent to the contacting surfaces in a
direction opposed to the motion or tendency for motion of one
surface relative to another.

e  The maximum static frictional force F, that can be developed is
independent of the area of contact, provided the normal pressure is
not very low nor great enough to severely deform or crush the
contacting surfaces of the bodies.

* The maximum static frictional force is generally greater than the
kinetic frictional force for any two surfaces of contact. However,
if one of the bodies is moving with a very low velocity over
the surface of another, F; becomes approximately equal to F.
e, gy = g

¢«  When slipping at the surface ol contact is about to occur, the
maximum static frictional force is proportional to the normal force,
such that F, = pu,N.

*  When slipping at the surface of contact is occurring, the Kinetic
frictional force is proportional to the normal force, such that
Fi = weN.
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8.2 Problems Involving Dry Friction

If a rigid body is in equilibrium when it is subjected to a system of forces
that includes the effect of friction, the force system must satisly not only
the equations of equilibrium but alse the laws that govern the [rictional
forces.

Types of Friction Problems. In general, there are three types of
mechanics problems involving dry [riction. They can easily be classified
once free-body diagrams are drawn and the total number of unknowns
arc identified and compared with the total number of available
equilibrium equations.

No Apparent Impending Motion. Problems in this category are
strictly equilibrium problems, which require the number of unknowns to
be equal to the number of available equilibrium equations. Once the
frictional forces are determined from the solution, however, their
numerical values must be checked to be sure they satisfy the inequality
F = p,N: otherwise, slipping will occur and the body will not remain in
equilibrium. A problem of this type is shown in Fig. 84a. Here we must
determine the frictional forces at A and C to check if the equilibrium
position of the two-member frame can be maintained. If the bars are
uniform and have known weights of 100 N each, then the free-body
diagrams are as shown in Fig. 84b. There are six unknown force
components which can be determined strictly from the six equilibrium
equations (three for each member). Once Fy, N, Fe. and Ng are
determined, then the bars will remain in equilibrium provided
Fy = 03N, and F = 0.5Ng are satisfied.

Impending Motion at All Points of Contact. In this case the
total number of unknowns will equal the total number of available
equilibrium equations plus the total number of available [rictional
cquations, F = pN. When motion is impending at the points of contact,
then K = p,N: whereas if the body is slipping, then F, = p,N. For
example, consider the problem of finding the smallest angle # at which
the 100-N bar in Fig. 8-5a can be placed against the wall without slipping.
The [ree-body diagram is shown in Fig. 8-5b. Here the five unknowns are
determined from the three equilibrium equations and nwo static frictional
equations which apply at beth points of contact, so that £, = 03N, and
Fg = 04Ng.
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Impending Motion at Some Points of Contact. Here the number
of unknowns will be less than the number of available equilibrium
equations plus the number of available frictional equations or
conditional equations for tipping. As a resull, several possibilities for
motion or impending motion will exist and the problem will involve a
determination of the kind of motion which actually occurs. For example,
consider the two-member frame in Fig. 8-6a. In this problem we wish to
determine the horizontal force P needed to cause movement. If each
member has a weight of 100 N, then the free-body diagrams are as shown
in Fig. 8-6b. There are seven unknowns. For a unique solution we must
satisfy the six equilibrium equations (three for cach member) and only
one of two possible static frictional equations. This means that as P
increases it will either cause slipping at A and no slipping at C, so that
Fy = 03N, and F- = 0.5Ng; or slipping occurs at C and no slipping at
A, in which case F- = 0.5Nand F; = 03N, The actual situation can be
determined by calculating P for each case and then choosing the case for
which P is smaller. If in both cases the same value for P is calculated,
which in practice would be highly improbable, then slipping at both
points occurs simultancously: i.c.. the seven unknowns would satisiy eight
equations.

A 4
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A
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(a)

B,

L q—t .
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Consider pushing on the uniform crate that has a weight W and sits on the rough surface. As shown on the first free-body diagram, if
the magnitude of P is small, the crate will remain in equilibrium. As P increases the crate will either be on the verge of slipping on the
surface (F = p N), orif the surface is very rough (large u,) then the resultant normal force will shift to the corner, x = b/2, as shown
on the second [rec-body diagram, Al this point the crate will begin to tip over. The crate also has a greater chance of tipping if P is applied

al a greater height & above the surface, or if its width b is smaller,
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The applied vertical force P on this roll
must be large enough to overcome the
resistance of friction al the contacting
surfaces A and B in order to cause
rotation,

Equilibrium Versus Frictional Equations. Whenever we solve
problems where the friction force Fis to be an “equilibrium force™ and
satisfies the inequality F < u N, then we can assume the sense of
direction of F on the free-body diagram. The correct sense is made
known after solving the equations of equilibrium for F. If F is a
negative scalar the sense of Fis the reverse of that which was assumed.
This convenience of assuming the sense of F is possible because the
equilibrium equations equate to zero the components of vectors acting
in the same direction. However, in cases where the frictional equation
“ = uN is used in the solution of a problem, the convenience of
assuming the sense of F is lost, since the [rictional equation relates
only the muagnitudes of two perpendicular vectors. Consequently, F
must always be shown acting with its correct sense on the free-body
diagram, whenever the frictional equation is used for the solution of a
problem.

Procedure for Analysis

Equilibrium problems involving dry friction can be solved using the
following procedure.

Free-Body Diagrams.

® Draw the necessary free-body diagrams, and unless i 1s stated in
the problem that impending motion or slipping occurs, afways show
the frictional forces as unknowns (i.¢., do not assume F = pN).

* Determine the number of unknowns and compare this with the
number of available equilibrium equations.

*® If there are more unknowns than equations of equilibrium, it will
be necessary to apply the frictional equation at some, il not all,
points of contact to obtain the extra equations needed for a
complete solution.

* If the equation F = pN is to be used. it will be necessary to show
F acting in the correct sense of direction on the free-body diagram.

Equations of Equilibrium and Friction.

* Apply the equations of equilibrium and the necessary frictional
equations (or conditional equations if tipping is possible) and
solve for the unknowns.

* If the problem involves a three-dimensional force system such
that it becomes difficult to obtain the force components or the
necessary moment arms, apply the equations of equilibrium using
Cartesian vectors.
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EXAMPLE |8.1

The uniform crate shown in Fig. 8-7a has a mass of 20 kg. If a force
P = 80 N is applied to the crate. determine if it remains in equilibrium.
The coefficient of static friction is pu, = (0.3.

SOLUTION
Free-Body Diagram. As shown in Fig. 8-7b. the resultant normal
force N must act a distance x from the crate’s center line in order lo
counteract the tipping effect caused by P. There are three unknowns,
F, Ne. and x, which can be determined strictly from the three
equations of equilibrium.
Equations of Equilibrium.

BIE =0; 80cos30°N — F =0

+T‘£F_‘.. =0 —80sin 30° N + Ng — 1962N =0
G+EM, =0;  80sin 30° N(0.4 m) — 80 cos 30° N(0.2m) + Ne(x) =0

Solving.
F =693N
Ne = 236N
x = —0.00908 m = —9%.08 mm

Since x is negative it indicates the resultant normal force acts (slightly)
1o the left of the crate’s center line, No tipping will occur since
x < (0.4 m. Also, the maxinmum frictional force which can be developed
at the surface of contact is Fu = uNe = 03(236 N) = 70.8 N,
Since F = 693N < 70.8 N, the crate will not slip, although it is very
close to doing so.

395

(b)
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EXAMPLE | 8.2

It is observed that when the bed of the dump truck is raised to an
angle of # = 257 the vending machines will begin to slide off the bed,
Fig. 8-8a. Determine the static coefficient of friction between a
vending machine and the surface of the truckbed.

SOLUTION

An idealized model of a vending machine resting on the truckbed is
shown in Fig. 8-8b. The dimensions have been measured and the
center of gravity has been located. We will assume that the vending
machine weighs W.

Free-Body Diagram. Asshown in Fig. §-8¢, the dimension x is used
to locate the position of the resultant normal force N, There are four
unknowns, N, F, u,, and x.

Equations of Equilibrium.

+NEF, = 0; Wsin25° — F =0 (1)
+72F=0; N —Weos25° =10 (2)
C+EMp = 0; —Wsin 25°(2.51t) + W cos 25°%(x) = 0 (3)

Since slipping impends at 6 = 257, using Eqgs. 1 and 2, we have

A5t F = puN: W sin 25° = p (W cos 25°)
w, = tan 25° = (.466 Ans.
/ y -
/i f !
25/ /’ The angle of # = 257 is referred to as the angle of repose, and by
/ comparison, it is equal to the angle of static friction, ff = ¢,. Notice

from the calculation that @ is independent of the weight of the vending
machine. and so knowing € provides a convenient method for
determining the coefficient of static friction.

NOTE: From Eq. 3, we find x = 1.17 ft. Since 1.17 ft < 1.5 ft, indeed
the vending machine will slip before it can tip as observed in Fig. 8-8a.

Fig. 8-8




8.2 ProBLEMS INvOLVING DRy FRICTION

397

EXAMPLE |8.3

The uniform 10-kg ladder in Fig. 8-9a rests against the smooth wall at
B, and the end A rests on the rough horizontal plane for which the
coefficient of static friction is g, = 0.3. Determine the angle of
inclination 6 of the ladder and the normal reaction at B if the ladder is
on the verge of slipping.

A
N[ 2m)coss” (2m)coso

(a)

(b)

Fig. §-9

SOLUTION
Free-Body Diagram. Asshown on the free-body diagram, Fig. 8-9b,
the frictional force Fy must act to the right since impending motion at A
is to the left.

Equations of Equilibrium and Friction. Since the ladder is on the
verge of slipping, then Fy = u, N, = 0.3N,. By inspection, N, can be
obtained directly.

+12F = 0; Ny — 10(9.81)N = 0 Ny=981N

Using this result, Fy = 0.3(98.1 N) = 29.43 N. Now Nj can be found.
BIF =0 2943N — Ny=0
Ny =2943N = 294N Ans.

Finally, the angle ¢ can be determined by summing moments about

point A,

CHIM,=0: (2943 N)(4m)sin 6 — [10(9.81) NJ(2m) cos 0 = 0
sin f
cos

f

tan # = 1.6667

59.04° = 59.0° Ans.

(4 m) sinf
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EXAMPLE | 8.4

Beam AB is subjected to a uniform load of 200 N/m and is supported
at B by post BC, Fig. 8-10a. If the coefficients of static friction at B
l 1 . 200N/m and C are pug = 0.2 and pe = 0.5, determine the force P needed to
A!l v l l l I l 1 1 l pull the post out from under the beam. Neglect the weight of the
A B aa B members and the thickness of the beam.
— P
4m E 10.75m
-\L—.__.P
4025 m
SOLUTION
(a) Free-Body Diagrams. The free-body diagram of the beam is shown
in Fig. 8-10b. Applying ZM 4 = 0, we obtain Nz = 400 N, This result
is shown on the free-body diagram of the post, Fig. 8-10c. Referring to
this member, the four unknowns Fg, P, F, and N are determined
from the three equations of equilibrium and one frictional equation
applied either at B or C.
Equations of Equilibrium and Friction.
S3IF=0; P—Fg—Fc=0 (1)
+13E =0 Ne— 400N =0 2)
C+EMc=10; —P(025m) + Fg(lm) =0 (3)
800N (Post Slips at B and Rotates about C.) This requires Fir = ueNpand
o 1 Fg = pgNg; Fy = 02(400N) = SON
A e R
T I TS '.J—"' Fy Using this result and solving Eqs. 1 through 3, we obtain
i
2 Nap=400N P =320N
(b) Fg_- = 240N
N = 400N
Since Fe = 240N > peNe = 0.5(400N) = 200N, slipping at C
occurs, Thus the other case of movement must be investigated.
|‘“;’ N (Post Slips at C and Rotates about B.) Here Fy = puNg and
Fj; a5
A 075 m F(" % "LFNC: Fl-' = U‘DN{' (4)
" +”’“'{,_35':,' P Solving Egs. 1 through 4 yields
I:- P =267TN Ans.
p N = 400N
() Fr= 200N
Fig. 8-10 ER=1G60N
Obviously. this case occurs first since it requires a smaller value for P,
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EXAMPLE |8.5
B P

locks A and B have a mass of 3 kg and 9 kg, respectively, and are
connected to the weightless links shown in Fig. 8-11a. Determine the
largest vertical force P that can be applied at the pin € without
causing any movement, The coefficient of static friction between the
blocks and the contacting surfaces is p, = 0.3.

SOLUTION

Free-Body Diagram. The links are two-force members and so the
free-body diagrams of pin C and blocks A and B are shown in
Fig. 8-11h. Since the horizontal component of F, tends to move QLS
block A to the left, F; must act to the right. Similarly, Fy must act to (a)
the left to oppose the tendency of motion of block B to the right,

caused by Fye. There are seven unknowns and six available force

equilibrium equations, two for the pin and two for each block, so that

only one frictional equation is needed.

¥
Equations of Equilibrium and Friction. The force in links AC and ]
BC can be related to P by considering the equilibrium of pin C. P
+13F, =0; Fiecos 30° — P = 0; Eyc = 1.155P
—— - . . P,
SEF=0 1.155P sin 30° — K = 0 Fpe = 0.5774P C  Fy
Using the result for Fye, for block A, Facly

LB IF. =0 Fi—1.155Psin30° = 0;  F, = 0.5774P (1)

381N

+13F=0; Ny—1.155P cos 30°—3(9.81 N) = 0; 307 Fae = 1155 P
Ny =P +2943N (2)
Using the result for Fye, for block B,
F,

HIF =0 (0.5774P) — Fy = 0; Fy=05774P  (3) ‘
+15E =0; Ng— 998N =0,  Nz=8829N Na
Movement of the system may be caused by the initial slipping of either 9(9.81)N

block A or block B. If we assume that block A slips first, then
Fy = puNy = 03 N, (4) Fye= 05774 P
Substituting Egs. 1 and 2 into Eq. 4,

F,
0.5774P = 0.3(P + 29.43) 3 |
Ny

P =318N Ans.

Substituting this result into Eq. 3, we obtain Fgz = 184 N. -
Since the maximum static frictional force at B is

(Fg)max = msNg = 0.3(8829N) = 265N > Fg, block B will not Fig. 8-11
slip. Thus, the above assumption is correct. Notice that if the

inequality were not satisfied, we would have to assume slipping of

block B and then solve for P.




400 CHAPTER 8  FRICTION

. FUNDAMENTAL PROBLEMS

F8-1. If P =200N. determine the friction developed F8-4. If the coefficient of static friction at contact points A
between the 50-kg crate and the ground. The coefficient of and B is g, = 0.3.determine the maximum force P that can
static friction between the crate and the ground is p, = 0.3. be applied without causing the 100-kg spool to move.

k-1

F8-2. Determine the minimum force P to prevent the
30-kg rod AB from sliding. The contact surface at B is
smooth. whereas the coefficient of static friction between
the rod and the wall at A is p, = 0.2,

F8-5. Determine the minimum force P that can be applied
without causing movement of the 250-Ib crate which has a
center of gravity at (7. The coefficient of static friction at the
flooris u, = 0.4,

150 L5t
|

F8-3, Determine the maximum force P that can be applied
without causing the two 50-kg crates to move, The
coefficient of static [riction between each crate and the
ground is p, = (1.25.
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Clrromiems

*8-1. Determine the minimum horizontal force P
required to hold the crate from sliding down the plane. The
crate has a mass of 50 kg and the coefficient of static friction
between the crate and the plane is u, = 0.25.

8-2. Determine the minimum force P required 1o push
the crate up the plane. The crate has a mass of 50 kg and the
coefficient of static friction between the crate and the plane
is p, = 0.25.

8-3. A horizontal force of P = 100N is just sufficient to
hold the crate from sliding down the plane, and a horizontal
force of P = 350 N is required to just push the crate up the
plane. Determine the coefficient of static friction between
the plane and the crate. and find the mass of the crate.

Probs. 8-1/2/3

If the coefficient of static friction at A is g, = 0.4
and the collar at B is smooth so it only exerts a horizontal
force on the pipe. determine the minimum distance x so
that the bracket can support the cylinder of any mass
without slipping. Neglect the mass of the bracket.

84

100 mm

e X -

Prob. -4

*8-5. The 180-lb man climbs up the ladder and stops at the
position shown after he senses that the ladder is on the verge
of slipping. Determine the inclination ¢ of the ladder if the
coefficient of static friction between the friction pad A and the
ground is u, = 0.4, Assume the wall at B is smooth. The center
of gravity for the man is at ;. Neglect the weight of the ladder.

8-6. The 180-Ib man climbs up the ladder and stops at the
position shown after he senses that the ladder is on the verge
of slipping. Determine the coefficient of static friction between
the friction pad at A and ground if the inclination of the ladder
is## = 60° and the wall at B is smooth. The center of gravity for
the man 1s at . Neglect the weight of the ladder.

8-7. The uniform thin pole has a weight of 30 Ib and a
length of 26 ft. 1f it is placed against the smooth wall and on
the rough floor in the position = 10 ft, will 1t remain in
this position when it is released? The coefficient of static
friction is p, = 0.3.

*8-8. The uniform pole has a weight of 30 Ib and a length
of 26 ft. Determine the maximum distance d it can be placed
from the smooth wall and not slip. The coefficient of static
friction between the floor and the poleis p, = 0.3.

o ———

Probs. §8-7/8
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*8-9. If the coefficient of static friction at all contacting
surfaces is u,, determine the inclination # at which the
identical blocks, each of weight W, begin to slide,

Proh. -9

8-10. The uniform 20-1b ladder rests on the rough floor
for which the coefficient of static friction is p, = 0.8 and
against the smooth wall at B. Determine the horizontal
force P the man must exert on the ladder in order to cause
it to move.

8-11. 'The uniform 20-1b ladder rests on the rough floor
for which the coefficient of static friction is u, = 0.4 and
against the smooth wall at B. Determine the horizontal
force P the man must exert on the ladder in order to cause
it to move.

Probs, 8-10/11

*8-12. The coefficients of static and kinetic friction
between the drum and brake bar are p, = 0.4 and p;, = 0.3,
respectively. If M = S0 N+m and P = 85 N determine the
horizontal and vertical components of reaction at the pin O.
Neglect the weight and thickness of the brake. The drum has
amass of 25 kg.

*8-13. The coefficient of static friction between the drum
and brake bar is u, = 0.4, If the moment M = 35N-m,
determine the smallest force P that needs to be applied to
the brake bar in order to prevent the drum from rotating.
Also determine the corresponding horizontal and vertical
components of reaction at pin O, Neglect the weight and
thickness of the brake bar. The drum has a mass of 25 kg.

Probs. 8-12/13

8-14. Determine the minimum coefficient of static
friction between the uniform 50-kg spool and the wall so
that the spool does not slip.

Prob. 8-14



8-15. The spool has a mass of 200 kg and rests against the
wall and on the floor. If the coefficient of static friction at B
is (u,)p = 0.3, the coefficient of kinetic friction is
(g )g = 0.2, and the wall is smooth, determine the friction
force developed at B when the vertical force applied to the
cable is 7 = 800 N.

Prob, 8-15

*8-16. The 80-Ib boy stands on the beam and pulls on the
cord with a force large enough to just cause him to slip. If
the coefficient of static friction between his shoes and the
beam is (u,)p = 0.4, determine the reactions at A and B.
The beam is uniform and has a weight of 100 |b, Neglect the
size of the pulleys and the thickness of the beam.

*8-17. The 80-Ib boy stands on the beam and pulls with a
force of 40 Ib. If (p,)p = 0.4, determine the frictional force
between his shoes and the beam and the reactions at A and
B.The beam is uniform and has a weight of 100 [b. Neglect
the size of the pulleys and the thickness of the beam.

41—

Probs. 8-16/17
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8-18. The tongs are used to lift the 150-kg crate, whose
center of mass is at (. Determine the least coefficient of
static friction at the pivot blocks so that the crate can be
lifted.

8-19. Two blocks A and B have a weight of 10 Ib and 6 Ib,
respectively. They are résting on the incline for which the
coefficients of static friction are g,y = (.15 and pg = 0.25.
Determine the incline angle # for which both blocks begin
to slide. Also find the required stretch or compression in the
connecting spring for this to occur. The spring has a stiffness
of k = 2 Ib/ft.

*8-20. Two blocks A and B have a weight of 10 lb and 6 1b,
respectively. They are resting on the incline for which the
coefficients of static friction are g, = 0.15 and pg = 0.25.
Determine the angle # which will cause motion of one of
the blocks. What is the friction force under each of the
blocks when this occurs? The spring has a stiffness of
k = 21b/ft and is originally unstretched.

Probs. 8-19/20
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*8-21. Crates A and B weigh 200 Ib and 150 Ib,
respectively. They are connected together with a cable and
placed on the inclined plane. If the angle ¢ is gradually
increased. determine # when the crates begin to slide. The
coefficients of static friction between the crates and the
plane are p4 = 0.25 and pg = 0.35.

Prob. 8-21

8-22. A man attempts to support a stack of books
horizontally by applying a compressive force of F = 120N
to the ends of the stack with his hands. If each book has a
mass of 0,95 kg, determine the greatest number of books
that can be supported in the stack. The coefficient of static
friction between the man's hands and a book 1s (u,);, = 0.6
and between any two books (u,), = 0.4,

Prob, 8-22

8-23. 'The paper towel dispenser carries two rolls of paper.
The one in use is called the stub roll A and the other is the
fresh roll B. They weigh 2 Ib and 5 Ib, respectively. If the
coelficients of static [riction at the points of contact C and D
are () =02 and (u,)p = 0.5, determine the initial
vertical force P that must be applied to the paper on the stub
roll in order to pull down a sheet. The stub roll is pinned in the
center, whereas the fresh roll is not. Neglect friction at the pin.

Prob. 8-23

*8-24. The drum has a weight of 100 |b and rests on the
floor for which the coefficient of static friction is w, = 0.6.1f
@ =2 Mtand b = 3 ft, determine the smallest magnitude of
the force £ that will cause impending motion of the drum.

*8-25. The drum has a weight of 100 Ib and rests on the
floor for which the coefficient of static {riction is u, = 0.5.1f
a =3 ftand b = 4 ft. determine the smallest magnitude of
the force P that will cause impending motion of the drum.



8-26. The refrigerator has a weight of 180 Ib and restson a
tile floor for which g, = 025 If the man pushes
horizontally on the refrigerator in the direction shown,
determine the smallest magnitude of horizontal force
needed to move it. Also, if the man has a weight of 150 Ib,
determine the smallest coefficient of friction between his
shoes and the floor so that he does not slip.

8-27. The refrigerator has a weight of 180 Ib and restson a
tile floor for which g, = 0.25. Also, the man has a weight of
150 Ib and the coefficient of static friction between the floor
and his shoes is g, = 0.6, If he pushes horizontally on the
refrigerator, determine if he can move it. If so, does the
refrigerator slip or tip?

P—3ft—

*8-28. Determine the minimum force P needed to push
the two 75-kg cylinders up the incline. The force acts
parallel to the plane and the coefficients of static friction of
the contacting surfaces are p, = 0.3, pgz =025, and
pe = 0.4, Each cylinder has a radius of 150 mm.

Prob. 8-28
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*8-29. If the center of gravity of the stacked tablesis at G,
and the stack weighs 100 Ib, determine the smallest force P
the boy must push on the stack in order to cause movement.
The coefficient of static friction at A and B is u, = 0.3. The
tables are locked together.

22t

Prob. 8-29

8-30. The tractor has a weight of 8000 Ib with center of
gravity at G. Determine if it can push the 550-1b log up the
incline. The coefficient of static friction between the log and
the ground is g, = 0.5, and between the rear wheels of the
tractor and the ground p! = (.8. The front wheels are free
to roll. Assume the engine can develop enough torque to
cause the rear wheels to slip.

8-31. The tractor has a weight of 8000 Ib with center of
gravity at . Determine the greatest weight of the log that
can be pushed up the incline. The coefficient of static
friction between the log and the ground is p, = 0.5, and
between the rear wheels of the tractor and the ground
pi = 07. The front wheels are free to roll. Assume the
engine can develop enough torque to cause the rear wheels
to slip.
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*8-32. The 50-kg uniform pole is on the verge of slipping
at A when ¢ = 45°. Determine the coefficient of static
friction at A, 3

Prob. $-32 —T

*8-33. A force of P = 20 Ib is applied perpendicular to
the handle of the gooseneck wrecking bar as shown. If the
coefficient of static friction between the bar and the wood is
#, = 0.5, determine the normal force of the tines at A on
the upper board. Assume the surface at € is smooth.

4
3in,

3in.

Prob, 8-33
8-34. The thin rod has a weight W and rests against the
floor and wall for which the coefficients of static friction are
a4 and py, respectively. Determine the smallest value of #
for which the rod will not move.

8-35. A roll of paper has a uniform weight of (.75 Ib and
is suspended from the wire hanger so that it rests against
the wall. If the hanger has a negligible weight and the
bearing at O can be considered frictionless, determine the
force P needed to start turning the roll if 6 = 30°. The
cocfficient of static friction between the wall and the paper
is p, = 0.25,

*8-36. A roll of paper has a uniform weight of 0.75 Ib and
is suspended from the wire hanger so that it rests against
the wall. If the hanger has a negligible weight and the
bearing at O can be considered frictionless, determine the
minimum force /” and the associated angle ¢ needed to start
turning the roll. The coefficient of static friction between
the wall and the paper is p, = 0.25.

Probs. 8-35/36

*8-37. If the coefficient of static friction between the
chain and the inclined plane is p, = tan #, determine the
overhang length b so that the chain is on the verge of
slipping up the plane. The chain weighs w per unit length,




8-38. Determine the maximum height /i in meters to
which the girl can walk up the slide without supporting
herself by the rails or by her left leg. The coefficient of static
friction between the girl’s shoes and the slide is p, = 0.8,

8-39. If the coefficient of static friction at B is p, = 0.3,
determine the largest angle # and the minimum coefficient
of static friction at A so that the roller remains self-locking,
regardless of the magnitude of force P applied to the belt,
Neglect the weight of the roller and neglect friction
between the belt and the vertical surface.

*8-40. If o = 30°, determine the minimum coefficient of
static friction at A and B so that the roller remains self-
locking. regardless of the magnitude of force P applied to
the belt. Neglect the weight of the roller and neglect friction
between the belt and the vertical surface.

8.2 ProsLems InvowinG Dry FriCTION 407

*8-41. The clamp is used to tighten the connection
between two concrete drain pipes. Determine the least
coefficient of static friction at A or B so that the clamp does
not slip regardless of the force in the shaft CD.

Prob. 841

8-42. The coefficient of static friction between the 150-kg
crate and the ground is p, = 0.3, while the coefficient of
static friction between the 80-kg man's shoes and the
ground is u; = 0.4, Determine if the man can move the
crate.

843, If the coefficient of static friction between the crate
and the ground is u, = 0.3, determine the minimum
coefficient of static friction between the man's shoes and
the ground so that the man can move the crate.

Probs. 8-39/40

Probs. 8-42/43
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*8-44. The 3-Mg rear-wheel-drive skid loader has a center
of mass at G, Determine the largest number of crates that
can be pushed by the loader if each crate has a mass of
500 kg. The coefficient of static friction between a crate and
the ground is ., = 0.3, and the coefficient of static friction
between the rear wheels of the loader and the ground is
p: = 0.5.The front wheels are free to roll. Assume that the
engine of the loader is powerful enough 1o generate a
torque that will cause the rear wheels to slip.

*8-45. The 45-kg disk rests on the surface for which the
coefficient of static friction is p, = 0.2, Determine the
largest couple moment M that can be applied to the bar
without causing motion.

8-—46. The 45-kg disk rests on the surface for which the
coefficient of static friction is py = 0,15, If M = S0N-m,
determine the friction force at A.

8-47. Block C has a mass of 50 kg and is confined between
two walls by smooth rollers. If the block rests on top of the
40-kg spool, determine the minimum cable force P needed
to move the spool. The cable is wrapped around the spool’s
inner core. The coefficients of static friction at A and B are
pa=03and pug = 0.6.

*8-48. Block C has a mass of 50 kg and is confined
between two walls by smooth rollers, If the block rests on
top of the 40-kg spool, determine the required coefficients
of static friction at A and B so that the spool slips at A and
B when the magnitude of the applied force is increased to
P = 300N,

Probs. 8-47/48

*8-49, The 3-Mg four-wheel-drive truck (SUV) has a
center of mass at G. Determine the maximum mass of the
log that can be towed by the truck. The coefficient of static
friction between the log and the ground is i, = 0.8, and the
coefficient of static friction between the wheels of the truck
and the ground is p; = 0.4. Assume that the engine of the
truck is powerful enough to generate a torque that will
cause all the wheels to slip.

8-50. A 3-Mg front-wheel-drive truck (SUV) has a center
of mass at G. Determine the maximum mass of the log that
can be towed by the truck. The coefficient of static friction
between the log and the ground is g, = 0.8, and the
coefficient of static friction between the front wheels of the
truck and the ground is g; = 0.4.The rear wheels are free to
roll. Assume that the engine of the truck is powerful enough
to generate a torque that will cause the front wheels to slip.




8-51. If the coefficients of static friction at contact poinis
Aand B are p, = 0.3 and p; = 0.4 respectively, determine
the smallest force P that will cause the 150-kg spool to have
impending motion.

*8-52. If the coefficients of static friction at contact points
Aand B are p, = 04 and p; = 0.2 respectively, determine
the smallest force P that will cause the 150-kg spool to have
impending motion.

Probs, 8-51/52

*8-53. The carpenter slowly pushes the uniform board
horizontally over the top of the saw horse. The board has a
uniform weight of 3 Ib/ft, and the saw horse has a weight of
15 Ib and a center of gravity at G. Determine if the saw
horse will stay in position. slip. or tip if the board is pushed
forward when d = 10 ft. The coefficients of static friction
are shown in the figure.

8-54. The carpenter slowly pushes the uniform board
horizontally over the top of the saw horse. The board has a
uniform weight of 3 |b/ft, and the saw horse has a weight of
15 1b and a center of gravity at G. Determine if the saw
horse will stay in position, slip, or tip if the board is pushed
forward when d = 14 ft. The coefficients of static friction
are shown in the figure.

181t -
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Probs. 8-53/54
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8-55. If the 75-lb girl is at position d = 4 ft. determine the
minimum coefficient of static friction y, at contact points A
and 8 so that the plank does not slip. Neglect the weight of
the plank.

“8-56. If the coefficient of static friction at the contact
points A and B is i, = 0.4  determine the minimum distance
d where a 75-Ib girl can stand on the plank without causing it
to slip. Neglect the weight of the plank.

—

Probs. 8-35/56

*8-57. If cach box weighs 150 Ib, determine the least
horizontal force £ that the man must exert on the top box in
order to cause motion. The coefficient of static friction
between the boxes is u, = 0.5, and the coefficient of static
friction between the box and the floor is p; = 0.2.

8-58. If each box weighs 150 Ib. determine the least
horizontal force £ that the man must exert on the top box in
order to cause motion. The coefficient of static friction
between the boxes is ., = (.63, and the coefficient of static
friction between the box and the floor is w; = 0.35.

—30

Probs. 8-57/58




410 CHAPTER B FRICTION

8-59. If the coefficient of static friction between the collars
A and B and the rod is p, = 0.6, determine the maximum
angle @ for the system to remain in equilibrium, regardless of
the weight of eylinder D. Links AC and BC have negligible
weight and are connected together at C by a pin.

*8-60. If 0 = 15°, determine the minimum coefficient of
static friction between the collars A and B and the rod
required for the system to remain in equilibrium, regardless
of the weight of cylinder D. Links AC and BC have
negligible weight and are connected together at C by a pin.

8-62. Blocks A, B, and C have weights of 50 1b, 25 Ib, and
15 Ib, respectively. Determine the smallest horizontal force P
that will cause impending motion. The coefficient of static
friction between A and B is u, = 0.3, between B and
C. p, =04, and between block € and the ground,
a3 =035

Probs. 8-59/60

*8-61. Each of the cylinders has a mass of 50 kg. If the
coefficients of static friction at the points of contact are
py =05 pg =035 pc = 05.and p, = 0.6. determine the
smallest couple moment M needed to rotate cylinder £,

Prob. 8-61

Prob. §-62

8-63. Determine the smallest force P that will cause
impending motion. The crate and wheel have a mass of
50 kg and 25 kg. respectively. The coefficient of static
friction between the crate and the ground is g, = 0.2, and
between the wheel and the ground g}, = 0.5.

*8-64. Determine the smallest force P that will cause
impending motion. The crate and wheel have a mass of
50 kg and 25 kg, respectively. The coefficient of static
friction between the crate and the ground is g, = (1.5, and
between the wheel and the ground ) = 0.3.
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| | concepTuAL PROBLEMS

Is it more effective to move the load forward at #-3. The rope is used to tow the refrigerator. s it best to
cons:ani velocity with the boom fully extended as shown. or pull slightly up on the rope as shown, pull horizontally, or
should the boom be fully retracted? Power is supplied to pull somewhat downwards? Also, is it best to attach the
the rear wheels. The front wheels are free to roll. Do an rope at a high position as shown, or at a lower position? Do
equilibrium analysis to explain your answer. an equilibrium analysis to explain your answer.

P84, The rope is used to tow the refrigerator. In order to
prevent vourself from slipping while towing. is it best to pull
up as shown, pull horizontally. or pull downwards on the
rope? Do an equilibrium analysis to explain your answer,

P8-1

P8-2. The lug nut on the free-turning wheel is to be
removed using the wrench. Which is the most effective way
1o apply force to the wrench? Also, why is it best to keep the
car tire on the ground rather than first jacking it up?
Explain vour answers with an equilibrium analysis.

Py-3/4

P8-5. Is it easier to tow the load by applying a force along '

the tow bar when it is in an almost horizontal position as
shown. or is it better to pull on the bar when it has a steeper
slope? Do an equilibrium analysis to explain your answer.
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Wedges are often used to adjust the
clevation of structural or mechanical
parts. Also, they provide stability for
objects such as this pipe.

8.3 Wedges

A wedge 1s a simple machine that is often used to transform an applied
force into much larger forces, directed at approximately right angles to
the applied force. Wedges also can be used to slightly move or adjust
heavy loads.

Consider, for example, the wedge shown in Fig. 8-12a, which is used to
lift the block by applying a force to the wedge. Free-body diagrams of
the block and wedge are shown in Fig. 8-12b. Here we have excluded
the weight of the wedge since it is usually small compared to the weight
W of the block. Also, note that the frictional forces Fy and F, must
oppose the motion of the wedge. Likewise, the frictional force F; of the
wall on the block must act downward so as to oppose the block’s
upward motion. The locations of the resultant normal forces are not
important in the force analysis since neither the block nor wedge will
“tip.” Hence the moment equilibrium equations will not be considered.
There are seven unknowns, consisting of the applied force P, needed to
cause motion of the wedge, and six normal and frictional forces The
seven available equations consist of four force equilibrium equations,
XF, =0, XF, = Oapplied to the wedge and block, and three frictional
equations, F = pN, applied at the surface of contact.

If the block is to be lowered, then the frictional forces will all actin a
sense opposite to that shown in Fig. 8-12b. Provided the coefficient of
friction is very small or the wedge angle 8 is large, then the applied force
P must act to the right to hold the block. Otherwise, P may have a
reverse sense of direction in order to pull on the wedge to remove it. If P
is not applied and friction forces hold the block in place, then the wedge
is referred to as self-locking.

lw IF\
T_ N
F,—f—

F,
Impending :
- - =

; N, N
motion
(a) (h)

Fig. 8-12
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EXAMPLE |8.6

The uniform stone in Fig. 8-13a has a mass of 500 kg and is held in the
horizontal position using a wedge at B. If the coefficient of static
friction is u, = 0.3 at the surfaces of contact, determine the minimum
force P needed to remove the wedge. Assume that the stone does not
slip at A.

7
r
—~% n
Impendiog
p motion

Fig. 8-13

SOLUTION

The minimum force P requires F = p N at the surfaces of contact
with the wedge. The free-body diagrams of the stone and wedge are
shown in Fig. 8-13b. On the wedge the friction force opposes the
impending motion, and on the stone at A, Fy = p N 4, since slipping
does not occur there. There are five unknowns. Three equilibrium
equations for the stone and two for the wedge are available for
solution. From the free-body diagram of the stone,

C+HEM, = 0; —4905N(0.5m) + (Ngcos 7° N)(1 m)
+ (03Ngsin 7°N)(1m) =0
Np = 2383.I N

Using this result for the wedge, we have

+12F,=0; Ne—2383.1c0s7°N — 0.3(2383.1sin7°N) = 0
Ne = 24525N

S IF =0; 2383.1sin7°N — 0.3(2383.1cos 7°N) +
P — 03(24525N) = 0

P =11549N = 1L.15kN Ans.

NOTE: Since P is positive, indeed the wedge must be pulled out. If P
were zero, the wedge would remain in place (self-locking) and the
frictional forces developed at B and € would satisly Fg < pu Ny and
Fe < pN.
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Square-threaded screws
find applications on valves,
jacks, and vises, where
particularly large forces
must be developed along
the axis of the screw.

()

Fig. 8-14

8.4 Frictional Forces on Screws

In most cases screws are used as fasteners; however, in many types of
machines they are incorporated to transmit power or motion from one
part of the machine to another. A square-threaded screw is commonly used
for the latter purpose. especially when large forces are applied along its
axis. In this section we will analyze the forces acting on square-threaded
screws. The analysis of other types of screws, such as the V-thread, is based
on these same principles.

For analysis, a square-threaded screw, as in Fig. 8-14, can be considered
acylinder having an inclined square ridge or thread wrapped around it. If
we unwind the thread by one revolution, as shown in Fig. 8-14b, the slope
or the lead angle 8 is determined from # = tan™ '(//27r). Here | and 27r
are the vertical and hornizontal distances between A and B, where ris the
mean radius of the thread. The distance / is called the lead of the screw
and it is equivalent to the distance the screw advances when it turns one
revolution.

Upward Impending Motion. Let us now consider the case of a
square-threaded screw that is subjected to upward impending motion
caused by the applied torsional moment M, Fig. 8-15.* A free-body
diagram of the entire unraveled thread can be represented as a block as
shown in Fig. 8-14a. The force W is the vertical force acting on the
thread or the axial force applied to the shaft, Fig. 815, and M/r is
the resultant horizontal force produced by the couple moment M about
the axis of the shaft. The reaction R of the groove on the thread, has
both frictional and normal components, where F = p, N. The angle of
static friction is &, = tan"'(F/N) = tan"'u,. Applying the force
equations of equilibrium along the horizontal and vertical axes, we have

B EE =0, M/r— Rsin(d, +6) =0
+12F,=0; Rcos(d, +0) —W=0

Eliminating R from these equations, we obtain

‘ M = rW tan (&, + 0) (8-3)

(b)

*For applications, M is developed by applying a honizontal force P at a right angle to the
end of a lever that would be fixed to the screw.
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wlu

alal

Fig. 8-15

Self-Locking Screw. A screw is said to be self-locking if it remains
in place under any axial load W when the moment M is removed. For this
to occur, the direction of the frictional force must be reversed so that R
acts on the other side of N. Here the angle of static friction ¢, becomes
greater than or equal to 0, Fig. 8-164d. If &, = 0, Fig. 8-16b, then R will act
vertically to balance W, and the screw will be on the verge of winding
downward.

Downward Impending Motion. (&, > 0). If a screw is self-
locking, a couple moment M’ must be applied to the screw in the
opposite direction to wind the screw downward (é, > 6). This causes a
reverse horizontal force M'/r that pushes the thread down as indicated
in Fig. 8-16¢. Using the same procedure as before, we obtain

M’ = rWtan (0 — &,) (8—4)

Downward Impending Motion. (&, < #).1f the screw is not
self-locking, it is necessary to apply a moment M” to prevent the screw
from winding downward (¢, < #). Here, a horizontal force M"/r is
required to push against the thread to prevent it from sliding down the
plane, Fig. 8-16d. Thus, the magnitude of the moment M" required to
prevent this unwinding is

lM" = Wr tan (¢, — 0) (8-5)

If motion of the screw occurs, Eqs. 8-3, 84, and 8-5 can be applied by
simply replacing b, with .

Upward screw motion
(a)

Self-locking screw (8 = $y)
(on the verge of rotating downward)

(b)

Downward screw motion (8 < éy)
()
Fig. 8-16
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EXAMPLE |8.7

The turnbuckle shown in Fig. 8-17 has a square thread with a mean
radius of 5 mm and a lead of 2 mm. If the coefficient of static friction
between the screw and the tumbuckle is g, = 0.25, determine the
moment M that must be applied to draw the end screws closer
together.

3
X

SOLUTION
The moment can be obtained by applying Eq. 8-3. Since friction at
tweo screws must be overcome, this requires

M = 2[Wrian(0 + ¢)] (n

Here W = 2000N, r = 5mm, &, = tan' g, = tan"'(0.25) = 14.04°,
and 0 = tan”'(1/27r) = tan”"(2 mm/[27(5 mm)]) = 3.64°. Substituting
these values into Eq. | and solving gives

M

2[(2000 N)(5 mm) tan(14.04° + 3.647)]

[}

63747 N-mm = 6.37N-m Ans.

NOTE: When the moment is removed, the turnbuckle will be self-
locking; 1.e., it will not unscrew since ¢, > #.
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Cleromiems

*8-65. Determine the smallest horizontal force P required
to pull out wedge A.The crate has a weight of 300 Ib and the
coefficient of static friction at all contacting surfaces is
i, = 0.3. Neglect the weight of the wedge.

“8-68. 'The wedge has a negligible weight and a coefficient
of static friction wu, = .35 with all contacting surfaces.
Determine the largest angle ¢ so that it is “self-locking.”
‘This requires no slipping for any magnitude of the force P
applied to the joint.

Prob. 8-65

8-66. Determine the smallest horizontal force £ required
to lift the 200-kg crate. The coefficient of static friction at
all contacting surfaces is p, = (L.3. Neglect the mass of
the wedge.

Prob. 8-66

8-67. Determine the smallest horizontal force P required
to lift the 100-kg cylinder. The coefficients of static friction
at the contact points A and B are (w,), =0.6 and
(e, )p = 0.2, respectively: and the coefficient of static
friction between the wedge and the ground is p, = 0.3,

Prob, 868

*8-69. Determine the smallest horizontal force P
required to just move block A to the right if the spring force
is 600 N and the coefficient of static friction at all contacting
surfaces on A is u, = 0.3. The sleeve at € is smooth. Neglect
the mass of A and B.

Prob. 869

870. The three stone blocks have weights of
W, =6001b, Wy = 1501b, and W, = 5001b. Determine
the smallest horizontal force P that must be applied to
block C in order to move this block, The coefficient of static
friction between the blocks is p, = 0.3, and between the
floor and each block w| = 0.5.

Prob. 8-70




418 CHAPTER B FRICTION

8-71. Determine the smallest horizontal force P required
to move the wedge to the right. The coefficient of static
friction at all contacting surfaces is g, = 0.3, Set # = 15°
and F = 400 N. Neglect the weight of the wedge.

*8-72. If the horizontal force P is removed, determine the
largest angle # that will cause the wedge to be self-locking
regardless of the magnitude of force F applied to the
handle. The coefficient of static friction at all contacting
surfaces is u, = 0.3.

Probs, 8-71/72

*8-73. Determine the smallest vertical force P required to
hold the wedge between the two identical cylinders, each
having a weight of W. The coefficient of static friction at all
contacting surfaces is p, = (L.1.

8-74. Determine the smallest vertical force P required to
push the wedge between the two identical cylinders, each
having a weight of W.The coefficient of static friction at all
contacting surfaces is p, = 0.3,

.

Probs, 8-73/74

8-75. If the uniform concrete block has a mass of 500 kg,
determine the smallest horizontal force P needed to move
the wedge to the left. The coefficient of static friction
between the wedge and the concrete and the wedge and the
floor is w, = 0.3. The coefficient of static friction between
the concrete and floor is ) = 0.5.

Prob. 8-75

*8-76. The wedge blocks are used to hold the specimen
in a tension testing machine. Determine the largest design
angle f of the wedges so that the specimen will not slip
regardless of the applied load. The coefficients of static
friction are p4 = 0.1 at A and py = 0.6 at B, Neglect the
weight of the blocks.

P

Prob. 8-76



*8-77. The square threaded screw of the clamp has a
mean diameter of 14 mm and a lead of 6 mm. If u, = 0.2 for
the threads, and the torque applied to the handle is
1.5 N - m, determine the compressive force F on the block.

Prob. 8-77

8-78. The device is used to pull the battery cable terminal
C from the post of a battery. If the required pulling force is
85 Ib, determine the torque M that must be applied to the
handle on the screw to tighten it. The screw has square
threads, a mean diameter of 0.2 in., a lead of 0,08 in., and the
coefficient of static friction is u, = 0.5,
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8-79. The jacking mechanism consists of a link that has a
square-threaded screw with a mean diameter of 0.5 in.and a
lead of 0.20 in., and the coefficient of static friction is
p, = 0.4, Determine the torque M that should be applied to
the screw to start lifting the 6000-Ib load acting at the end of
member ABC.

6000 Th

20 in, ——=—15in. —-l- 10in."~

Prob. 8-79

“8-80. Determine the magnitude of the horizontal force P
that must be applied to the handle of the bench vise in order
to produce a clamping force of 600 N on the block. The
single square-threaded screw has a mean diameter of
25 mm and a lead of 7.5 mm. The coefficient of static
friction is g, = 0.25.

*8-81. Determine the clamping force exerted on the
block if a force of P = 30 N is applied to the lever of the
bench vise, The single square-threaded screw has a mean
diameter of 25 mm and a lead of 7.5 mm. The coefficient of
static friction is p, = 0.25.

Probs. 8-80/81
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8-82. Determine the required horizontal force that must
be applied perpendicular to the handle in order to develop
a 900-N clamping force on the pipe. The single square-
threaded screw has a mean diameter of 25 mm and a lead of
5 mm. The coefficient of static friction is u, = 0.4. Note: The
screw is a two-force member since it is contained within
pinned collars at A and B.

8-83. If the clamping force on the pipe is 900 N,
determine the horizontal force that must be applied
perpendicular to the handle in order to loosen the screw.
The single square-threaded screw has a mean diameter of
25 mm and a lead of 5 mm. The coefficient of static friction
15 p, = 0.4, Note: The screw is a two-force member since it
is contained within pinned collars at A and B.

“8-84. The clamp provides pressure from several directions
on the edges of the board. If the square-threaded screw hasa
lead of 3 mm, mean radius of 10 mm. and the coefficient of
static friction is p, = 0.4, determine the horizontal force
developed on the board at A and the vertical forces
developed at B and Cif a torque of M = 1.5 N+-m is applied
to the handle to tighten it further. The blocks at B and C are
pin connected to the board.

*8-85. I the jack supports the 200-kg crate, determine the
horizontal force that must be applied perpendicular to the
handle at E to lower the crate. Each single square-threaded
screw has a mean diameter of 25 mm and a lead of 7.5 mm.
The coefficient of static friction is u, = (.25,

8-86, If the jack is required to lift the 200-kg crate,
determine the horizontal force that must be applied
perpendicular to the handle at £. Each single square-
threaded screw has a mean diameter of 25 mm and a lead of
7.5 mm. The coefficient of static friction is p, = (.25,

8-87. The machine part is held in place using the
double-end clamp. The bolt at B has square threads with a
mean radius of 4 mm and a lead of 2 mm. and the
coefficient of static friction with the nut is u, = 05. If a
torque of M = 0.4 N-m is applied to the nut 1o tighten i1,
determine the normal force of the clamp at the smooth
contacts A and C.
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8.5 Frictional Forces on Flat Belts

Whenever belt drives or band brakes are designed, it is necessary to Motion or impending
determine the frictional forces developed between the belt and its :’::::;:::b‘:l' xelatiee
contacting surface. In this section we will analyze the frictional forces s,
acting on a flat belt, although the analysis of other types of belts, such as
the V-belt, is based on similar principles.

Consider the flat belt shown in Fig. 8-18a, which passes over a fixed
curved surface. The total angle of belt to surface contact in radians is 3,
and the coefficient of [riction between the two surfaces is u. We wish to
determine the tension T, in the belt, which is needed to pull the belt
counterclockwise over the surface, and thereby overcome both the
frictional forces at the surface of contact and the tension T in the other
end of the belt. Obviously, T> > T,

Frictional Analysis. A free-body diagram of the belt segment in
contact with the surface is shown in Fig. 8-18b. As shown, the normal and
frictional forces, acting at different points along the belt, will vary both in
magnitude and direction. Due to this unknown distribution, the analysis
of the problem will first require a study of the forces acting on a
differential element of the belt.

A free-body diagram of an element having a length ds is shown in
Fig. 8-18¢. Assuming either impending motion or motion of the belt,
the magnitude of the frictional force dF = p dN. This force opposes
the sliding motion of the belt, and so it will increase the magnitude
of the tensile force acting in the belt by d7. Applying the two force
equations of equilibrium, we have

NHEF =0 Tcos(%g) + pdN — (T + dT) cos(d—,-ﬂ) =0
+AZF, =0 dN — (T + dT) sin(‘?) - Tsin(%ﬂ) =0

Since d is of infinitesimal size, sin(d0/2) = d#/2 and cos(df/2) = 1.
Also, the product of the two infinitesimals d 7" and d#/2 may be neglected
when compared to infinitesimals of the first order. As a result, these two
cquations become

T+dT

wdN = dT
and
AN =T do
Eliminating dN yiclds
dr _ - (c)

T Fig. 8-18



422 CHAPTER B FRICTION

Flat or V-belts are often used to transmit
the torque developed by a motor to a
wheel attached to a pump. fan or blower.

Motion or impending
motion of belt relative
to surface

Integrating this equation between all the points of contact that the belt
makes with the drum. and noting that T =T, at # =0and T =T, at

0 = g, yields
Ty 4 8
.[: %{- = ,ul do

Solving for T5. we obtain

T: = Tlﬂ‘“‘e | (8"6)
where

T-. T, = belt tensions; Ty opposes the direction of motion (or
impending motion) of the belt measured relative to the
surface, while 7'; acts in the direction of the relative belt
motion (or impending motion); because of friction,
T,>T,

w = coefficient of static or kinetic friction between the belt
and the surface of contact

B = angle of belt 1o surface contact, measured in radians

e = 2.718..., base of the natural logarithm

Note that T is independent of the radius of the drum, and instead it is
a function of the angle of belt to surface contact, B. As a result, this
equation is valid for flat belts passing over any curved contacting surface.
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EXAMPLE |8.8

The maximum tension that can be developed in the cord shown in
Fig. 8-19a 15 500 N. If the pulley at A is free to rotate and the coefficient
of static friction at the fixed drums B and C'is g, = 0.25, determine the
largest mass of the cylinder that can be lifted by the cord.

(a)

SOLUTION

Lifting the cylinder, which has a weight W = mig. causes the cord to
move counterclockwise over the drums at B and C; hence. the
maximum tension 7' in the cord occurs at . Thus, F = T, = 500 N.
A section of the cord passing over the drum at B is shown in
Fig. 8-19b. Since 180" = 4 rad the angle of contact between the drum
and the cordis g = (1357/180")7 = 37 /4 rad. Using Eq. 8-6, we have

Ty = Tyet#, 500N = T3]

Hence,

500N 500N
T = e~ 50~ AN

Since the pulley at A is free to rotate, equilibrium requires that the
tension in the cord remains the same on both sides of the pulley.

The section of the cord passing over the drum at C is shown in
Fig. 8-19¢. The weight W < 277.4 N. Why? Applying Eq. 8-6, we obtain

Ty = Te*#; 2774 N = W 2l(34)7]
W =1539N
s0 that
w 1539N
M = === re—————
i 9.81 m/s
= 15.7 kg Tis

Impending
maetion, -~
rs
135° B
Ty
SOON
(b}
Impending
motion_ - -
; B 135°

2774 N
W=mg

(c)
Fig. 8-19

423
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“leromiems

“8-88. Blocks A and B8 weigh 50 b and 30 b, respectively,
Using the coefficients of static friction indicated, determine
the greatest weight of block D without causing motion.

*8-89. Blocks A and B weigh 75 Ib each. and D weighs
30 Ib. Using the coefficients of static friction indicated,
determine the frictional force between blocks A and B and
between block A and the floor C.

Probs. 8-88/89

8-90. A cylinder having a mass of 250 kg is to be
supported by the cord which wraps over the pipe.
Determine the smallest vertical force F needed to support
the load if the cord passes (a) once over the pipe, g = 180",
and (b) two times over the pipe, 8 = 540°. Take p, = 0.2,

Prob, 8-90

8-91. A cylinder having a mass of 250 kg is to be
supported by the cord which wraps over the pipe.
Determine the largest vertical force F that can be applied
to the cord without moving the cylinder. The cord passes
(a) once over the pipe. § = 180", and (b) two times over the
pipe. B = 540°. Take p, = 0.2. f

Prob. $-91

*8-92. The boat has a weight of 500 Ib and is held in
position off the side of a ship by the spars at A and 8. A man
having a weight of 130 Ib gets in the boat, wraps a rope
around an overhead boom at C. and ties it to the end of the
boat as shown. If the boat is disconnected from the spars,
determine the minimum number of half wirns the rope must
make around the boom so that the boat can be safely
lowered into the water at constant velocity. Also, what is the
normal force between the boat and the man? The coefficient
of kinetic friction between the rope and the boom is
u, = 0.15. Hint. The problem requires that the normal force
between the man'’s feet and the boat be as small as possible.
¢

Prob, 8-92



*8-93. The 100-Ib boy at A is suspended from the cable
that passes over the quarter circular cliff rock. Determine if
it is possible for the 185-1b woman to hoist him up: and if
this is possible, what smallest force must she exert on the
horizontal cable? The coefficient of static friction between
the cable and the rock is s, = 0.2, and between the shoes of
the woman and the ground u, = 0.8.

8-94. The 100-1b boy at A is suspended from the cable
that passes over the quarter circular cliff rock. What
horizontal force must the woman at A exert on the cable in
order to let the boy descend at constant velocity? The
coefficients of static and kinetic friction between the cable
and the rock are p, = 0.4 and p; = .35, respectively.

2

Probs. 8-93/94
8-95. A 10-kg cylinder D, which is attached to a small
pulley B. is placed on the cord as shown. Determine the
smallest angle # so that the cord does not slip over the peg at
C.The cylinder at £ has a mass of 10 kg, and the coelficient
of static friction between the cord and the peg is u, = (.1.

“8-96. A 10-kg cylinder D, which is attached to a small
pulley B, is placed on the cord as shown. Determine the
largest angle # so that the cord does not slip over the peg at
C. The cylinder at £ has a mass of 10 kg. and the coefficient
of static friction between the cord and the peg is ., = 0.1.
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*8-97. Determine the smallest lever force I needed 10
prevent the wheel from rotating if it is subjected to a torque
of M = 250 N -m. The coefficient of static friction between
the belt and the wheel is p, = 0.3. The wheel is pin
connected at its center. B.

8-98. If a force of = 200N is applicd to the handle of
the bell crank. determine the maximum torque M that can
be resisted so that the flywheel is not on the verge of
rotating clockwise. The coefficient of static friction between
the brake band and the rim of the wheel is g, = 0.3

Prob. 8-98
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8-99. Show that the frictional relationship between the
belt tensions, the coefficient of friction u, nnd the angular
contacts a and g for the V-beltis Ty = T'erfsnlo/2),

Prob, 899

*8-100. Determine the force developed in spring AB in
order to hold the wheel from rotating when it is subjected
to a couple moment of M = 200 N -m. The coefficient of
static friction between the belt and the rim of the wheel is
#, = 0.2, and between the belt and peg C, u) = 04, The
pulley at B is free to rotate.

*8-101. If the tension in the spring is Fyy = 25kN,
determine the largest couple moment that can be applied to
the wheel without causing it to rotate. The coefficient of
static friction between the belt and the wheel is g, = 0.2,
and between the belt the peg p) = 0.4. The pulley B free to
rotate.

8-102. The simple band brake is constructed so that the
ends of the friction strap are connected to the pin at A and
the lever arm at B. If the wheel is subjected to a torque of
M = 80 Ib- ft, determine the smallest force P applied to the
lever that is required to hold the wheel stationary. The
coefficient of static friction between the strap and wheel is
o, = 035,

Prob. 8102

8-103. A [80-Ib farmer tries to restrain the cow from
escaping by wrapping the rope two turns around the tree
trunk as shown. If the cow exerts a force of 250 Ib on the
rope, determine if the farmer can successfully restrain the
cow. The coefficient of static friction between the rope and
the tree trunk is g, = 0.15, and between the farmer’s shoes
and the ground p; = 0.3,

Probs. 8-100/101

Prob. 8-103



*B-104. The uniform 50-Ib beam is supported by the rope
which is attached to the end of the beam, wraps over the
rough peg. and is then connected to the 100-Ib block. If
the coefficient of static friction between the beam and the
block, and between the rope and the peg, is p, = 04,
determine the maximum distance that the block can be
placed from A and still remain in equilibrium. Assume the
block will not tip.

+——

™~ 101t (|

Prob. 8-104

*8-105. The 80-kg man tries to lower the 150-kg crate
using a rope that passes over the rough peg. Determine the
least number of full turns in addition to the basic wrap
(1657) around the peg to do the job. The coefficients of
static friction between the rope and the peg and between
the man’s shoes and the ground are g, = 0.1 and g, = 04,
respectively,

8-106. If the rope wraps three full turns plus the basic
wrap (165°) around the peg. determine if the 80-kg man can
keep the 300-kg crate from moving. The coefficients of
static friction between the rope and the peg and between
the man’s shoes and the ground are p, = 0.1 and p; = 04,
respectively.

Probs. 8-105/106
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8-107. The drive pulley B in a video tape recorder is on
the verge of slipping when it is subjected to a torque of
M = 0,005 N - m. If the coefficient of static friction between
the tape and the drive wheel and between the tape and the
fixed shafts A and Cis , = 0.1, determine the tensions T,
and 7', developed in the tape for equilibrium.

Prob. 8-107

*8-108. Determine the maximum number of 50-Ib packages
that can be placed on the belt without causing the belt to
slip at the drive wheel A which is rotating with a constant
angular velocity. Wheel B is free to rotate. Also, find the
corresponding torsional moment M that must be supplied
to wheel A. The conveyor belt is pre-tensioned with the
300-1b horizontal force. The coefficient of kinetic friction
between the belt and platform £ is p, = 0.2, and the
coefficient of static friction between the belt and the rim of
each wheel is g, = 0.35.

Prob. 8-108
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*8-109. Blocks A and B have a mass of 7 kg and 10 kg,
respectively. Using the coefficients of static friction
indicated, determine the largest vertical force P which can
be applied to the cord without causing motion,

8-111. Block A has a weight of 100 Ib and rests on a
surface for which p, = 0.25. If the coefficient of static
friction between the cord and the fixed peg at Cis g, = 0.3,
determine the greatest weight of the suspended cylinder B
without causing motion.

TFZ'[I -

Prob. 8-109

8-110. Blocks A and B have a mass of 100 kg and 150 kg,
respectively. If the coefficient of static friction between A
and B and between B and C is g, = 0.25, and between the
ropes and the pegs D and E pu = 0.5, determine the
smallest force F needed to cause motion of block B if
P = 30N.

Prob. 8-110

Prob. 8-111

*8-112. Block A has a mass of 50 kg and rests on surface
B for which g, = 0.25. If the coefficient of static friction
between the cord and the fixed peg at C is u; = 0.3,
determine the greatest mass of the suspended cylinder D
without causing motion.

*8-113. Block A has a mass of 50 kg and rests on surface
B for which g, = 0.25. If the mass of the suspended cylinder
D is 4 kg, determine the frictional force acting on A and
check if motion occurs. The coefficient of static friction
between the cord and the fixed peg at Cis u} = 0.3,

Probs. 8-112/113
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*8.6 Frictional Forces on Collar Bearings,
Pivot Bearings, and Disks

Pivor and collar bearings are commonly used in machines to support an
axial load on a rotating shaft. Typical examples are shown in Fig. 8-20.
Provided these bearings are not lubricated, or are only partially lubricated,
the laws of dry friction may be applied to determine the moment needed
to turn the shaft when it supports an axial force.

Pivol bearing
a
@) R.

Collar bearing
(b)

Fig. 8-20

Frictional Analysis. The collar bearing on the shaft shown in
Fig. 8-21 is subjected to an axial force P and has a total bearing or contact
arca w(R3 — R}). Provided the bearing is new and evenly supported,
then the normal pressure p on the bearing will be uniformly distributed
over this area. Since X F . = 0, then p, measured as a force per unit area,
isp=P/n(R}— R}).

The moment needed to cause impending rotation of the shaft can be
determined from moment equilibrium about the z axis. A differential
area clement dA = (r d0)(dr), shown in Fig. 8-21,is subjected to both a
normal force dN = p d A and an associated frictional force,

uP

dF = p,dN = dA =———2 =
Hs Hsp ‘ﬂ'(R% R

dA

Fig. 8-21

429
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The motor that turns the disk of this
sanding machine develops a torque that
must overcome the frictional forces
acting on the disk.

Fig. 8-21 (Repeated)

The normal force does not create a moment about the z axis of the
shaft; however, the frictional force does; namely.dM = r dF. Integration
1s needed to compute the applied moment M needed to overcome all the
frictional forces. Therefore, for impending rotational motion,

IM.=0; M - /r dF =0
A

Substituting for dF and dA and integrating over the entire bearing area
yields

Ry p2w “ i u P R: 2
M= = ;,.!. - 10 dry = ,.1..’_. S 2 0
1 ./R. [ !{W(RE - RI)](r{ dr) (R — R) j.;: J“o"r‘l: d

or

2 R - R-:)
M=ZpuPl—=—0m 8-7
e (R-: R (8-7)
The moment developed at the end of the shaft, when it is rotating at
constant speed, can be found by substituting g for p, in Eq. 8-7.
In the case of a pivot bearing, Fig. 8-20a,then R, = Rand R = 0, and
Eq. 8-7 reduces to

5
M = SuPR (8-8)

Remember that Egs. 8-7 and 8-8 apply only for bearing surfaces
subjected to constant pressure. 1f the pressure is not uniform. a variation
of the pressure as a function of the bearing area must be determined
before integrating to obtain the moment. The following example
illustrates this concept.
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EXAMPLE |8.9

The uniform bar shown in Fig. 8224 has a weight of 4 Ib. If it is
assumed that the normal pressure acting at the contacting surface
varies lincarly along the length of the bar as shown, determine the
couple moment M required to rotate the bar. Assume that the bar’s
width is negligible in comparison to its length. The coefficient of static
friction is equal to g, = 0.3.

SOLUTION

A free-body diagram of the bar is shown in Fig, 8-22b. The intensity
wy of the distributed load at the center (x = 0) is determined from
vertical force equilibrium, Fig. 8-22a. (a)

+13F, =0 —41b + 2[%(21’()1»",] =0 wy=2Ib/ft
Since w = 0 at x = 2 {t, the distributed load expressed as a function
of xis

X

w=(2 lb,-’It)(l - ﬁ) =2—x

The magnitude of the normal force acting on a differential segment of
area having a length dx is therefore

dN = wdx = (2 — x)dx

The magnitude of the frictional force acting on the same element of
area is

dF = pydN = 03(2 — x)dx
Henee, the moment created by this foree about the 7 axis is
dM = xdF = 03(2x — PH)dx

The summation of moments about the z axis of the bar is determined
by integration, which yields

]

SM,=0; M- 2] (03)2x — D dr =0
(]

;
2 X°
M= 0'6(“ 3 ) " (v)

M =081b-fi Ans. Fig. 8-22




432 CHAPTER 8 FRICTION

Unwinding the cable from this spool
requires overcoming friction from the
supporting shaft.

Rotation

Fig. 8-23

8.7 Frictional Forces on Journal Bearings

When a shaft or axle is subjected to lateral loads, a journal bearing is
commonly used for support. Provided the bearing is not lubricated, or is
only partially lubricated, a reasonable analysis of the frictional resistance
on the bearing can be based on the laws of dry friction.

Frictional Analysis. A typical journal-bearing support is shown in
Fig. 8-23a. As the shaft rotates, the contact point moves up the wall of the
bearing to some point A where slipping occurs. If the vertical load acting
at the end of the shaft is P, then the bearing reactive force R acling at A
will be equal and opposite to P, Fig. 8-23h. The moment needed to
maintain constant rotation of the shaft can be found by summing
moments about the z axis of the shaft; i.c.,

IM. =10 M = (Rsindy)r =0
or
M = Rrsindy (8-9)

where ¢, is the angle of kinetic friction defined by tand, =
FIN = iuN/N = p;. In Fig. 8-23¢, it is seen that rsindy; = rp. The
dashed circle with radius 7; is called the friction circle. and as the shaft
rotates, the reaction R will always be tangent to it. If the bearing is partially
lubricated, p; is small, and therefore sin ¢, = tan ¢ = p;. Under these
conditions, a reasonable approximation to the moment needed to
overcome the frictional resistance becomes

M = Rrp, (8-10)

In practice, this type of journal bearing is not suitable for long service
since friction between the shaft and bearing will wear down the surfaces.
Instead, designers will incorporate “ball bearings” or “rollers™ in journal
bearings to minimize frictional losses,




8.7 FricnonaL Forces on JournaL BEARINGS

EXAMPLE |8.10

The 100-mm-diameter pulley shown in Fig. 8-24a fits looscly on a
10-mm-diameter shaft for which the coefficient of static friction is
wu, = 0.4. Determine the minimum tension 7' in the belt needed to
(a) raise the 100-kg block and (b) lower the block. Assume that no
slipping occurs between the belt and pulley and neglect the weight of
the pulley.

50 mm

100 kg T (a)

SOLUTION
Part (a). A free-body diagram of the pulley is shown in Fig, 8-24b.
When the pulley is subjected to belt tensions of 981 N each, it makes
contact with the shaft at point Py. As the tension T is increased. the
contact point will move around the shaft to point P, before motion
impends. From the figure, the f[riction circle has a radius
ry = rsin ¢,. Using the simplification that sin ¢, = tan ¢, = u, then
rp = ry=(Smm)(0.4) = 2mm, so that summing moments about
P gives
C+SEMp, = 0. 98I N(52mm) — T(48 mm) = 0

; T = 1063N = 1.06 kN Ans.
If a more exact analysis is used, then ¢, = tan™" 0.4 = 21.8°. Thus, the
radius of the friction circle would be r, = rsind, = 5sin 21.8° =
1.86 mm. Therefore.

CH+EMp, = (;
981 N(50 mm + 1.86 mm) — T(50 mm — .86 mm) = 0

T = 1057N = 106 kN Ans.
Part (b). When the block is lowered, the resultant force R acting
on the shaft passes through point as shown in Fig. 8-24¢. Summing
moments about this point yields
C+EMp, = 0; 981 N(48mm) — 7(52mm) = 0

T =906N Ans.

NOTE: The difference between raising and lowering the block is
thus 157 N.

Impending
+ motion
A}
\J
an
|
0
h o o 1y
= ‘k\ Impending
\ motion
I/ 5 i \
’ ..". |
198[ N T

‘4.‘5 n;nr.ﬁl l.11ﬂ| i
(¢)

Fig. §-24
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Rigid surface of contact

(a)

Ny

(c)

Z by

Soft surface of contact
(b)

)

Fig. 8-25

*8.8 Rolling Resistance

When a rigid cylinder rolls at constant velocity along a rigid surface, the
normal force exerted by the surface on the cylinder acts perpendicular to
the tangent at the point of contact, as shown in Fig. 8-254. Actually,
however, no materials are perfectly rigid, and therefore the reaction of the
surface on the cylinder consists of a distribution of normal pressure. For
example, consider the cylinder to be made of a very hard material. and the
surface on which it rolls to be relatively soft. Due to its weight, the cylinder
compresses the surface underneath it, Fig. 8-25b. As the cylinder rolls, the
surface material in front of the cylinder retards the motion since it is being
deformed, whereas the matenal in the rear is restored from the deformed
state and therefore tends to push the cylinder forward. The normal
pressures acting on the cylinder in this manner are represented in Fig. 8-25b
by their resultant forces Ny and N,. Because the magnitude of the force of
deformation, N, and its horizontal component is always greater than that
of restoration, N,, and consequently a horizontal driving force P must be
applied to the cylinder to maintain the motion. Fig. 8-25b.*

Rolling resistance is caused primarily by this effect, although it is also,
to a lesser degree, the result of surface adhesion and relative micro-
sliding between the surfaces of contact. Because the actual force P
needed to overcome these effects is difficult to determine, a simplified
method will be developed here to explain one way engincers have
analyzed this phenomenon. To do this, we will consider the resultant of
the entire normal pressure, N = N, + N,. acting on the cylinder,
Fig. 8-25c. As shown in Fig. 8-254. this force acts at an angle ¢ with the
vertical. To keep the cylinder in equilibrium, i.e., rolling at a constant
rate, it is necessary that N be concurrent with the driving force P and the
weight W. Summing moments about point A gives Wa = P(rcos ).
Since the deformations are generally very small in relation to the
cylinder’s radius, cos # = 1; hence,

Wa = Pr
oar
W
Px—t (8-11)

The distance a is termed the coefficient of rolling resistance, which
has the dimension of length. For instance, a = 0.5 mm for a wheel
rolling on a rail, both of which are made of mild steel. For hardened

*Actually, the deformation force Ny causes energy 1o be stored in the material as its
magnitude is increased. whereas the restoration foree N,. as its magnitude is decreased.
allows some of this energy to be released. The remaining energy is lost since it is used to
heat up the surface, and if the eylinder’s weight is very large. it accounts for permanent
deformation of the surface. Work must be done by the horizontal force P to make up for
this loss.



steel ball bearings on steel, @ = 0.1 mm. Experimentally, though, this
factor is difficult to measure, since it depends on such parameters as
the rate of rotation of the cylinder, the elastic properties of the
contacting surfaces, and the surface finish. For this reason, little
reliance is placed on the data for determining a. The analysis presented
here does, however, indicate why a heavy load (W) offers greater
resistance to motion (P) than a light load under the same conditions.
Furthermore, since Wa/r is generally very small compared to g W, the
force needed to roll a cylinder over the surface will be much less than
that needed to shide it across the surface. It is for this reason that a
roller or ball bearings are often used to minimize the frictional
resistance between moving parts.
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Rolling resistance of railroad wheels on the
rails is small since steel is very stiff. By
comparison, the rolling resistance of the
wheels of a tractor in a wet ficld s very large.

EXAMPLE |8.11

A 10-kg steel wheel shown in Fig. 8-26a has a radius of 100 mm and
rests on an inclined plane made of soft wood. If # is increased so that
the wheel begins to roll down the incline with constant velocity when
# = 1.2° determine the coefficient of rolling resistance.

(a)

SOLUTION

As shown on the free-body diagram, Fig. 8-26b, when the wheel has
impending motion, the normal reaction N acts at point A defined by the
dimension a. Resolving the weight into components parallel and
perpendicular to the incline. and summing moments about point A, yields

CH+HEM, =0;
— (98.1 cos 1.2° N)(a) + (98.1 sin 1.2° N)(100 cos 1.2° mm) = 0
Solving, we obtain
a = 2.09mm Ans.

98.1 cos 1.2 Ny
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“lerogiams

8-114. The collar bearing uniformly supports an axial
force of PP = 800 1b. If the coefficient of static friction is
p, = 0.3, determine the torque M required to overcome
friction.

8-115. The collar bearing uniformly supports an axial
force of P = 500 1b. If a torque of M = 3 1b- ftis applied to
the shaft and causes it to rofate at constant velocity,
determine the coefficient of kinetic friction at the surface of
contact.

Probs. 8-114/115

*8-116. If the spring exerts a force of 900 Ib on the block,
determine the torque M required to rotate the shaft. The
coefficient of static friction at all contacting surfaces is
p, =03,

*8-117. The disk clutch is used in standard transmissions
of automobiles. If four springs are used to force the two
plates A and B 1ogether, determine the force in each spring
required to transmit a moment of M = 600 Ib - ft across the
plates. The coefficient of static friction between A and B is
p, = 03,

Prob. 8-117

8-118. If P = 900N is applied to the handle of the bell
crank, determine the maximum torque M the cone clutch
can transmit. The coefficient of static friction at the
contacting surface is g, = 0.3,

Prob. 8-116

Prob. §-118



8-119. Because of wearing at the edges, the pivot bearing
is subjected to a conical pressure distribution at its surface
of contact. Determine the torque M required to overcome
friction and turn the shaft, which supports an axial force P.
The coefficient of static friction is u,. For the solution, it is
necessary to determine the peak pressure py in terms of P
and the bearing radius R.

Prob. §-119

“8-120. The pivol bearing is subjected to a parabolic
pressure distribution at its surface of contact. If the
coefficient of static friction is u,, determine the torque M
required to overcome friction and turn the shaft if it
supports an axial force P.

P
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*8-121. The shaft is subjected to an axial force P. If the
reactive pressur¢ on the conical bearing is uniform.
determine the torque M that is just sufficient to rotate the
shaft. The coefficient of static friction at the contacting
surface is p,.

Prob. 8-121

8-122. 'The tractor is used to push the 1500-Ib pipe. To do
this it must overcome the frictional forces at the ground,
caused by sand. Assuming that the sand exerts a pressure on
the bottom of the pipe as shown. and the coefficient of static
friction between the pipe and the sand is g, = 0.3,
determine the horizontal force required to push the pipe
forward. Also, determine the peak pressure py.

Prob, 8-122
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8-123. The conical bearing is subjected to a constant
pressure distribution at its surface of contact. If the
coefficient of static friction is g,, determine the torque M
required to overcome friction if the shaft supports an axial
force P.

Prob. 8-123

*8-124. Assuming that the variation of pressure al the
bottom of the pivot bearing is defined as p = po(Ry/r).
determine the torque M needed to overcome friction if the
shaft is subjected to an axial force P.The coefficient of static
friction is w,. For the solution, it is necessary lo determine
Poin terms of P and the bearing dimensions R, and K.

Prob. 8-124

*8-125. The shaft of radius r fits loosely on the journal
bearing. If the shaft transmits a vertical force P to the
bearing and the coefficient of Kinetic friction between the
shaft and the bearing is p;. determine the torque M
required to turn the shaft with constant velocity.

Prob. 8-125

8-126. The pulley is supported by a 25-mm-diameter pin.
If the pulley fits loosely on the pin, determine the smallest
force P required to raise the bucket. The bucket has a mass
of 20 kg and the coefficient of static friction between the
pulley and the pin is g, = 0.3. Neglect the mass of the
pulley and assume that the cable does not slip on the pulley.

8-127. The pulley is supported by a 25-mm-diameter pin.
If the pulley fits loosely on the pin, determine the largest
force P that can be applied to the rope and yet lower the
bucket. The bucket has a mass of 20 kg and the coefficient
of static friction between the pulley and the pin is u, = 0.3,
Neglect the mass of the pulley and assume that the cable
does not slip on the pulley.

Probs. §-126/127



*8-128. The cylinders are suspended from the end of the
bar which fits loosely into a 40-mm-diameter pin. If A has a
mass of 10 kg, determine the required mass of B which is
just sufficient to keep the bar from rotaling clockwise. The
coefficient of static friction between the bar and the pin is
s = 0.3. Neglect the mass of the bar.

*8-129. The cylinders are suspended from the end of the
bar which fits loosely into a 40-mm-diameter pin. If A has a
mass of 10 kg. determine the required mass of B which is just
sufficient to keep the bar from rotating counterclockwise.
The coefficient of static friction between the bar and the pin
is i, = 0.3. Neglect the mass of the bar.

- 600 mm —

e 800 mm

Probs. 8-128/129

8-130. The connecting rod is attached to the piston by
a (L.75-in.-diameter pin at B and to the crank shaft by a
2-in.-diameter bearing A. If the piston is moving
downwards. and the coefficient of static friction at the
contact points is p, = 0.2, determine the radius of the
friction circle at each connection.

8-131. The connecting rod is attached to the piston by a
20-mm-diameter pin at B and to the crank shaft by a
S0-mm-diameter bearing A. If the piston is moving
upwards, and the coefficient of static friction at the contact
points is g, = 0.3, determine the radius of the friction circle
at each connection.

Probs. 8-130/131
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*8-132. The 5-kg pulley has a diameter of 240 mm and the
axle has a diameter of 40 mm. If the coefficient of kinetic
friction between the axle and the pulley is py = (.15,
determine the vertical force P on the rope required to lift
the 80-kg block at constant velocity.

*8-133. Solve Prob. 8-132 if the force P is applied
horizontally to the right.

Probs. 8-132/133

8-134. The bell crank fits loosely into a 0.5-in-diameter
pin. Determine the required force  which is just sufficient
to rotate the bell crank clockwise. The coefficient of static
friction between the pin and the bell erank is p, = 0.3,

8-135. The bell crank fits loosely into a 0.5-in-diameter
pin. If P = 41 lb, the bell crank is then on the verge of
rotating counterclockwise. Determine the coefficient of
static friction between the pin and the bell crank.

Probs. 8-134/135
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*8-136. The wagon together with the load weighs 150 Ib.
If the coefficient of rolling resistance is @ = 0.03 in..
determine the force P required to pull the wagon with
constant velocity.

Prob. 8-136

*8-137. The lawn roller has a mass of 80 kg, If the arm BA
is held at an angle of 30 from the horizontal and the
coefficient of rolling resistance for the roller is 25 mm.
determine the force P needed to push the roller at constant
speed. Neglect friction developed at the axle. A. and assume
that the resultant force P acting on the handle is applied
along arm BA. P

Prob. 8-137
8-138. Determine the force P required to overcome
rolling resistance and pull the 50-kg roller up the inclined
plane with constant velocity. The coefficient of rolling
resistance is ¢ = 15 mm.

8-139. Determine the force P required to overcome
rolling resistance and support the 50-kg roller if it rolls
down the inclined plane with constant velocity. The
coelficient of rolling resistance is @ = 15 mm.

Probs. 8-138/139

“8-140. The cylinder is subjected to a load that has a
weight W. If the coefficients of rolling resistance for the
cylinder’'s top and bottom surfaces are a, and ag,
respectively, show that a horizontal force having a
magnitude of P = [W(a4 + ag)]/2r is required to move the
load and thereby roll the cylinder forward. Neglect the
weight of the cylinder.

Prob. 8-140

*8-141. The 1.2-Mg steel beam is moved over a level
surface using a series of 30-mm-diameter rollers for which
the coefficient of rolling resistance is 0.4 mm at the ground
and (.2 mm at the bottom surface of the beam. Determine
the horizontal force P needed to push the beam forward at
a constant speed. Hint: Use the result of Prob, 8-140.

Prob. 8-141

8-142. Determine the smallest horizontal force P that
must be exerted on the 200-1b block to move it forward. The
rollers each weigh 50 Ib, and the coefficient of rolling
resistance at the top and bottom surfaces is a = 0.2 in.

Prob. 8-142
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Dry Friction

Frictional forces exist between two
rough surfaces of contact. These forces
act on a body so as to oppose its motion
or tendency of motion.

A static frictional force approaches a
maximum value of F, = u,N, where p,
is the coeffictent of staric friction. In this
case, motion between the contacting
surfaces is impending.

If slipping occurs, then the friction force
remains essentially constant and equal
1o Fy = wN. Here p, is the coefficient
of kinetic friction.

The solution of a problem involving
friction requires first drawing the free-
body diagram of the body. If the
unknowns cannot be determined strictly
from the equations of equilibrium, and
the possibility of slipping occurs, then
the friction equation should be applied
at the appropriate points of contact in
order to complete the solution.

It may also be possible for slender
‘objects, like crates, to tip over, and this
situation should also be investigated.

CHAPTER ReviEw
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Wedges

Wedges are inclined planes used to
increase the application of a force. The
two force equilibrium equations are
used to relate the forces acting on
the wedge.

An applied force P must push on the
wedge to move it to the right.

If the coefficients of friction between
the surfaces are large enough, then P
can be removed, and the wedge will be
self-locking and remain in place.

SF, =

3 = -

tmpending

maotion

N,

b
e
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o
=
|
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Screws

Square-threaded screws are used to
move heavy loads. They represent an
inclined plane. wrapped around a
cylinder.

The moment needed to turn a screw
depends upon the coefficient of friction
and the screw’s lead angle 0.

If the coefficient of friction between the
-surfaces is large enough, then the screw
will support the load without tending to
turn, i.e., it will be self-locking.

M = Wrian(0 + &,)
Upward Impending Screw Motion

M' = Wrian(d — ¢,)

Downward Impending Screw
Motion

0> ¢

M* = Wrian(¢ — 8,)
Downward Screw Motion

the coefficient of friction.

dhs =0
Motion or impending
motion of belt relative
Flat Belts
The force needed to move a flat belt
over a rough curved surface depends Ty =T
only on the angle of belt contact, 8. and Ts=>1T
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Collar Bearings and Disks

The frictional amalysis of a collar
bearing or disk requires looking at a
differential element of the contact area.
The normal force acting on this element
is determined from force equilibrium
along the shaft. and the moment needed
to turn the shaft at a constant rate is
determined from moment equilibrium
about the shaft’s axis.

If the pressure on the surface of a collar
bearing is uniform, then integration
gives the result shown.

Journal Bearings

When a moment is applied to a shaft in
a nonlubricated or partially lubricated
journal bearing, the shaft will tend to
roll up the side of the bearing until
slipping occurs. This defines the radius
of a friction circle, and from it the
moment needed to turn the shaft can be
determined.

2
M= -
M = Rrsind;

Rolling Resistance

The resistance of a wheel to rolling over
a surface is caused by localized
deformation of the two materials in
contact. This causes the resultant normal
force acting on the rolling body to be
inclined so that it provides a component
that acts in the opposite direction of the
applied force P causing the motion. This
effect is characlerized using the
coefficient of rolling resistance, a, which
is determined from experiment,
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- REVIEW PROBLEMS

8-143. A single force P is applied to the handle of the
drawer. If friction is neglected at the bottom and the
coefficient of static friction along the sides is u, = 0.4,
determine the largest spacing s between the symmetrically
placed handles so that the drawer does not bind at the
corners A and B when the force P is applied to one of
the handles.

1.25m

*8-145. The truck has a mass of 1.25 Mg and a center of
mass at (. Determine the greatest load it can pull if (a) the
truck has rear-wheel drive while the front wheels are free to
roll, and (b) the truck has four-wheel drive. The coefficient of
static friction between the wheels and the ground is g, = 0.5,
and between the crate and the ground, it is p; = 0.4,

8-146. Solve Prob. 8-145 if the truck and crate are
traveling up a 107 incline.

Prob, 8-143

*8-144. The semicircular thin hoop of weight W and
center of gravity at G is suspended by the small peg at A. A
horizontal force P is slowly applied at 8. If the hoop begins
toslip at A when # = 30°, determine the coefficient of static
friction between the hoop and the peg.

Probs. 8-145/146

8-147. If block A has a mass of 1.5 kg, determine the
largest mass of block B without causing motion of the
system. The coefficient of static friction between the blocks
and inclined planes is u, = 0.2.

Prob. 8-144

Prob. §-147



*8-148. The cone has a weight W and center of gravity at
G. If a horizontal force P is gradually applied to the string
attached to its vertex, determine the maximum coefficient
of static friction for slipping to occur.
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8-151. A roofer. having a mass of 70 kg, walks slowly in an
upright position down along the surface of a dome that has
a radius of curvature of r = 20 m. If the coefficient of static
friction between his shoes and the dome is p, = 0.7,
determine the angle @ at which he first begins to slip.

Prob. 8-148

*8-149. The tractor pulls on the fixed tree stump.
Determine the torque that must be applied by the engine 1o
the rear wheels to cause them to slip. The front wheels are
free to roll. The tractor weighs 3500 Ib and has a center of
gravity at G. The coefficient of static friction between the
rear wheels and the ground is g, = (1.5,

8-150. The tractor pulls on the fixed tree stump. If the
coefficient of static friction between the rear wheels and
the ground is p, = 0.6, determine if the rear wheels slip or
the front wheels lift off the ground as the engine provides
torque to the rear wheels. What is the torque needed to
cause this motion? The front wheels are free to roll. The
tractor weighs 2500 Ib and has a center of gravity at ;.

Probs. 8-149/150

Prob. 8-151

*8-152. Column D is subjected to a vertical load of
8000 Ib. It is supported on two identical wedges A and B for
which the coefficient of static friction at the contacting
surfaces between A and B and between B and Cis g, = 04.
Determine the force P needed to raise the column and the
equilibrium force P’ needed to hold wedge A stationary.
The contacting surface between A and D is smooth,

*8-153. Column D is subjected to a vertical load of 8000 Ib.
It is supported on two identical wedges A and B for which
the coefficient of static friction at the contacting surfaces
between A and B and between B and C is p, = 0.4. If the
forces P and P’ are removed, are the wedges self-locking?
The contacting surface between A and [ is smooth.

000 b

Probs. 8-152/153



When a water tank is designed, it is important to be able to determine its center of
gravity, calculate its volume and surface area, and reduce three-dimensional distributed
loadings caused by the water pressure to their resultants. All of these topics are
discussed in this chapter.




Center of Gravity and
Centroid

CHAPTER OBJECTIVES

* To discuss the concept of the center of gravity, center of mass, and
the centroid.

® To show how to determine the location of the center of gravity and
centroid for a system of discrete particles and a body of arbitrary
shape.

® To use the theorems of Pappus and Guldinus for finding the surface
area and volume for a body having axial symmetry.

® To present a method for finding the resultant of a general
distributed loading and show how it applies to finding the resultant
force of a pressure loading caused by a fluid.

9.1 Center of Gravity, Center of Mass,
and the Centroid of a Body

In this section we will first show how to locate the center of gravity for a
body, and then we will show that the center of mass and the centroid of a
body can be developed using this same method.

Center of Gravity. A body is composed of an infinite number of
particles of differential size, and so if the body is located within a
gravitational field, then each of these particles will have a weight dW,
Fig. 9-1a. These weights will form an approximately parallel force
system, and the resultant of this system is the total weight of the body,
which passes through a single point called the center of gravity, G.
Fig. 9-1b.*

*This is true as long as the gravity ficld is assumed to have the same magnitude and
direction everywhere, That assumplion is appropriate for most engineering applications,
since gravity does not vary appreciably between, for instance, the boltom and the top of
a building.
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b

3 ¥

~lX

-~ v
X

(b)
Fig. 9-1

Using the methods outlined in Scc. 4.8, the weight of the body is the sum
of the weights of all of its particles, that is

+lFy = 2F; W= [dw

The location of the center of gravity. measured from the y axis, is
determined by equating the moment of W about the y axis, Fig. 9-1b, 1o
the sum of the moments of the weights of the particles about this same
axis, If W is located at point (X, ¥, 7)., Fig. 9-1a, then

(Mg), = EM,; W = [TdW

Similarly, if moments are summed about the x axis,

(Mg)y = M W = [yaw

Finally, imagine that the body is fixed within the coordinate system and
this system is rotated 90° about the y axis, Fig. 9-1c. Then the sum of the
moments about the y axis gives

(Mg), = M, W = [ZdW

Therefore, the location of the center of gravity G with respect to the x,y,
z axes becomes

(9-1)

are the coordinates of the center of gravity G, Fig. 9-1b.
re the coordinates of cach particle in the body, Fig. 9-1a.

&8} H|
o



9.1 Cenrter oF GraviTY, CENTER OF Mass, AND THE CENTROID OF A Boby

Center of Mass of a Body. In order to study the dynamic
response or accelerated motion of a body. it becomes important to locate
the body's center of mass C,,,. Fig. 9-2. This location can be determined
by substituting dW = g dm into Eqgs. 9-1. Since g is constant, it cancels
out. and so

(9-2)

Centroid of a Volume. 1f the body in Fig. 9-3 is made from a

homogencous material, then its density p (rho) will be constant.
Therefore, a differential element of volume dV has a mass dm = p dV.
Substituting this into Eqs. 9-2 and canceling out p, we obtain formulas
that locate the centroid C or geometric center of the body: namely

[wv f}édv f‘z’dv

— v = SV = ¥
[o 7T v T [w
v v v

These equations represent a balance of the moments of the volume of
the body. Therefore. if the volume possesses two planes of symmetry,
then its centroid must lie along the line of intersection of these two
planes. For example, the cone in Fig. 9-4 has a centroid that lies on the y
axis so that ¥ = z = 0. The location ¥ can be found using a single
integration by choosing a differential element represented by a thin disk
having a thickness dy and radius r = z. Its volume is dV =
artdy = wz’dy and its centroid isat ¥ = 0.5 = v, 7 = 0.

(9-3)
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dy ]

(a)

Integration must be used to determine the
location of the center of gravity of this goal
post due 1o the curvature of the supporting
member,

(b) (c)

Fig. 9-5

Centroid of an Area. Ifan area lies in the x—y plane and is bounded
by the curve y = f(x), as shown in Fig. 9-5a. then its centroid will be in
this plane and can be determined from integrals similar to Egs. 9-3,
namely,

/?r’dA /fﬁdA
A A

=74 y-sA (9-4)

fdA [tl'/l
A JA

These integrals can be evaluated by performing a single integration if we
use a rectangular strip for the differential area clement. For example, if a
vertical strip is used, Fig. 9-5b, the area of the element is dA = v dx, and
its centroid is located at ¥ = x and ¥ = y/2. If we consider a horizontal
strip, Fig. 9-5¢, then d A = x dy, and its centroid is located at ¥ = x/2 and
=Y

Centroid of a Line. If a line segment (or rod) lies within the x—y

plane and il can be described by a thin curve y = f(x), Fig. 9-6a. then its
centroid 1s determined from

| f ¥dL f VdL
- L L

Vi (9-5)

f Jre / dL
L +d
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theorem.dL = V/(dx)? + (dy)’ .which can also be written in the form

ix\? iy\? . ,
dL = \/(‘—x) dx® + (t-"-) dx=
dx dx

Here. the length of the differential element is given by the Pythagorean

or

= (\/(j—:) = 3 | ) dy
Either one of these expressions can be used; however., for application.
the one that will result in a simpler integration should be selected. For
example. consider the rod in Fig. 9-6b. defined by y = 2x°. The length of
the element is dL = V1 + (dy/dx)®dx, and since dy/dx = 4x, then
dL = V1 + (4x)* dx. The centroid for this element is located at ¥ = x
and ¥V = y.

Important Points

* The centroid represents the geometric center of a body.
This point coincides with the center of mass or the center of
gravity only if the material composing the body is uniform or
homogeneous.

* Formulas used to locate the center of gravity or the centroid
simply represent a balance between the sum of moments of all
the parts of the system and the moment of the “resultant” for the
system.

* Insome cases the centroid is located at a point that is not on the
object, as in the case of a ring, where the centroid is at its center.
Also, this point will lic on any axis of symmetry for the body,
Fig. 9-7.

¢
(a)
-" y =2
1)
b-F =X
Zm ' 4 :lf‘\‘
¥F=) | L d
L2 1 X
]
(b)
Fig. 9-6
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Procedure for Analysis

The center of gravity or centroid of an object or shape can be
determined by single integrations using the following procedure.

Differential Element.

® Sclect an appropriate coordinate system, specify the coordinate
axes, and then choose a differential element for integration.

® For lines the element is represented by a differential line segment
of length dL. .

® For areas the clement is generally a rectangle of area dA, having
a finite length and differential width.

® For volumes the element can be a circular disk of volume dV.
having a finite radius and differential thickness.

* Locate the element so that it touches the arbitrary point (x, y, 2)
on the curve that defines the boundary of the shape.

Size and Moment Arms.

* Express the length dL, area dA, or volume dV of the element in
terms of the coordinates describing the curve.

* Express the moment arms ¥, ¥, Z for the centroid or center of
gravity of the element in terms of the coordinates describing
the curve.

Integrations.

® Substitute the formulations for X, ¥, 7 and dL, dA, or dV into the
appropriate equations (Eqgs. 9-1 through 9-5).

* Express the function in the integrand in terms of the same
variable as the differential thickness of the element.

® The limits of the integral are defined from the two extreme
locations of the element’s differential thickness, so that when the
elements are “summed” or the integration performed. the entire
region is covered.®

“Formulas for integration are given in Appendix A,
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EXAMPLE |9.1

Locate the centroid of the rod bent into the shape of a parabolic arc as ¥
shown in Fig. 9-8. R i'm X

SOLUTION

Differential Element. The differential element is shown in Fig. 9-8. (%, 7) 1 EE&H
It is located on the curve at the arbitrary point (x, y). T=l= ik

Area and Moment Arms. The differential element of length dL
can be expressed in terms of the differentials dx and dy using the v ooy
Pythagorean theorem. F=x

dL = V(dx)* + (dy)? = (‘(—:{) +1dy Fig. 9-8

Since x = y°. then dx/dy = 2y. Therefore, expressing dL in terms of
yvand dy, we have

dL = V(@2y)* + 1dy

As shown in Fig. 9-8, the centroid of the element is located at ¥ = x,

=

Integrations. Applying Eqgs. 9-5, using the formulas in Appendix A
to evaluate the integrals, we get

Im im
f TdL ¥Vay* + 1dy f V4! + 1dy
= L 1 p—

= Im = Im
f;. dL / Vay' + 1dy Viayt + 1dy
i 1]
0.6063
= =041
1.479 0410 m Ans.
Im T
[ VdL f w4y + Ldy
e — _ 0.8484
y = = T —— =479 - 0.574 m Ans.
;dL 4y + Ldy
. 0

NOTE: These results for C seem reasonable when they are plotted on
Fig. 9-8.
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EXAMPLE |9.2

Locate the centroid of the circular wire segment shown in Fig, 9-9.

sodL=Rdb

]

de
: .-".’;_ ¥=~Rsing
;.ff |
L] L] -
0 %
Fig. 9-Y
SOLUTION
Polar coordinates will be used to solve this problem since the arc is
circular.

Differential Element. A differential circular arc is selected as
shown in the figure. This element intersects the curve at (R. 0).

Length and Moment Arm. The length of the differential element
is dL = Rdf, and its centroid is located at ¥ = R cos # and
V= R sinf.

Integrations. Applying Egs. 9-5 and integrating with respect to 6.,
we obtain

w2 i
_/ YdL / (Reos®)Rd R® f cos 0 df
i A { (1] 2R

X= T - — = — Ans.

w2 w2 T
[f-"L / Rdo / dl
L 0 0
w2

1]
w2
f VdL [ (Rsin@)Rd0 R’ / sin 0 do
3 L Ju i 0 2R

Y5 = = = = - Ans.

/ dL Rdb R f " do
L 0 0

NOTE: As expected, the two coordinates are numerically the same
due to the symmetry of the wire.
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Determine the distance y measured from the x axis to the centroid of
the area of the triangle shown in Fig. 9-10.

SOLUTION

Differential Element. Consider a rectangular ¢lement having a
thickness dy, and located in an arbitrary position so that it intersects
the boundary at (x, ), Fig. 9-10.

Area and Moment Arms. The area of the element is dA = xdy
b

= ,J_( h — y) dy, and its centroid is located a distance ¥ = y from the
1

X axis

Integration. Applving the second of Egs. 94 and integrating with
respect to y yields

h
~ B oy it
F_,[f‘d‘d_ _[;y[k(h ")d"}_ﬁ

h 1
b sbh
dA —(h — v)dv 2
/:\ l 7 (h—y)dy

Ans,

| =

NOTE: This result is valid for any shape of triangle. It states that the
centroid is located at one-third the height, measured from the base of
the triangle.
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EXAMPLE |9.4

Locate the centroid for the area of a quarter circle shown in Fig. 9-11.

W

I R do
/ A
/ R
R {3 R.o
= ==
1
‘—2R . \
¥ =3 sin @ ’ 7 do
i
L X
--.‘E:%Rmsﬂ-
Fig. 9-11

SOLUTION

Differential Element. Polar coordinates will be used, since the
boundary is circular. We choose the element in the shape of a rriangle,
Fig. 9-11. (Actually the shape 1s a circular sector; however, neglecting
higher-order differentials, the clement becomes triangular.) The
clement intersects the curve at point (R, #).

Area and Moment Arms. The area of the element 1s
RZ
dA = Y{(R)(Rdo) = — 4o

and using the results of Ei&amp]c 9.3, the centroid of the (triangular)
element is located at ¥ = SR cos 8, ¥ = I R sin 6.

Integrations. Applying Egs. 9-4 and integrating with respect to 0,
we obtain

/'" 1A fwlz(?"R H)-R—'z ] (2[(’)]“2 os 6 di
P Ax ‘ ! 3 cos 2 3 | C a ap

x= = = =—  Ans

w2 p2 w2 37
[ dA f L f do
A 0 2 (]

3

2 A i N B S e
_r_[‘}dA_l (3Rsm3)2d6‘ (SR),£ sin § dfl AR

= =—  Ans

Wil p2 w2 37
[“'A ] E-db‘ / d
JA (] 2 (1]
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_

scate the centroid of the area shown in Fig. 9-12a. ¥
SOLUTION |

Differential Element. A differential element of thickness dx is
shown in Fig. 9-124. The element intersects the curve at the arbitrary
point (x, y), and so it has a height v.

1m
Area and Moment Arms. The arca of the element is dA = ydx, = |
and its centroid is located at ¥ = x, v = y/2.
Integrations. Applying Eqs.9-4 and integrating with respect to x vields ]
Im Im ey
YdA xydo x*dx
" .L“ *ﬁ "'”“j.- R 3y :
xX= - = T =033 0.75m Ans.
["M / vdx f x?dx
A 0 [
im Im
£ 12y of ¥ 2 2
ey Lv z!4 ki _(y, 2)ydx . [; (x I/Z)x dx 000 ‘
P=r=—— e ——— — = (;333 = 0.3 m Ans. -
f dA [ ydx / x*dx $
A 0 0 )
SOLUTION Il
Differential Element. The differential element of thickness dy is
shown in Fig. 9-12b. The element intersects the curve at the arbitrary
point (x, v), and so it has a length (1 — x). 123
¥
Area and Moment Arms. The area of the element is
dA = (1 — x) dy, and its centroid is located at ¥
~ +(1_4\') I+,'I.'~ L} ] x
e s T
2 g

Integrations. Applying Eqgs. 94 and integrating with respect to y,
we obtain

im 1m
[}*m [(1 + x)/2](1 = x)dy 3/ (1= y)dy
JA __ 0 = 2 0

~ 0.250
¥ = = = = T = {_IE =0.75m Ans.
[ﬂ‘A / (1= x)dy (1 — Vy)dy
Ja 0 [
im Im
VdA 1-x)d —y*) dy
’ L'” £ i =xjdy [: W=ya 00
V= = = =——=(03m Ans.
- Im tm 0.333
1“"1' (1 —x)dy f (1 - Vy)dy
b S 1]

NOTE: Plot these results and notice that they seem reasonable. Also,
for this problem, elements of thickness dx offer a simpler solution.
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EXAMPLE | 9.6

Locate the centroid of the semi-elliptical area shown in Fig. Y-13a.

Fig. 9-13
SOLUTION |

Differential Element. The rectangular differential element parallel
to the vy axis shown shaded in Fig. 9-13a will be considered. This
element has a thickness of dx and a height of y.

Area and Moment Arms. Thus, the area is dA = ydx, and its
centroid is located at ¥ = vand ¥ = y/2.
Integration. Since the area is symmetrical about the v axis,

x=10 Ans.

Applying the second of Egs.9-4 with y = {/1- 't_% we have

znv 1 20 -
y= ./;v iy = ./:2 IIE b = i[ZH(l_—‘I)dx 4/3

— =0424 1t Ans

= /! = Ih s T = =
dA 1 dx / W 1==—dx
A I:uj -2t 4

SOLUTION I

Differential Element. The shaded rectangular differential element
of thickness dy and width 2x, parallel to the x axis, will be considered.
Fig. 9-13h.

Area and Moment Arms. The areais dA = 2x dy, and its centroid
isat¥ = Dand y = y.

Integration. Applying the second of Egs. 94, with x = 2V 1—y%,
we have

it Lit
/ FdA / y(2x dy) [ 4yVi1-y*dy 4
A 1] 1] fls

V=2 = == = —=0424 1t Ans.
/ T

n n
ﬂ‘“" / 2xdy f AN 1-y dy
0 0

ad
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EXAMPLE |9.7

Locate the y centroid for the paraboloid of revolution, shown in
Fig. 9-14.

SOLUTION

Differential Element. An clement having the shape of a thin disk is
chosen. This element has a thickness dy, it intersects the generating
curve at the arbitrary point (0,y, 7).and so its radius is r = z.

Volume and Moment Arm. The volume of the element is dV=
(72%) dy, and its centroid is located at ¥ = y.

Integration. Applying the second of Eqs. 9-3 and integrating with
respect to y yields

100 mm 10 mm
f}F dv / y(w®) dy lt)l}:rrf vy
= v _Jo 4, 0

N = — = 66.7 mm

100 mm 100 mm
[ﬂ'V / (wz*) dy l{lﬂﬂ'f vdy
JV ] 0

Ans.
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EXAMPLE |9.8

Determine the location of the center of mass of the cylinder shown in
Fig. 9-15 if its density varies directly with the distance from its base,
i.e.p = 200z kg/m?.

Fig. 9-15
SOLUTION
For reasons of material symmetry,
r=y=0 Ans.

Differential Element. A disk element of radius (1.5 m and thickness
dz is chosen for integration, Fig. 9-15, since the density of the entire
element is constant for a given value of z. The element is located along
the z axis at the arbitrary point (0,0, z),

Volume and Moment Arm. The volume of the clement is
dV = m(0.5) dz, and its centroid is located at ¥ = z.

Integrations. Using an equation similar to the third of Egs. 9-2 and
integrating with respect to z, noting that p = 200z, we have

Im
ﬁ ZpdV ’ ﬁ 2(200z)[m(0.5)? dz|

Im
L pdV [ (200z)m(0.5)* dz
i

1m
j 2 dz
_ Jo
35 Im
f zdz
0

ral

= (1.667 m Ans.
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. FUNDAMENTAL PROBLEMS

F9-1. Determine the centroid (x, y) of the shaded area. F9-4. Locate the center mass ¥ of the straight rod if its
mass per unit length is given by m = my(1 + x*/L7).

F9-5. Locate the centroid ¥ of the homogeneous solid
formed by revolving the shaded area about the y axis.

FY-6. Locate the centroid Z of the homogeneous solid
formed by revolving the shaded area about the z axis. .
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“leromiems

*9-1. Determine the mass and the location of the center of
mass (X, ¥) of the uniform parabolic-shaped rod. The mass
per unit length of the rod is 2 kg/m.

Prob. 9-1

9-2. The uniform rod is bent into the shape of a parabola
and has a weight per unit length of 6 Ib/ft. Determine the
reactions at the fixed support A.

Prob. 9-1

9-3. Determine the distance ¥ to the center of mass of the
homogeneous rod bent into the shape shown. If the rod has
a mass per unit length of 0.5 kg/m, determine the reactions
at the fixed support O.

Prob. 9-3

*9—4, Determine the mass and locate the center of mass
(x. y) of the uniform rod. The mass per unit length of the
rod is 3 kg/m.
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*9-5, Determine the mass and the location of the center of
mass ¥ of the rod if its mass per unit length is
m = mp{l + x/L).

v

Prob. 9-5

9-6. Determine the location (X, ¥) of the centroid of the wire.

Prob. 9-6

9-7. Locate the centroid x of the circular rod. Express the
answer in terms of the radius r and semiarc angle .

¥y

—
Prob. 9-7

463

#9-8. Determine the area and the centroid (. ¥) of the area.

Prob. 9-8

*9-9, Determine the area and the centroid (¥, ¥) of the area.

9-10. Determine the area and the centroid (¥, V) of the area.

3ft 4

Prob. 9-10
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9-11. Determine the area and the centroid (¥, ¥) of the area. 9-14. Determine the area and the centroid (X, ¥) of the area,

Prob. 9-14

b 1 9-15. Determine the area and the centroid (¥, ¥) of the area.

Probh. 9-11

*m9_12, Locate the centroid x of the area.
*%9_13. Locate the centroid y of the area.

Prob. 9-15

*9-16. Locate the centroid (X, ¥) of the area.

+ '

y= \1_‘“3

Probs. 9-12/13 Prob. 9-16
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#9-17. Determine the area and the centroid (. ¥) of the area. “9-20. The plate has a thickness of 0.5 in, and is made of
steel having a specific weight of 490 Ib/ft’. Determine the
horizontal and vertical components of reaction at the pin A
and the force in the cord at B.

-

T

Prob, 9-17

9-18. The plate is made of steel having a density of i
7850 kg/m”. If the thickness of the plate is 10 mm, determine
the horizontal and vertical components of reaction at the pin
A and the tension in cable BC. I

¥

Proh. 9-20

*9-21. Locate the centroid X of the shaded area.

am {

Proh, 9-18

9-19. Determine the location ¥ to the centroid € of the
upper portion of the cardioid,» = a(l ~ cos #).

I.r-n(l — cos #)
¥
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9-22. Locate the centroid x of the area. *9-25, Determine the area and the centroid (X. ¥) of the
9-23. Locate the centroid ¥ of the area. P
v ¥
- W
\ =y
if
AL
X
in |
|
Prob. 9-25
*9-24. Locate the centroid (¥, V) of the area. 9-26. Locate the centroid ¥ of the area.

9-27. Locate the centroid y of the area.

Prob, 9-24 Probs. 9-26/27



9.1 Center OF GravITY, CENTER OF Mass, AND THE CENTROID OF A Boby 467

*9-28. Locate the centroid x of the area.
*9-29. Locate the centroid v of the area.

9-30. The steel plate is 0.3 m thick and has a density of
7850 kg/m’. Determine the location of its center of mass.
Also determine the horizontal and vertical reactions at the
pin and the reaction at the roller support. Hint: The normal
force at B is perpendicular to the tangent at B, which is
found from tan 6 = dy/dx.

9-31. Locate the centroid of the area. Hini: Choose
elements of thickness dy and length [(2 — y) — ]

#9-32. Locate the centroid ¥ of the area.
*9-33, Locate the centroid y of the area.

Prohs. 9-32/33
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9-34. If the density at any point in the rectangular plate is
defined by p = py(l + x/a). where p, is a constant,
determine the mass and locate the center of mass ¥ of the
plate. The plate has a thickness 1.

¥

Prob, 9-34

9-35. Locate the centroid y of the homogeneous solid
formed by revolving the shaded area about the v axis.

FrE-—af=d

*9-37, Locate the centroid v of the homogeneous solid
formed by revolving the shaded area about the v axis.

Prob. 9-37

9-38. Locate the centroid Z of the homogencous solid
frustum of the paraboloid formed by revolving the shaded
area about the z axis.
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9-39. Locate the centroid y of the homogeneous solid *9-41. Determine the mass and locate the center of mass v
formed by revolving the shaded area about the y axis. of the hemisphere formed by revolving the shaded area
about the y axis. The density at any point in the hemisphere

can be defined by p = py(1 + y/a). where p is a constant.

9-42. Determine the volume and locate the centroid (¥, 2)
of the homogeneous conical wedge.

Prob. 9-39

*9-40. Locate the center of mass ¥ of the circular cone
formed by revolving the shaded area about the y axis. The
density at any point in the cone is defined by p = (p, /Iy,
where py is a constant.

Prob. 942
9-43. The hemisphere of radius r is made from a stack of
very thin plates such that the density varies with height,
p = kz, where k is a constant. Determine its mass and the
distance 7 to the center of mass G.
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9.2 Composite Bodies

A composite body consists of a series of connected “simpler” shaped
bodies, which may be rectangular, triangular, semicircular, ete. Such a body
can often be sectioned or divided into its composite parts and, provided
the weight and location of the center of gravity of each of these parts are
known, we can then eliminate the need for integration to determine the
center of gravity for the entire body. The method for doing this follows the
same procedure outlined in Sec. 9.1. Formulas analogous to Eqs. 9-1 result;
however, rather than account for an infinite number of differential weights,
we have instead a finite number of weights. Therefore,

IXW yw W

s
Tsw Y 3w YT zw g

X, v,z represent the coordinates of the center of gravity G of the
composite body.
Y. 7.7 represent the coordinates of the center of gravity of each
; composite part of the body.
W  isthe sum of the weights of all the composite parts of the body,
or simply the total weight of the body.

When the body has a constant density or specific weight, the center of
gravity coincides with the centroid of the body. The centroid for composite
lines, areas, and volumes can be found using relations analogous to
Eqs. 9-6: however, the W’s are replaced by L's, A’s, and Vs, respectively.
Centroids for common shapes of lines, areas, shells, and volumes that often
make up a composite body are given in the table on the inside back cover.

In order to determine the force required to
tip over this concrete barrier it is first
necessary to determine the location of its
center of gravity G, Due to symmetry, G will
lie on the vertical axis of symmetry.
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Procedure for Analysis

The location of the center of gravity of a body or the centroid of a

composite geometrical object represented by a line, area, or volume

can be determined using the following procedure.

Composite Parts.

® Using a sketch, divide the body or object into a finite number of
composite parts that have simpler shapes.

* If a composite body has a hole, or a geometric region having no
malterial, then consider the composite body without the hole and

consider the hole as an additional composite part having negative
weight or size.

Moment Arms.

* Establish the coordinate axes on the sketch and determine the
coordinates X, y.  of the center of gravity or centroid of each part.

Summations.

* Determine ¥, y, Z by applying the center of gravity equations,
Egs. 9-6, or the analogous centroid equations.

® If an object is synmunetrical about an axis, the centroid of the
object lies on this axis.

If desired, the calculations can be arranged in tabular form, as

indicated in the following three examples.

The center of gravity of this water tank can
be determined by dividing it into
composite parts and applying Eqs 9-6.
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EXAMPLE | 9.9

Locate the centroid of the wire shown in Fig. 9-16a.

SOLUTION

Composite Parts. The wire is divided into three segments as shown
in Fig. 9-16b.

Moment Arms. The location of the centroid for each segment is
determined and indicated in the figure. In particular, the centroid of
segment (D is determined either by integration or by using the table
on the inside back cover.

Summations. For convenie¢nce, the calculations can be tabulated as

follows:
Segment L (mm) ¥(mm) F(mm) T (mm) TL (mm?) VL (mm?) ZL (mm®)
1 @(60) = 188.5 60 —382 0 11 310 ~7200 0
2 40 0 20 0 0 800 0
3 20 0 40 =10 0 800 =200
L = 2485 XL = 11310 EVL = =560 EZL = -200
Thus,
.. EXL 11310
xX= ﬁ' - ‘248? = 45.5 mm Ans.
_ =YL —5600
v= -}-.11-_" - *2'28""5" = =225 mm Ans.
. XzL =200
2=, =---=—080 3
z SL 2485 0.805 mm Ans

(a) (b)
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EXAMPLE | 9.10

Localte the centroid of the plate area shown in Fig. 9-17a.

¥

| F== il =
Tl 2ft ift *

(a)
Fig, 9-17
SOLUTION

Composite Parts. The plate is divided into three segments as
shown in Fig. 9-17h. Here the area of the small rectangle () is =
considered “negative” since it must be subtracted from the larger o

one @ _'_. 0

Moment Arms. The centroid of each segment is located as indicated
in the figure. Note that the ¥ coordinates of® and @ are negative. MNsa i

Summations. Taking the data from Fig. 9-17h, the calculations are
tabulated as follows:

Segment A(ft) () V(i) XA FA ()
H3)(3) = 45 1 I 45 4.5
(33) =9 -15 15 ~13:5 135
—(2)(1) = -2 -25 2 5 -4 Qs *
A =115 S¥A=—4 3JA=14

LRI =

Thus, 21t

__S¥A _ -4
F= Tl == 038K Ans =

== = 1221t Ans.

NOTE: If these results are plotted in Fig. 9-17, the location of point C
seems reasonable.

473
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EXAMPLE | 9.11

Locate the center of mass of the assembly shown in Fig. 9-18a. The
conical frustum has a density of p. = 8 Mg/m", and the hemisphere
has a density of p, = 4 Mg/m’. There is a 25-mm-radius cylindrical
hole in the center of the frustum.

SOLUTION

Composite Parts. The assembly can be thought of as consisting of
four segments as shown in Fig. 9-18h. For the caleulations, @) and
must be considered as “negative” segments in order that the four
segments, when added together, vield the total composite shape
shown in Fig. 9-18a.

Moment Arm. Using the table on the inside back cover, the
computations for the centroid Z of each piece are shown in the figure,

Summations. Because of symmetry, note that
x=5=0 Ans.

Since W = mg, and g is constant, the third of Eqs. 9-6 becomes
z = XZm/Em. The mass of cach piece can be computed from m = pV
and used for the calculations. Also, 1 Mg/m® = 107" kg/mm®, so that

Segment m (kg) Z(mm) Zm (kg-mm)
1 8(10°°)(} ) (50)3(200) = 4.189 50 209.440
2 4(10°)(3)m(50)* = 1.047 -18.75 ~19.635
3 —8(107%)()(25)%(100) = —0.524 100 + 25 = 125 ~65.450
4 —8(10 )7 (25)%(100) = —1.571 50 ~78.540
Sm = 3.142 ETm = 45815
i =im _ 45815
Thus, z= S AT 14.6 mm Ans.
T — 1
(3]
100 mm 25 mm
100.mm - 35 mm |
200 mm o 4 32 —
_SI]mm_ - | 4]
r 1 100 mm =
v 25 ! ¥
4 3 o o0mm | o | 50 mm
e - | e 1 L] 1
1 3(50)= 1875 mm
50 mm 9

(b)
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. FUNDAMENTAL PROBLEMS

F9-7. Locate the centroid (X, ¥, ) of the wire bent in the FU-10. Locate the centroid (X, ¥) of the cross-sectional area.
shape shown.

Fo-10

F9-11, Locate the center of mass (x.y.z) of the
area. homogeneous solid block.

F9-9. Locate the centroid ¥ of the beam’s cross- 9-12. Determine the center of mass (¥, V,Z) of the
sectional area. homogeneous solid block.

t 400 mm 1
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“leromiems

*9-44. Locate the centroid (x. ¥) of the uniform wire bent 9-46. Locate the centroid (. v, 2) of the wire.
in the shape shown.

}-— — 100 mm —

o -
20 mm
150 mm

|
i x

L 50 e —

Prob, 944 Prob. 946
#9-45. Locate the centroid (X, V. Z) of the wire. 9-47. Locate the centroid (¥, v. 2) of the wire which is bent

in the shape shown.

Prob, 9-45 Prob. 9-47
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*9-48. The truss is made from seven members. each having 9-50. Each of the three members of the frame has a mass
a mass per unit length of 6 kg/m. Locate the position (X, y) per unit fength of 6 kg/m. Locate the position (X, ¥) of the
of the center of mass. Neglect the mass of the gusset plates center of mass. Neglect the size of the pins at the joints and
at the joints. the thickness of the members. Also. calculate the reactions

at the pin A and roller E.

v

Prob. 948 Prob, 9-50

*9-49. Locate the centroid (x. v) of the wire. If the wire is 9-51. Locate the centroid (. ) of the cross-sectional area
suspended from A, determine the angle segment AB makes of the channel.
with the vertical when the wire is in equilibrium.

Prob. 9-49
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#9-52, Locate the centroid v of the cross-sectional area of 9-54. Locate the centroid y of the channel’s cross-
the concrete beam. sectional area.

Prob. 9-54

#9-53. Locate the centroid ¥ of the cross-sectional area of 9-55. Locate the distance ¥ to the centroid of the
the built-up beam, member’s cross-sectional area.

QT

Prob. 9-53 Prob. 9-55
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*9-56. Locate the centroid y of the cross-sectional area of 9-58. Locate the centroid x of the composite area.
the built-up beam.

Prob. 9-58

9-59. Locate the centroid (X, ¥) of the composite area.
Prob, 9-56

#9-57. The gravity wall is made of concrete. Determine the
location (X, ¥) of the center of mass G for the wall.

Prob. 9-59

*9-60, Locate the centroid (. ¥) of the composite area. .

Prob. 9-57
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*9-61. Divide the plate into parts, and using the grid for 9-63. Locate the centroid y of the cross-sectional area of
measurement, determine approximately the location (1, ¥) the built-up beam.
of the centroid of the plate.

|4
i
Prob. 9-61 Prob. 9-63
9-62. To determine the location of the center of gravity of *9-64. Locate the centroid v of the cross-sectional area of
the automobile it is first placed in a fevel position, with the the built-up beam.

two wheels on one side resting on the scale platform P. In
this position the scale records a reading of Wy. Then, one
side is elevated to a convenient height ¢ as shown. The new
reading on the scale is Wi If the automobile has a total 5
weight of W, determine the location of its center of gravity ‘
G(X. ¥).

Prob. 9-62 Prob. 9-64



*9-65. The composite plate is made from both steel (A)
and brass (B) segments. Determine the mass and location
(X.¥.2) of its mass center G. Take p,, = 7.85 Mg/m* and
pre = 8.74 Mg/m*. z

Prob, 9-65
9-66. The car rests on four scales and in this position the
scale readings of both the front and rear tires are shown by
F, and Fg When the rear wheels are elevated to a height of
3 ft above the front scales, the new readings of the front
wheels are also recorded. Use this data to compute the
location ¥ and v to the center of gravity G of the car. The
tires each have a diameter of 1.98 ft.

1 X
- - 94011 - -

Fy=11291b + 1168 |b = 2297 Ib
Fg=9751b + 984 1b = 1959 Ib

F, = 12691b + 1307 Ib = 2576 Ib
Prob. 9-66
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9-67. Uniform blocks having a length L and mass m are
stacked one on top of the other, with each block overhanging
the other by a distance . as shown. If the blocks are glued
together, so that they will not topple over, determine the
location x of the center of mass of a pile of n blocks.

*9-68. Uniform blocks having a length L and mass m are
stacked one on top of the other. with each block
overhanging the other by a distance d, as shown. Show that
the maximum number of blocks which can be stacked in
this mannerisn < L/d.

y

2d —-1

——r—
Probs. 9-67/68

*9-69. Locate the center of gravity (X, 2) of the sheet-
metal bracket if the material is homogeneous and has a
constant thickness. If the bracket is resting on the horizontal
x-y plane shown, determine the maximum angle of tilt @
which it can have before it falls over. i.c.. begins to rotate
about the y axis.

Prob. 9-60
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9-70. Locate the center of mass for the compressor *9-72, Locate the center of mass (X,V,Z) of the
assembly. The locations of the centers of mass of the various homogeneous block assembly.

components and their masses are indicated and tabulated in

the figure. What are the vertical reactions at blocks A and B

needed to support the platform?

1.80m -l. I‘
242 m +——287Tm ———
T L19m " eim Prob, 9-72
@ Instrument panel 230 kg
© Filter system 183 kg
© Piping assembly 120 kg
© Liquid storage 85kg

@ Structural framework 468 kg

Prob. 9-70

9-71. Major floor loadings in a shop are caused by the *9-73. Locate the center of mass z of the assembly. The
weights of the objects shown. Each force acts through its hemisphere and the cone are made from materials having
respective center of gravity ;. Locate the center of gravity densities of 8 Mg/m® and 4 Mg/m’, respectively.

(X, ¥) of all these components.

Prob, 9-71 Prob. 9-73



9-74. Locate the center of mass £ of the assembly. The
cylinder and the cone are made from materials having
densities of 3 Mg/m" and 9 Mg/m’, respectively.

D4m

Prob. 9-74

9-75. Locate the center of gravity (%.v.Z) of the
homogeneous block assembly having a hemispherical hole.

*9-76. Locate the center of gravity (x,v.2) of the
assembly. The triangular and the rectangular blocks are
made from materials having specific weights of 0.25 Ib/in’
and 0.1 Ib/in’, respectively.

r
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*9-77. Determine the distance X to the centroid of the
solid which consists of a cylinder with a hole of length
h = 50 mm bored into its base.

9-78. Determine the distance /1 to which a hole must be
bored into the cylinder so that the center of mass of the
assembly is located at ¥ = 64 mm. The material has a
density of 8 Mg/m*.

Probs, 9-77/78

9-79. The assembly is made from a steel hemisphere,
py =780 Mg/m’, and an aluminum  cylinder.
pa = 2.70 Mg/m’. Determine the mass center of the
assembly if the height of the cylinder is 1 = 200 mm.

*9-80. The assembly is made from a steel hemisphere,
pe =780 Mg/m*, and an  aluminum  cylinder,
pa = 2.70 Mg/m’. Determine the height /i of the cylinder
s0 that the mass center of the assembly is located at
z = 160 mm.

Probs. 9-75/76

Probs, 9-79/80
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*9.3 Theorems of Pappus and Guldinus

The two theorems of Pappus and Guldinus are used to find the surface
area and volume of any body of revolution. They were first developed by
Pappus of Alexandria during the fourth century A.p. and then restated at
a later time by the Swiss mathematician Paul Guldin or Guldinus
(1577-1643).

2ar

Fig. 9-19

Surface Area. If we revolve a plane curve about an axis that does
not intersect the curve we will generate a surface area of revolution. For
example, the surface area in Fig. 9-19 is formed by revolving the curve of
length L about the horizontal axis. To determine this surface area, we will
first consider the differential line element of length dL. If this element is
revolved 27 radians about the axis, a ring having a surface area of
dA = 2ar dL will be generated. Thus, the surface area of the entire body
is A =27 [rdL. Since [rdL = 7L (Eq. 9-5), then A = 2z7L. If the
curve is revolved only through an angle ¢ (radians), then

The amount of roofing material used on this
storage building can be estimated by using
the first theorem of Pappus and Guldinus A = 0rlL (9-7)
to determine its surface arca.
where

A = surface area of revolution
6 = angle of revolution measured in radians, @ = 27
r = perpendicular distance from the axis of revolution to

the centroid of the generating curve
L = length of the generating curve

Therefore the first theorem of Pappus and Guldinus states that the
area of a surface of revolution equals the product of the length of the
generating curve and the distance traveled by the centroid of the curve in
generating the surface area.
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Fig. 9-20

Volume. A volume can be generated by revolving a plane area about
an axis that does not intersect the area. For example, if we revolve the
shaded arca A in Fig. 9-20 about the horizontal axis, it generates
the volume shown. This volume can be determined by first revolving the
differential element of area dA 27 radians about the axis, so that a ring
having the volume dV = 27r d A is generated. The entire volume is then
V = 27 [rdA. However, [rdA = 7A, Eq.9-4,50 that V = 27 A. If the
area 1s only revolved through an angle # (radians), then

V=07A| (9-8)
where

V = volume of revolution

6 = angle of revolution measured in radians, 0 = 27

r = perpendicular distance from the axis of revolution to
the centroid of the generating area
A = generating area

Therefore the second theorem of Pappus and Guldinus states that the
volume of a body of revolution equals the product of the generating area
and the distance traveled by the centroid of the area in generating the
volume.

Composite Shapes. We may also apply the above two theorems
to lines or areas that are composed of a series of composite parts. In this
case the total surface area or volume generated is the addition of the
surface areas or volumes generated by each of the composite parts. If the
perpendicular distance from the axis of revolution to the centroid of
cach composite partis 7, then

A

O=(FL) (9-9)
and
v

0% (FA) (9-10)

Application of the above theorems is illustrated numerically in the
following examples.

The volume of fertilizer contained
within this silo can be determined using
the sccond theorem of Pappus and
Guldinus.
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EXAMPLE |9.12

Show that the surface area of a sphere is A = 47 R’ and its volume is
V =4izR.

{a) {h)
Fig. 9-21

SOLUTION

Surface Area. The surface area of the sphere in Fig. 9-2la is
generated by revolving a semicircular are about the x axis. Using the
table on the inside back cover, it is seen that the centroid of this arc is
located at a distance r = 2R/7 from the axis of revolution (x axis).
Since the centroid moves through an angle of ¢ = 27 rad to generate
the sphere, then applying Eq. 9-7 we have

A= #drL; A= Zw(zR)er = 47 R? Ans.

™

Volume. The volume of the sphere is generated by revolving the
semicircular area in Fig. 9-215 about the x axis. Using the table on the
inside back cover to locate the centroid of the area. i.e., r = 4R/37,
and applying Eq. 9-8, we have

4R 4
V = 6rA; V= Zw(—)(lﬂRz) = —7R} Ans.
3w /\2 3
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EXAMPLE | 9.13

Determine the surface area and volume of the full solid in Fig. 9-22a.

1 in—=
1
1
Lin.
|
_‘ 3
Lin
.E |
2in ?.m
1
i
"
| f——25 in,——|
L 2.5 in——f—— - 3in.—
Lin. - — 3.5 s ————]
(a)
(b)

Fig. 9-22

SOLUTION

Surface Area. The surface area is generated by revolving the four
line segments shown in Fig. 9-22p, 27 radians about the z axis. The
distances from the centroid of each segment to the z axis are also
shown in the figure. Applying Eq. 9-7, yields

A = 27ErL = 2w[(2.5in.)(21in.) + (3 in.)( V(lin)? + (1 in.)z)
+ (3.5in)(3in.) + (3in.)(1in.)]

= 143 in’ Ans.

Volume. The volume of the solid is generated by revolving the two
area segments shown in Fig. 9-22¢, 27 radians about the z axis. The

distances from the centroid of each segment to the z axis are also
shown in the figure. Applying Eq. 9-10, we have

V=2m3FA=2m{(3.1667 in.)[% (1in)(1 in.}}»u in)[(2in.)(1 in.)}

= 476in’ Ans.

25in. + ($)(1in) = 3.1667 in.

b=1in.=

(c)
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. FUNDAMENTAL PROBLEMS

F9-13. Determine the surface area and volume of the solid F9-15. Determine the surface area and volume of the solid
formed by revolving the shaded area 360° about the z axis. formed by revolving the shaded area 360° about the z axis.

00—

F9-15

F9-14. Determine the surface area and volume of the solid F9-16. Determine the surface area and volume of the solid
formed by revolving the shaded area 3607 about the z axis. formed by revolving the shaded area 360° about the z axis.

z
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Cleromems

*9-81. The elevated water storage tank has a conical top “9-84. Determine the surface area from A to B of the tank.
and hemispherical bottom and is fabricated using thin steel
plate. Determine how many square feet of plate is needed
to fabricate the tank.

*9-85. Determine the volume within the thin-walled tank
fromAtoB.

9-82. The elevated water storage tank has a conical top
and hemispherical bottom and is fabricated using thin steel

N

plate. Determine the volume within the tank.
AL
l L)
6‘fl
Il)lﬂ
St
+
e ——
Probs, 9-81/82 Probs, 9-84/85
9-83. Determine the volume of the solid formed by 9-86. Determine the surface area of the roof of the
revolving the shaded area about the x axis using the second structure if it is formed by rotating the parabola about the
theorem of Pappus-Guldinus. The area and centroid y of the ¥ axis.

shaded area should first be obtained by using integration.

I v

Prob. 9-83 Prob. 9-86
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9-87. Determine the surface arca of the solid formed by 9-90. Determine the surface area and volume of the solid
revolving the shaded area 360° about the = axis. formed by revolving the shaded area 360" about the : axis.

*9-88. Dectermine the volume of the solid formed by
revolving the shaded area 360° about the = axis.

z

Lin,

I'—Z N
Lin.

+9-89. Determine the volume of the solid formed by 9-91. Determine the surface area and volume of the solid
revolving the shaded area 3607 about the 7 axis. formed by revolving the shaded area 360° about the 7 axis.




*9-92. The process tank is used to store liquids during
manufacturing. Estimate both the volume of the tank and
its surface area. The tank has a flat top and a thin wall.

*9-93. The hopper is filled to its top with coal. Estimate
the volume of coal if the voids (air space) are 35 percent of
the volume of the hopper,
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9-94. The thin-wall tank is fabricated from a hemisphere
and cylindrical shell. Determine the vertical reactions that
each of the four symmetrically placed legs exerts on the
floor if the tank contains water which is 12 ft deep in
the tank. The specific gravity of water is 62.4 Ib/ft’. Neglect
the weight of the tank.

9-95. Determine the approximate amount of paint needed
to cover the outside surface of the open tank. Assume that a
gallon of paint covers 400 ft°.

Probs. 9-94/95
*9-96. Determine the surface area of the tank, which
consists of a cylinder and hemispherical cap.

#9-97. Determine the volume of the thin-wall tank, which
consists of a cylinder and hemispherical cap.




492 CHAPTER @ CENTER OF GRAVITY AND CENTROID

9-98. The water tank AB has a hemispherical top and is *9-101. Determine the outside surface area of the
fabricated from thin steel plate. Determine the volume storage tank.
within the tank.

9-99. The water tank AB has a hemispherical roof and is
fabricated from thin steel plate. If a liter of paint can cover
3m’ of the tank’s surface, determine how many liters are
required to coat the surface of the tank from A to B.

9-102. Determine the volume of the thin-wall storage tank.

i"—lsﬂ—‘l
4] il

Probs. 9-101/102

*9-100. Determine the surface area and volume of the 9-103. Determine the height /i to which liquid should be
wheel formed by revolving the cress-sectional area 3607 poured into the conical paper cup so that it contacts half the
about the = axis. surface area on the inside of the cup.

Prob, 9-100 Prob. 9-103
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*9.4 Resultant of a General Distributed
Loading

In Sec. 4.9, we discussed the method used to simplify a two-dimensional
distributed loading to a single resultant force acting at a specific point. In
this section we will generalize this method to include flat surfaces that
have an arbitrary shape and are subjected to a variable load distribution.
Consider, for example, the flat plate shown in Fig. 9-23a, which is subjected
1o the loading defined by p = p(x, y) Pa, where 1 Pa (pascal) = 1 N/m?
Knowing this function, we can determine the resultant force Fy acting on
the plate and its location (X, ¥), Fig. 9-23b.

Magnitude of Resultant Force. The force dF acting on the
differential area d A m? of the plate, located at the arbitrary point (x, ),
has a magnitude of dF = [p(x.y) N/m’](dAm*) = [p(x.,y) dA] N,
Notice that p(x, v) dA = dV, the colored differential volume element
shown in Fig. 9-23a. The magnitude of Fg is the sum of the differential
forces acting over the plate’s entire surface area A. Thus:

Fg = ZF; Fr= fp(.l.’. y)dA = [w = V‘ (9-11)
A v

This result indicates that the magnitude of the resultant force is equal to
the total volume under the distributed-loading diagram.

Location of Resultant Force. The location (¥, ¥) of Fyg is
determined by setting the moments of Fg equal to the moments of all the
differential forces dF about the respective y and x axes: From Figs. 9-23q
and 9-23b, using Eq. 9-11, this results in

f aplx,y)dA / xdV j yplx,y)dA / ydV
oA _Jv > A v

X =

j plx.y)dA f dv ' f plx,y)dA [ dv
A v A v

Hence, the line of action of the resultant force passes through the

geometric center or centroid of the volume under the distributed-loading
diagram.

y= = (9-12)

The resultant of a wind loading that is
distributed on the front or side walls of
this building must be calculated using
integration in order to design the
framework that holds the building
together.

493
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*9.5 Fluid Pressure

According to Pascal's law. a fluid at rest creates a pressure p at a point
that is the same in all directions. The magnitude of p, measured as a force
per unit area, depends on the specific weight y or mass density p of the
fluid and the depth z of the point from the fluid surface.* The relationship
can be expressed mathematically as

013

where g is the acceleration due to gravity. This equation is valid only for
Muids that are assumed incompressible, as in the case of most liquids. Gases
are compressible fluids, and since their density changes significantly with
both pressure and temperature, Eq. 9-13 cannot be used.

To illustrate how Eq. 9-13 is applied, consider the submerged plate
shown in Fig. 9-24. Three points on the plate have been specified. Since
point B is at depth z; from the liquid surface, the pressure at this point
has a magnitude p; = yz,. Likewise, points C and D are both at depth z5;
hence, p» = yz,. In all cases, the pressure acts normal to the surface area
dA located at the specified point.

Using Eq. 9-13 and the results of Scc. 9.4, it is possible to determine
the resultant force caused by a liquid and specify its location on the
surface of a submerged plate. Three different shapes of plates will now
be considered.

Fig. 9-24

*In particular, for water y = 624 Ib/ft’, or y = pg = 9810 N/m’ since p = 1000 kg/m"
and g = 9.81 m/s".



Flat Plate of Constant Width. A flat rectangular plate of
constant width, which is submerged in a liquid having a specific weight y,
is shown in Fig. 9-254. Since pressure varies linearly with depth, Eq.9-13,
the distribution of pressure over the plate's surface is represented by a
trapezoidal volume having an intensity of p; = yz; at depth z; and
P> = yz: at depth z;. As noted in Sec. 9.4, the magnitude of the resultant
force Fyis equal to the volume of this loading diagram and Fy has a line
of action that passes through the volume’s centroid C. Hence, Fy does
not act at the centroid of the plate: rather, it acts at point P, called the
center of pressure,

Since the plate has a constant width, the loading distribution may also
be viewed in two dimensions, Fig. 9-25b. Here the loading intensity is
measured as force/length and varies linearly from wy = bp, = byz; 10
wy = bps = byzo. The magnitude of Fy in this case equals the
trapezoidal area, and Fg has a line of action that passes through
the area’s centroid C. For numerical applications, the arca and location
of the centroid for a trapezoid are tabulated on the inside back cover,
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The walls of the tank must be designed
to support the pressure loading of the
liguid that is contained within it.

(a)

Fig. 9-25
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(b)

Fig. 9-26

Curved Plate of Constant Width. When a submerged plate of
constant width is curved, the pressure acting normal to the plate
| continually changes both its magnitude and direction, and therefore
calculation of the magnitude of Fg and its location P is more difficult
than for a flat plate. Three- and two-dimensional views of the loading
distribution are shown in Figs. 9-26a and 9-26b, respectively. Although
integration can be used to solve this problem, a simpler method exists.
This method requires separate calculations for the honizontal and
vertical components of Fy.

For example, the distributed loading acting on the plate can be
© represented by the equivalent loading shown in Fig. 9-26¢. Here the plate
supports the weight of liquid Wy contained within the block BDA. This
force has a magnitude W, = (yb)(areagp, ) and acts through the centroid
of BDA. In addition, there are the pressure distributions caused by the
liquid acting along the vertical and horizontal sides of the block. Along the
vertical side AD, the force F,j; has a magnitude equal to the area of
the trapezoid. It acts through the centroid C 4 of this area. The distributed
loading along the horizontal side AB is constant since all points lying in
this plane are at the same depth from the surface of the liquid. The
magnitude of F, is simply the area of the rectangle. This force acts
through the centroid C 45 or at the midpoint of AB. Summing these three
forces yields Fg = XF = F,; + F,5 + W,. Finally, the location of the
center of pressure P on the plate is determined by applying Mgz = XM,
which states that the moment of the resultant force about a convenient
reference point such as D or B, in Fig. 9-26b, is equal to the sum of the
moments of the three forces in Fig, 9-26¢ about this same point.




Flat Plate of Variable Width. The pressure distribution acting
on the surface of a submerged plate having a variable width is shown in
Fig. 9-27.1f we consider the force dF acting on the differential area strip
dA, parallel to the x axis, then its magnitude is dF = p dA. Since the
depth of dA is z, the pressure on the element is p = yz. Therefore,
dF = (yz)d A and so the resultant force becomes

Fg= [dF =y/zdA

If the depth to the centroid €' of the area is z, Fig. 9-27, then,
[zdA = zA.Substituting, we have

Fr = yzA (9-14)

In other words. the magnitude of the resultant force acting on any flat
plate is equal to the product of the area A of the plate and the pressure
p = yz at the depth of the area’s centroid C'. As discussed in Sec. 9.4, this
force is also equivalent to the volume under the pressure distribution.
Realize that its line of action passes through the centroid C of this
volume and intersects the plate at the center of pressure P, Fig. 9-27.
Notice that the location of C* does not coincide with the location of P.

Fig. 9-27
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The resultant force of the water pressure
and its location on the elliptical back plate
of this tank truck must be determined by
integration.
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EXAMPLE | 9.14

Determine the magnitude and location of the resultant hydrostatic force
acting on the submerged rectangular plate AB shown in Fig, 9-28a. The
plate has a width of 1.5 m: p,, = 1000 kg/m’.

SOLUTION |
The water pressures at depths A and B are

Pa = pugza = (1000 kg/m*)(9.81 m/s*)(2 m) = 19.62 kPa
P = pugzs = (1000 kg/m*)(9.81 m/s)(5 m) = 49.05 kPa

Since the plate has a constant width, the pressure loading can be
viewed in two dimensions as shown in Fig. 9-28b. The intensities of
the load at A and B are

wa = bps = (1.5m)(19.62 kPa) = 29.43 KN/m
wp = bpg = (1.5m)(49.05 kPa) = 73.58 KN/m

From the table on the inside back cover, the magnitude of the
resultant force Fy created by this distributed load is

Fgr = area of a trapezoid = %(3)(29.4 + 73.6) = 1545kN Ans.
This force acts through the centroid of this area,

- 1(2(29.43} + 73.58) <59 %
=3\ 43 + ;asg )P T 1Bm =
measured upward from B, Fig. 9-31b.
(b)
SOLUTION Il
The same results can be obtained by considering two components of
T — 1l —+  Fg. defined by the triangle and rectangle shown in Fig. 9-28c. Each
s 5 'm force acts through 1ts associated centroid and has a magnitude of
_A_l_ Fre = (29.43 kN/m)(3m) = 883 kN
ok | F, = 1(4415 kN/m)(3m) = 662 kN
J. F, _&.. > 3™  Hence,
y ] b _J Fp= Fp.+ F, =883 + 662 = 1545kN Ans.
¢ The location of Fy is determined by summing moments about B.
Fig. 9-28b and c.1.e.,
(c) CH(Mg)g = EMg; (154.5)h = 88.3(1.5) + 66.2(1)
Fig. 9-28 h=129m Ans.

NOTE: Using Eq. 9-14, the resultant force can be calculated as
Frp = yzA = (9810 N/m?)(3.5 m)(3m)(1.5 m) = 1545 kN.
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EXAMPLE |9.15

Determine the magnitude of the resultant hydrostatic force acling on
the surface of a seawall shaped in the form of a parabola as shown in
Fig. 9-29a. The wall is 5 m long; p,, = 1020 kg/m".

wy = 150.1 kN /m

Fig. 9-29

SOLUTION
The horizontal and vertical components of the resultant force will be
calculated. Fig. 9-29b. Since

Pi = pwgzp = (1020 kg/m*)(9.81 m/s*)(3 m) = 30.02 kPa

then
wg = bpg = 5m(30.02kPa) = 150.1 kN/m

Thus,
F, = }(3m)(150.1 kN/m) = 225.1 kN
The area of the parabolic sector ABC can be determined using the

table on the inside back cover. Hence, the weight of water within this
5 m long region is

F, = (pugb)(area y5¢)
= (1020 kg/m*)(9.81 m/s*)(S m)[}(1 m)(3m)| = 50.0kN
The resultant force is therefore
Fr= VF} + F2 = V/(225.1 kN)? + (50.0kN)?

= 231 kN Ans.

(b)
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EXAMPLE |9.16

Determine the magnitude and location of the resultant force acting
on the triangular end plates of the water trough shown in Fig. 9-30a;
pw = 1000 kg/m’,

(a)

SOLUTION
The pressure distribution acting on the end plate £ is shown in Fig. 9-305.
The magnitude of the resultant foree is equal to the volume of this
loading distribution. We will solve the problem by integration. Choosing
the differential volume ¢lement shown in the figure, we have
dF = dV = pdA = p,gz(2xdz) = 19620zx dz
The equation of line AB is
‘ X x=0501-2)
Hence, substituting and integrating with respect to z from z = 0 to

b z = 1 myields
Im
F=V= de = f (19 620)z[0.5(1 — z)] dz

Vv ]

Im
() =9810 [ (z—z%)dz=1635N = 164kN  Ans

L1}
Fig- 299 This resultant passes through the centroid of the volume. Because of

symmetry.
x=10 Ans.
Since 7 = z for the volume element, then

Lm 1m
f Zdv f z(19620)z[0.5(1 — z)]dz 9810 / (22— 2)dz
ol _ Ju 0

1635 - 1635
/ dVv
Y

=05m Ans.

i

NOTE: We can also determine the resultant force by applyving Eq. 9-14,
Frp = yzA = (9810 N/m*)(})(1 m)[3(1 m)(1 m)] = 1.64 kN.
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. FUNDAMENTAL PROBLEMS

F9-17. Determine the magnitude of the hydrostatic force F9-20. Determine the magnitude of the hydrostatic force
acting per meter length of the wall. Water has a density of acting on gate AB, which has a width of 2 m. Water has a
p=1Mg/m". density of p = 1 Mg/m”*.

F9-17

F9-18. Determine the magnitude of the hydrostatic force
acting on gate AB, which has a width of 4 ft. The specific
weight of water is y = 62.4 Ib/ft’. F9-20

F9-21. Determine the magnitude of the hydrostatic force
acting on gate AB. which has a width of 2 ft. The specific
weight of water is y = 62.4 Ib/ft’.

b—an—

Fo-18

F9-19. Determine the magnitude of the hydrostatic force
acting on gate AB, which has a width of 1.5 m. Water has a
density of p = 1 Mg/m*.

9-21
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“leromems

*9-104. The 1ank is used to store a liquid having a specific
weight of 80 Ib/ft>, If it is filled to the top, determine the
magnitude of the force the liquid exerts on each of its two
sides ABDC and BDFE.

Prob. 9-104

*9-105. The concrete “gravity” dam is held in place by its
own weight. If the density of concrete is p, = 2.5 Mg/m’,
and water has a density of p,, = 1.0 Mg/m?, determine the
smallest dimension d that will prevent the dam from
overturning about its end A.

9-106. The symmetric concrete “gravity” dam is held in
place by its own weight. If the density of concrete is
pe=25Mg/m’, and water has a density of

pw = 1.0 Mg/m*, determine the smallest distance d at its
base that will prevent the dam from overturning about its
end A. The dam has a width of 8 m.

Prob. 9-106

9-107. The tank is used to store a liquid having a specific
weight of 601Ib/ft’, If the tank is full. determine the
magnitude of the hydrostatic force on plates CDEF and
ABDC.

Prob. 9-105



*9-108. The circular steel plate A is used to seal the
opening on the water storage tank. Determine the
magnitude of the resultant hydrostatic force that acts on it.
The density of water is p, = 1 Mg/m".

*9-109. The elliptical steel plate B is used to seal the
opening on the water storage tank. Determine the
magnitude of the resultant hydrostatic force that acts on it.
The density of water is p, = 1 Mg/m".

9-110. Determine the magnitude of the hydrostatic force
acting on the glass window if it is circular, A. The specific
weight of scawater is y, = 63.6 Ib/ft’,

9-111.  Determine the magnitude and location of the
resultant hydrostatic force acting on the glass window if it is
elliptical. B. The specific weight of seawater is
¥, = 63.6Ib/ft’.
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*9-112. Determine the magnitude of the hydrostatic force
acting per foot of length on the scawall. y, = 62.4 Ib/ft’.

«9-113. If segment AB of gate ABC is long enough, the
gate will be on the verge of opening. Determine the length
L of this segment in order for this to occur. The gate is
hinged at B and has a width of 1 m. The density of water is
Pu = IMg,"I‘I‘l".

9-114. If L =2 m.determine the force the gate ABC exerts
on the smooth stopper at C. The gate is hinged at B, free at
A.and is 1 m wide. The density of water is p, = 1 Mg/m’.

Probs, 9-110/111

Probs. 9-113/114
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9-115. Determine the mass of the counterweight A if the
1-m-wide gate is on the verge of opening when the water is
at the level shown. The gate is hinged at B and held by the
smooth stop at C. The density of water is p, = 1 Mg/m".

*9-116. If the mass of the counterweight at A is 6500 kg,
determine the force the gate exerts on the smooth stop at C.
The gate is hinged at B and is 1-m wide, The density of
wateris p, = | Mg/m’.

Probs. 9-115/116

*9-117. The concrete gravity dam is designed so that it is held
in position by its own weight. Determine the factor of safety
against overturning about point A if x = 2 m. The factor of
safety is defined as the ratio of the stabilizing moment divided
by the overturning moment. The densities of concrete
and water are pege = 240Mg/m* and p, = | Mg/m’,
respectively. Assume that the dam does not slide.

Prabs. 9-117

9-118. The concrete gravity dam is designed so that it is
held in position by its own weight. Determine the minimum
dimension x so that the factor of safety against overturning
about point A of the dam is 2. The factor of safety is defined
as the ratio of the stabilizing moment divided by the
overturning moment. The densities of concrete and water
are pege = 240 Mg/m* and p, = 1 Mg/m?, respectively.
Assume that the dam does not slide.

9-119. The underwater tunnel in the aquatic center is
fabricated from a transparent polvcarbonate material
formed in the shape of a parabola. Determine the magnitude
of the hydrostatic force that acts per meter length along the
surface AB of the tunnel. The density of the water is
P = 1000 kg/m?,

Prob. 9-119
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. CHAPTER REVIEW

Center of Gravity and Centroid

The cemer of gravity G represents a
point where the weight of the body can
be considered concentrated. The
distance from an axis to this point can be
determined from a balance of moments,
which requires that the moment of the
weight of all the particles of the body
about this axis must equal the moment
of the entire weight of the body about
the axis.

The center of mass will coincide with
the center of gravity provided the
acceleration of gravity is constant.

The centroid is the location of the
geometric center for the body. It is
determined in a similar manner, using a
moment balance of geometric elements
such as line, area, or volume segments,
For bodies having a continuous shape,
moments are summed (integrated)
using differential elements.

The center of mass will coincide with
the centroid provided the material is
homogeneous, ie.. the density of the
material is the same throughout. The
centroid will always lie on an axis of
symmetry.

Tdw

-
1
|

=2l
1l
i

sl
(]

=i
Il
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Composite Body 5= IIW H
If the body is a composite of several W

shapes, each having a known location for SFW

its center of gravity or centroid, then the ¥ = BT

location of the center of gravity or

centroid of the body can be determined o A

from a discrete summation using its 5 W

composite parts.

Theorems of Pappus and Guldinus

The theorems of Pappus and Guldinus
can be used to determine the surface
area and volume of a body of revolution.

‘The surface area equals the product of the
length of the generating curve and the A =0rL
distance traveled by the centroid of
the curve needed to generate the area.

The volume of the body equals the
product of the generating area and the V =0rA
distance traveled by the centroid of this
area needed to generate the volume.
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General Distributed Loading

The magnitude of the resultant force is
equal to the total volume under the
distributed-loading diagram. The line of
action of the resultant force passes
through the geometric center or
centroid of this volume.

o= fp(x,y)dA= fdv
A V-

=
dv
v
fyr!V
Y
J’_
dv
v

Fluid Pressure

The pressure developed by a liquid at a
point on a submerged surface depends
upon the depth of the point and the
density of the liquid in accordance with
Pascal’s law, p = pgh=yh. This
pressure will create a linear distribution
of loading on a flat vertical or inclined
surface.

If the surface is horizontal, then the
loading will be uniform.

In any case. the resultants of these
loadings can be determined by finding
the volume under the loading curve or
using Fr = yZA, where Z is the depth to
the centroid of the plate’s area. The line
of action of the resultant force passes
through the centroid of the volume of
the loading diagram and acts at a point P
on the plate called the center of
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. REVIEW PROBLEMS

*9-120. Locate the centroid ¥ of the shaded area. 9-123, Locate the centroid Z of the solid,
*9-121. Locate the centroid v of the shaded area.

—d

Lin,
| | | = Prob. 9-123
——1in. —-|—— lin.—“J|
Probs, 9-120/121
9-122. Locate the centroid v of the beam's cross-sectional #9-124. The steel plate is 0.3 m thick and has a density of
area. 7850 kg/m®. Determine the location of its center of mass, Also

compute the reactions at the pin and roller support.

—2m—

Prob. 9-122 Proh 9.124
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*9-125. Locate the centroid (x, v) of the area. #9-128. The load over the plate vanes linearly along the
sides of the plate such that p = 5 [x(4 — y)] kPa. Determine
the resultant force and its position (x. ¥) on the plate.

Proh. 9-125

9-126. Determine the location (¥, v) of the centroid for
the structural shape. Neglect the thickness of the member.

Prob. 9-128

#9-129. The pressure loading on the plate 1s described by
the function p = {-240/(x + 1) + 340} Pa. Determine
Prob. 9-126 thﬁ magnitude of th_e rasulta'm_fume and ooordin’s_les of the

point where the line of action of the force intersects

. the plate.
9-127. Locate the centroid y of the shaded area.

v

Prob. 9-127 Prob. 9-129
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Moments of Inertia

CHAPTER OBJECTIVES

* To develop a method for determining the moment of inertia for
an area,

® To introduce the product of inertia and show how to determine the
maximum and minimum moments of inertia for an area.

* To discuss the mass moment of inertia.

10.1 Definition of Moments of Inertia
for Areas

Whenever a distributed loading acts perpendicular to an area and its
intensity varies linearly. the computation of the moment of the loading
distribution about an axis will involve a quantity called the moment of
inertia of the area. For example, consider the plate in Fig. 10-1, which is
subjected to a fluid pressure p. As discussed in Sec. 9.5, this pressure p
varies linearly with depth, such that p = yy, where y is the specific
weight of the fluid. Thus, the force acting on the differential area d A of
the plate is dF = pdA = (y v)d A. The moment of this force about the
x axis is therefore dM = y dF = yy*d A, and so integrating dM over the
entire area of the plate yields M = )fj-‘\':(ff‘l,'l—‘hl.' integral _,"-‘v:dzi is called
the moment of inertia I, of the area about the x axis. Integrals of this
form often arise in formulas used in fluid mechanics, mechanics of
materials, structural mechanics, and mechanical design, and so the
engineer needs to be familiar with the methods used for their
computation.

Fig. 10-1
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Moment of Inertia. By definition, the moments of inertia of a
differential area dA about the x and y axes are df, = y*dA and
dl, = x* dA, respectively, Fig. 10-2. For the entire arca A the moments
of inertia are determined by integration:i.c..

(10-1)

We can also formulate this quantity for dA about the “pole™ O or
z axis, Fig. 10-2. This is referred to as the polar moment of inertia. It is
defined as dJo = r* d A, where ris the perpendicular distance from the
pole (z axis) to the element dA. For the entire area the polar moment of
inertia is

Jo= jrsz =I.+1, (10-2)
A

(2]

Fig. 10-2 This relation between Jo and /,, I, is possible since P=xt+
Fig. 10-2.
From the above formulations it is seen that /. /,. and J, will always
be positive since they involve the product of distance squared and area.
Furthermore, the units for moment of inertia involve length raised to the
fourth power, e.g., m*, mm*, or ft*, in".

10.2 Parallel-Axis Theorem for an Area

The parallel-axis theorem can be used to find the moment of inertia of an
area about any axis that is parallel to an axis passing through the centroid
and about which the moment of inertia is known. To develop this theorem,
we will consider finding the moment of inertia of the shaded area shown
in Fig. 10-3 about the x axis. To start, we choose a differential element dA
located at an arbitrary distance y' from the cenrroidal x' axis. If the
x distance between the parallel x and x" axes is d,, then the moment of
inertia of dA about the vaxisis d/, = (y" + d,)* dA. For the entire area,

I, = /‘(}-" - d,.): dA
A

«
= /y'2 dA + 24,./_»' dA + d{[m
Fig. 10-3 A “Ja “JA
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The first integral represents the moment of inertia of the area about the
centroidal axis, /. The second integral is zero since the x' axis passes
through the area’s centroid Ciie., [y dA =¥ [dA = 0since ¥ = 0.
Since the third integral represents the total area A. the final result is
therelore

I,=T,+.Ad: (10-3)
A similar expression can be written for [ i.e.,
Ly =1y + Adj (10-4)

And finally, for the polar moment of inertia, since J- = [ + [, and
d® = d; + dj.wehave

Io = Jo + Ad* (10-5)

The form of each of these three equations states that the moment of
inertia for an area about an axis is equal to its moment of inertia about a
parallel axis passing through the area'’s centroid plus the product of the
area and the square of the perpendicular distance between the axes.

10.3 Radius of Gyration of an Area

The radius of gyration of an area aboul an axis has units of length and is
a quantity that is often used for the design of columns in structural
mechanics. Provided the areas and moments of inertia are known, the radii
of gyration are determined from the formulas

k= @
*~ V2

ky = \ /.'1 (10-6)

=
/

'Ijr:

ko= 1]

TN

The form of these equations is easily remembered since it is similar to
that for finding the moment of inertia [or a differential area about
an axis. For example, [, = k;A: whereas for a differential area,
diy, = y"dA.

In order to predict the strength and
deflection of this beam, it is necessary to
calculate the moment of inertia of the
beam's cross-sectional area,

10
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dyi

(a}
(b)

Fig. 104

Procedure for Analysis

In most cases the moment of inertia can be determined using a
single integration. The following procedure shows two ways in
which this can be done.

® 1If the curve defining the boundary of the area is expressed as
v = f(x). then select a rectangular differential element such that
it has a finite length and differential width.

* The element should be located so that it intersects the curve at
the arbitrary point (x, y).

Case 1

® Orient the element so that its length is parallel to the axis about
which the moment of inertia is computed. This situation occurs when
the rectangular element shown in Fig. 1044 is used to determine /,
for the area. Here the entire element is at a distance y from the v axis
since it has a thickness dy. Thus 7, = [ vd A.Tofind /,,the element
is oriented as shown in Fig. 10-4b. This glemem lies at the same
distance x from the y axisso that I, = [x'dA.

Case 2

® The length of the element can be oriented perpendicular to the axis
about which the moment of inertia is computed; however, Eq. 10-1
does not apply since all points on the element will not lie at the same
moment-arm distance from the axis. For example, if the rectangular
clement in Fig. 10-4a is used to determine 7, it will first be
necessary to calculate the moment of inertia of the element about
an axis parallel to the y axis that passes through the element’s
centroid, and then determine the moment of inertia of the element
about the y axis using the parallel-axis theorem. Integration of this
result will yield /. See Examples 10.2 and 10.3.
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EXAMPLE |10.1

Determine the moment of inertia for the rectangular area shown in
Fig. 10-5 with respect to (a) the centroidal x' axis, (b) the axis x,
passing through the base of the rectangle, and (c) the pole or 2" axis
perpendicular to the x'—y' plane and passing through the centroid C.

SOLUTION (CASE 1)

Part (a). The differential element shown in Fig. 10-5 is chosen for
integration. Because of its location and orientation, the entire element
is at a distance y' from the x’ axis. Here it is necessary to integrate
from y' = —h/210 ¥ = h/2. Since dA = bdy', then

- hiz L {2
1y = /."’2 dA = / yiAbdy') = b v dy'
JA -

/2 J=hy2

?_..- =—ph’ Ans.

1
12
Part (b). The moment of inertia about an axis passing through the

base of the rectangle can be obtained by using the above result of part
(a) and applying the parallel-axis theorem, Eq. 10-3.

I =T+ An*f:

Xy

]

- AV 1.
e + s = —bh 5.
lzbh bh(z) Bbh Ans

Part (c). To obtain the polar moment of inertia about point C, we
must first obtain 7,, which may be found by interchanging the
dimensions b and & in the result of part (a), i.c..

7o o= Lags
Iy = n ZMJ

Using Eq. 10-2, the polar moment of inertia about C is therefore

c=1Tp+ ?_,, = %bh(h: + bY) Ans.

b -

~ b

¥

Xk

Fig. 10-5
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EXAMPLE [10.2

Determine the moment of inertia for the shaded area shown in
Fig. 10-6a about the x axis.

SOLUTION | (CASE 1)
dy A differential element of area that is parallel 1o the x axis, as shown in
| Fig. 10-6a. is chosen for integration. Since this element has a thickness
nd dy and intersects the curve at the arbitrary point (x, v), its area is
dA = (100 — x) dy. Furthermore, the element lies at the same

' 200
7 ™ distance v from the x axis. Hence, integrating with respect 1o y, from
v = 0toy = 200 mm, yields
' i
b 100 mm——= 200 mm
' 1= f_\# dA = f V(100 — x) dy
(a) A (]
200 mm y 2 200 mm },.I
= 100 — = | dy = 100y* — =— )dy
j: 'W( 400) % ﬁ ( 4 400) s
= 107(10°) mm* Ans.

SOLUTION Il (CASE 2)

¥ e, A differential element parallel 1o the v axis, as shown in Fg. 10-65, is
V= 400x A chosen for integration. It intersects the curve at the arbitrary point (x, y).
| i In this case, all points of the element do nor lie at the same distance
from the x axis, and therefore the parallel-axis theorem must be used
to determine the moment of inertia of the element with respect to this
axis. For a rectangle having a base b and height s, the moment of
inertia aboul its centroidal axis has been determined in part (a) of
Example 10.1. There it was found that /. = ,Ji,' bh’. For the differential
element shown in Fig. 10-6b, b =dx and h =y, and thus
dl . = {5dx y*, Since the centroid of the elementis ¥ = y/2 from the
x axis, the moment of inertia of the element about this axis is

200 mm

g = N P ) W
R ) t— = e = Jr T — o 2 = = = -
X dx dl, = dly + dAYy lzdx Yoty dx(z) 3 dx

(This result can also be concluded from part (b) of Example 10.1.)
Integrating with respect to x, from x = 0 to x = 100 mm, yields

100 mm 1 100 mm 1
T /d!_, = f =i = f —(400x)*? dx
i 3 o 3

107(10°) mm* Ans.

]
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EXAMPLE |10.3

Determine the moment of inertia with respect to the x axis for the
circular area shown in Fig. 10-7a.

(a)

SOLUTION | (CASE 1)
Using the differential element shown in Fig. 10-7a, since dA = 2x dy.

we have
P f v dA = [ y¥(2x) dy
A JA

a 4
= f _\’:(2\/13"' = _\'2) dy = ?—T-;—TF Ans.
=il

SOLUTION II (CASE 2)

When the differential element shown in Fig. 10-7b is chosen. the
centroid for the clement happens to lie on the x axis, and since
1. = 5bh* for a rectangle, we have

-l 3
dl, = 12(!.\:(2_\")

L
3 dx

Il

Integrating with respect to x vields

ilz ‘ﬂ'd‘"
Pt f Sla? — 2Py = —— Ans.
= | 3@-#) .

NOTE: By comparison, Solution 1 requires much less computation.

Therefore, if an integral using a particular element appears difficult to (b)
evaluate, try solving the problem using an clement oriented in the

other direction. Fig. 10-7
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. FUNDAMENTAL PROBLEMS

Fli-1. Determine the moment of inertia of the shaded F10-3. Determine the moment of inertia of the shaded
area about the v axis. area about the y axis.

Im

Flo-1 F10-3

F10-2, Determine the moment of inertia of the shaded F10—4, Determine the moment of inertia of the shaded
area about the x axis. area about the y axis.

F1o-2 Flo-4
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Sleromiems

e10-1. Determine the moment of inertia of the area about
the x axis,

10-2. Determine the moment of inertia of the area about
the y axis,

Probs. 10-1/2

10-3. Determine the moment of inertia of the area about
the x axis.

*10-4. Determine the moment of inertia of the area about
the y axis.

Probs. 10-3/4

*10-5. Determine the moment of inertia of the area about
the x axis.

10-6. Determine the moment of inertia of the area about
the y axis.

_\:= 2x .

Probs. 10-5/6

10-7. Determine the moment of inertia of the arca about
the x axis.

*10-8. Determine the moment of inertia of the area about
the v axis.

*10-9. Determine the polar moment of inertia of the area
about the z axis passing through point 0.

Probs. 10-7/8/9
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10-10. Determine the moment of inertia of the area about
the x axis.

10-11. Determine the moment of inertia of the area about
the y axis.

Probs. 10-10/11

*10-12, Determine the moment of inertia of the area
about the v axis.

*10-13, Determine the moment of inertia of the area
‘about the y axis.

Probs. 10-12/13

10-14. Determine the moment of inertia of the area about
the x axis. Solve the problem in two ways, using rectangular
differential elements: (a) having a thickness of dx, and
(b) having a thickness of dy.

10-15. Determine the moment of inertia of the area about
the y axis. Solve the problem in two ways, using rectangular
differential elements: (a) having a thickness of dx, and
(b) having a thickness of dy.

Probs. 10-14/15 k

*10-16. Determine the moment of inertia of the triangular
area about the x axis,
*10-17. Determine the moment of inertia of the triangular
area about the v axis.

Probs. 10-16/17



10-18. Determine the moment of inertia of the area about
the x axis.

10-19. Determine the moment of inertia of the area about
the v axis.

o

Probs. 10-18/19

*10-20. Determine the moment of inertia of the area
about the x axis.

#10-21. Determine the moment of inertia of the area
about the y axis.

Probs. 10-20/21
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10-22. Determine the moment of inertia of the area about
the x axis.

10-23. Determine the moment of inertia of the area about
the y axis.

Probs. 10-22/23

*10-24. Determine the moment of inertia of the area
about the x axis.

*10-25. Determine the moment of inertia of the area
about the v axis.

10-26. Determine the polar moment of inertia of the area
about the z axis passing through point O.

Probs. 10-24/25/26
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10.4 Moments of Inertia for
Composite Areas

A composite arca consists of a series of connected “simpler™ parts or
shapes, such as rectangles, triangles, and circles. Provided the moment of
inertia of each of these parts is known or can be determined about a
common axis, then the moment of inertia for the composite arca about
this axis equals the algebraic sum of the moments of inertia of all its parts.

Procedure for Analysis

The moment of inertia for a composite area about a reference axis
can be determined using the following procedure.

Composite Parts.

* Using a sketch, divide the area into its composite parts and
indicate the perpendicular distance from the centroid of each
part to the reference axis.

Parallel-Axis Theorem.

* If the centroidal axis for each part does not coincide with the
reference axis, the parallel-axis theorem. I = 7 + Ad®, should be
used to determine the moment of inertia of the part about the
reference axis. For the calculation of 7. use the table on the inside
back cover.

Summation.

® The moment of inertia of the entire area about the reference axis
is determined by summing the results of its composite parts
about this axis.

® If a composite part has a “hole,” its moment of inertia is found
by “subtracting” the moment of inertia of the hole from the
moment of inertia of the entire part including the hole.

For design or analysis of this Tee beam,
engincers must be able to locate the
centroid of its cross-sectional area, and
then find the moment of inertia of this
area about the centroidal axis
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EXAMPLE [10.4

Determine the moment of inertia of the area shown in Fig. 10-8a
about the x axis.

| 100 mm — |- 100 mm —
215 i
25 mm 75 mm 75 mm 25 mm
AT, a | | <7
5 1 | S
T |smm 75 mm|
+ X v x
Fig. 10-8

SOLUTION

Composite Parts. The area can be obtained by subtracting the
circle from the rectangle shown in Fig. 10-8b. The centroid of each
area is located in the figure.

Parallel-Axis Theorem. The moments of inertia about the x axis
are determined using the parallel-axis theorem and the data in the
table on the inside back cover.

Circle
I, =T+ Ad?
- }‘1:125)‘ + w(25)%(75)* = 11.4(10°) mm*
Rectangle
1, =1, + Ad}

I‘—,—(wm(lsn)-‘ + (100)(150)(75)* = 112.5(10°) mm*

Summation. The moment of inertia for the area is therefore

Iy

—11.4(10%) + 112,5(10%)

101(10°) mm* Ans.




524 CHaPTER 10 MOMENTS OF INERTIA

EXAMPLE [10.5

Determine the moments of inertia for the cross-sectional area of the
member shown in Fig. 10-9a about the x and y centroidal axes.

SOLUTION

Composite Parts. The cross section can be subdivided into the three
rectangular areas A, B, and D shown in Fig. 10-9h. For the calculation,
the centroid of each of these rectangles 1s located in the figure.

Parallel-Axis Theorem. From the table on the inside back cover, or
Example 10.1, the moment of inertia of a rectangle about its
centroidal axis is [ = ébh". Hence, using the parallel-axis theorem
for rectangles A and D, the calculations are as follows:

Rectangles A and D

lLi=T.+ Ad} = %{100)(300)-‘ + (100)(300)(200)*

1.425(10") mm*

Iy=Ty+ Ad% = é{sw)(lmn'-‘ + (100)(300)(250)?
= 1.90(10”) mm*
Rectangle B
(h)
Ii= l(6{10)(1[)0)3 = (.05(10") mm*
Fig. 10-9 s i

o~
Il

'115(100)(6(}0}3 = 1.80(10") mm*

Summation. The moments of inertia for the entire cross section
are thus

I, = 2[1.425(10%)] + 0.05(10%)

= 2.90(10") mm* Ans.

I, = 2[1.90(10%)] + 1.80(107)

5.60(10”) mm* Ans.
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. FUNDAMENTAL PROBLEMS

Fli-5. Determine the moment of inertia of the beam’s F10-7. Determine the moment of inertia of the cross-
cross-sectional area about the centroidal v and y axes. sectional area of the channel with respect to the y axis.

50 mm|

50 mm|

F10-5 F10-7
Fl0-6, Determine the moment of inertia of the beam’s F10-8. Determine the moment of inertia of the cross-
cross-sectional area about the centroidal x and y axes. sectional area of the T-beam with respect to the x’ axis

passing through the centroid of the cross section.

L—lﬁﬂm

m—

Fli-6 Flo-8
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Sleromiems

10-27. Determine the distance y to the centroid of the
beam’s cross-sectional area; then find the moment of inertia
about the x' axis.

#10-28. Determine the moment of inertia of the beam’s
cross-sectional area about the x axis.

*10-29, Determine the moment of inertia of the beam’s
cross-sectional area about the y axis.

y

A"'—/ ‘H_J‘ .
lin. Lin.

Probs. 10-27/28/29

10-30. Determine the moment of inertia of the beam’s
cross-sectional area about the v axis.

10-31. Determine the moment of inertia of the beam’s
cross-sectional area about the y axis.

Probs. 10-30/31

*10-32. Determine the moment of inertia of the

composite area about the x axis.

*10-33. Determine the moment of inertia of the

composite area about the y axis.

150 mm | 150 mm
| D

Probs. 10-32/33

10-34. Determine the distance ¥ to the centroid of the
beam’s cross-sectional area; then determine the moment of
inertia about the x’ axis.

10-35. Determine the moment of inertia of the beam’s
cross-sectional area about the y axis.

25 mm

Probs. 10-34/35
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“10-36. Locate the centroid y of the composite area, then
determine the moment of inertia of this area about the
centroidal x' axis.

#10-37. Determine the moment of inertia of the
composite area about the centroidal y axis.

Probs. 10-36/37

10-38. Determine the distance v to the centroid of the
beam’s cross-sectional area; then find the moment of inertia
about the x' axis.

10-39. Determine the moment of inertia of the beam’s
cross-sectional area about the x axis.

*10-40. Determine the moment of inertia of the beam’s
cross-sectional area about the y axis.

k200 mm —+

Probs. 10-38/39/40

*10-41. Determine the moment of inertia of the beam’s
cross-sectional area about the x axis.

1042, Determine the moment of inertia of the beam’s
cross-sectional area about the v axis.

v

T

50 mm 50 mm
Probs. 10-41/42

1043. Locate the centroid v of the cross-sectional area
for the angle. Then find the moment of inertia /- about the
&' centroidal axis.

*10-44. Locate the centroid X of the cross-sectional area
for the angle. Then find the moment of inertia /. about the
V' centroidal axis.

Probs. 10-43/44
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*10-45. Determine the moment of inertia of the
composite area about the x axis.

10-46. Determine the moment of inertia of the composite
area about the v axis.

#1049, Determine the moment of inertia [, of the
section. The origin of coordinates is at the centroid C.

10-50. Determine the moment of inertia /. of the section,
The origin of coordinates is at the centroid C.

10-47. Determine the moment of inertia of the composite
‘area about the centroidal y axis.

#1048, Locate the centroid ¥ of the composite area, then
determine the moment of inertia of this area about the
A’ axis.

| i
| S— .

|
150 mm 150 mm 50 mm

Probs. 10-47/48

Probs, 10-49/50

10-51. Determine the beam’s moment of inertia /, about
the centroidal x axis.

*10-52. Determine the beam’s moment of inertia /, about
the centroidal v axis.

Probs. 10-51/52
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*10-53. Locate the centroid v of the channel’s cross- *10-57. Determine the moment of inertia of the beam’s

sectional area, then determine the moment of inertia of the cross-sectional area about the x axis.

area about the centroidal x’ axis. . i -
10-58. Deternune the moment of inertia of the beam’s

10-54. Determine the moment of inertia of the area of the cross-sectional area about the v axis.

channel about the y axis,

-
~ k- 65in. }7 65in.— -
t:5n, 0%in

Probs. 10-53/54 Probs. 10-57/58
10-535. Determine the moment of inertia of the cross- 10-59, Determine the moment of inertia of the beam’s
sectional area about the x axis. cross-sectional area with respect to the x' axis passing

through the centroid C of the cross section, vy = 104.3 mm.
#*10-56. Locate the centroid ¥ of the beam’'s cross- & ’
sectional area, and then determine the moment of inertia of

the area about the centroidal y* axis.

Probs. 10-55/56 Prob, 10-59
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e |

Fig. 10-10

The effectiveness of this beam to resist
bending can be determined once its
moments of inertia and its product of
inertia are known.

*10.5 Product of Inertia for an Area

It will be shown in the next section that the property of an area, called
the product of inertia, is required in order to determine the maximum and
minimum moments of inertia for the area. These maximum and minimum
values are important properties needed for designing structural and
mechanical members such as beams, columns, and shafts.

The product of inertia of the area in Fig. 10-10 with respect to the x
and y axes is defined as

Ly = f xvdA (10-7)
A

If the element of area chosen has a differential size in two directions, as
shown in Fig. 10-10, a double integration must be performed to evaluate
I,,. Most often, however, it is casier to choose an element having a
differential size or thickness in only one direction in which case the
evaluation requires only a single integration (see Example 10.6).

Like the moment of inertia, the product of inertia has units of length
raised to the fourth power, e.g., m*. mm* or ft*, in*. However, since x or y
may be negative, the product of inertia may either be positive, negative,
or zero, depending on the location and orientation of the coordinate
axes. For example, the product of inertia /., for an area will be zero if
cither the x or y axis is an axis of symmetry for the area, as in Fig. 10-11.
Here every element dA located at point (x, y) has a corresponding
clement dA located at (v, —y). Since the products of inertia for these
elements are, respectively, xy dA and —xy dA, the algebraic sum or
integration of all the elements that are chosen in this way will cancel
each other. Consequently, the product of inertia for the total area
becomes zero. It also follows from the definition of /,, that the “sign™ of
this quantity depends on the quadrant where the area is located. As
shown in Fig. 10-12, if the area is rotated from one quadrant to another,
the sign of /,, will change.

Fig. 10-11
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I, =[xy dA

Fig. 10-12

Parallel-Axis Theorem. Consider the shaded arca shown in
Fig. 10-13, where x" and v represent a set of axes passing through the
centroid of the area, and x and y represent a corresponding set of parallel
axes. Since the product of inertia of dA with respect Lo the x and y axes is
dl,, = (x' + d.)(y" + d,)dA, then for the enlire area,

Ly= /(.r’ +d)(y +d)dA
A

- f.r'y' dA + d,f_v’ dA + ‘i.v_/“" dA + d‘d,.fdA
A A A A

The first term on the right represents the product of inertia for the
area with respect to the centroidal axes, /. The integrals in the second
and third terms are zero since the moments of the area are taken about
the centroidal axis. Realizing that the fourth integral represents the
entire arca A, the parallel-axis theorem for the product of inertia
becomes

| Iy = oy + Adgd, | (10-8)

It is important that the algebraic signs for d and d, be maintained
when applying this equation.

|‘—d‘——

Fig. 10-13
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EXAMPLE [10.6

¥ Determine the product of inertia [,, for the triangle shown in
Fig. 10-14a.
l SOLUTION |
I A differential element that has a thickness dx, as shown in Fig. 10-14bh,

has an area dA = ydx. The product of inertia of this element with
| respect to the x and y axes is determined using the parallel-axis theorem.

diy, =dloy + dAXY

—— p ———
(a) where ¥ and ¥ locate the centroid of the element or the origin of the

x'. v axes. (See Fig. 10-13.) Since rﬁ.,-_‘.‘ = 0, due to symmetry, and
¥ =x.¥ = y/2 then

- 2 ) B )
y diy, =0+ (y dx].t(z) = (bx d.t).t(Zb,r
1 = 2
y= 5.1' \ - h 3
. 2!’}21 dx
(X, ¥}y

Integrating with respect to x from x = 0 to x = b yields

v el I
Ly w®o[* b’
N = e 3 = i
| s _ Ty 3 )y xdx 3 Ans.
= b o
) SOLUTION Il

The differential element that has a thickness dy, as shown in Fig. 10-14¢,
can also be used. Its area is dA = (b — x) dy.The centroid is located
atpoint ¥ = x + (b — x)/2 = (b + x)/2. ¥ = y, so the product of
inertia of the element becomes

dlyy = dlyy + dAXY

=0+ (b—x) d_\*(b —; o )y

b b+(bz’h)y} 1 ( b’ )
= (b h})dy[ 5 v = 2_\ b }':3". dy

Integrating with respect to y from v = Oto y = h vields

() h 3 2,2
1 b b°h

L == _v(b2 - —r_;_vz) dy = Ans.
Fig. 10-14 5 A e 8
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EXAMPLE [10.7

Determine the product of inertia for the cross-sectional area of the
member shown in Fig. 10-154, about the x and y centroidal axes.

100 mm |

il

— 100 mm
600 mm-—-+
(a)
(h)
Fig. 10-15

SOLUTION

As in Example 10.5, the cross section can be subdivided into three
composite rectangular areas A, B, and D, Fig. 10-15b. The coordinates
for the centroid of each of these rectangles are shown in the figure.
Due to symmetry, the product of inertia of each rectangle is zero about
asetof x', y' axes that passes through the centroid of each rectangle.
Using the parallel-axis theorem. we have

Rectangle A
Iy = 7,»_.,- + Ad.d,
0 + (300)(100)(—250)(200) = —1.50(10%) mm*

Rectangle B
Ly = Iy + Add,
=0+0=0
Rectangle D

Ly =1y + Add,
= 0+ (300)(100)(250)(=200) = —1.50(10°) mm*
The product of inertia for the entire cross section is therefore
Iy, = —150(10%) + 0 — 1.50(10%) = —3.00(10") mm* Ans.

NOTE: This negative resultis due to the fact that rectangles A and D
have centroids located with negative x and negative y coordinates,
respectively.
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Fig. 10-16

*10.6 Moments of Inertia for an Area
about Inclined Axes
Instructural and mechanical design, it is sometimes necessary to calculate
the moments and product of inertia /,,, /,, and /,,, for an arca with respect
to a set of inclined « and v axes when the values for 6, /., /,, and [, arc
known. To do this we will use transformation equations which relate the x,
v and u, v coordinates. From Fig. 10-16, these equations are
w= xcosfl + ysinfl

v=ycosfl — xsinf

With these equations, the moments and product of inertia of dA about
the 1 and v axes become
dl, = v*dA = (ycos@ — xsin0)* dA
dl, = udA = (xcosf + ysin0)* dA
dl,, =uvdA= (xcosf + ysinfl)(ycosf — vsinfl) dA

Il

Expanding each expression and integrating, realizing that [, = [v? dA,
1, = [x¥dA.and 1, = [xydA,we obtain

T
I

= I,cos’ 0 + I,sin* 0 — 21, sin 0 cos

-~
]

I,sin’ 0 + l_‘.coszﬁ + 21, sinf cos b

1,.= I, sinfcos® — I,sin @ cosd + [(cos’ # — sin’0)

Using the trigonometric identitics sin260 = 2sinficos§ and cos 26
= cos’# — sin’ 0 we can simplify the above expressions, in which case

T ie=Ty
i 3 =+ 3 —cos 20 — I, sin 20

Tttty =y
I, = T 260 + I,y sin20 (10-9)
I,—1,
lyw = 3 sin 20 + [, cos 20

Notice that if the first and second equations are added together, we can
show that the polar moment of inertia about the z axis passing through
point O is, as expected, independent of the orientation of the « and »
axes;i.e.,

JO=IJ|+I|-=!|+I}
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Principal Moments of Inertia. Equations 10-9 show that I,,, /,,
and /,, depend on the angle of inclination, #, of the u, v axes. We will
now determine the orientation of these axes about which the moments
of inertia for the area are maximum and minimum. This particular set of
axes is called the principal axes of the arca, and the corresponding
moments of inertia with respect to these axes are called the principal
moments of inertia. In general, there is a set of principal axes for every
chosen origin O. However, for structural and mechanical design. the
origin O 1s located at the centroid of the area.

The angle which defines the orientation of the principal axes can be
found by differentiating the first of Eqs. 10-9 with respect to # and
setting the result equal to zero. Thus,

I.— I,

Therefore, at 6 = HP'

~Ty
(L = 1)/2

tan 260, = (10-10)

The two roots 8, and #, of this equation are 90" apart, and so they each
specify the inclination of one of the principal axes. In order to substitute
them into Eq. 10-9, we must first find the sine and cosine of 20, and 260,,..
This can be done using these ratios from the triangles shown in
Fig. 10-17, which are based on Eq. 10-10.

Substituting each of the sine and cosine ratios into the first or second
of Egs. 10-9 and simplifying, we obtain

L+ 1 da="ToN? =
I = : + ( > ) + Iy (10-11)

Depending on the sign chosen, this result gives the maximum or
minimum moment of inertia for the area. Furthermore, if the above
trigonometric relations for f, and 8, are substituted into the third of
Eqs. 10-9, it can be shown that 7, = 0; that is, the product of inertia with
respect to the principal axes is zero. Since it was indicated in Sec. 10,6 that
the product of inertia is zero with respect o any symmetrical axis, it
therefore follows that any symmetrical axis represents a principal axis of
inertia for the area.

535

Fig. 10-17
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EXAMPLE [10.8

Determine the principal moments of inertia and the orientation of the
principal axes for the cross-sectional area of the member shown in
Fig. 10-18a with respect to an axis passing through the centroid.

SOLUTION

The moments and product of inertia of the cross section with respect
to the x, y axes have been determined in Examples 10.5 and 10.7. The
results are

I, =2.90(10") mm* I, = 5.60(10%) mm* Iy= —-3.00(10°) mm*

—-1,- -iflmmm
- 600 -
o Using Eq. 10-10, the angles of inclination of the principal axes 1 and

@) v are
T . RN
Pl = 1)2 T [290(10%) — 5.60(10°)]/2
28, = —65.8° and 114.2°
Thus, by inspection of Fig. [0-18b,
9y, = —329° and 4, =571° Auns.

The principal moments of inertia with respect to these axes are
determined from Eq. 10-11. Hence,

b I + 1, L= Iy\2 -
e gt JETE

— s '

Fig. 10-18
_ 290010°) + 5.60(10°)
= 2
N _ 5 972
s \”2.90(10) 23-5”“‘”] + [~3.00(10%)

I = 425(10%) + 329(10°)
or
L = 7.54( 10'}) mm* I'yin = 0.960(10%) mm* Ans.

NOTE: The maximum moment of inertia, [y, = 7.54(10") mm®,
oceurs with respect to the u axis since by inspection most of the cross-
sectional area is farthest away from this axis. Or, stated in another
manner, /,,,, occurs about the u axis since this axis is located within
+457 of the y axis, which has the larger value of I (1, > I,). Also, this
can be concluded by substituting the data with # = 57.17 into the first
of Eqgs. 10-9 and solving for /.
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*10.7 Mohr's Circle for Moments
of Inertia

Equations 10-9 to 10-11 have a graphical solution that is convenient to use

and generally easy to remember. Squaring the first and third of Egs. 10-9
and adding, it is found that

L Lrbe L e :,)z )
( w 2 ) +!m'"'( 2 +l.(_l'

Here I, 1, and I, are known constants. Thus, the above equation may
be written in compact form as

(I, —al + I}, = R

When this equation is plotted on a set of axes that represent the
respective moment of inertia and the product of inertia, as shown in
Fig. 10-19, the resulting graph represents a circle of radius

and having its center located at point (@, 0), where a = (1, + 1,)/2. The
circle so constructed is called Mohr's circle, named after the German
engineer Otto Mohr (1835-1918).

Auxis for minor principal
moment of inertia, I

Axis for major principal
moment of inertia, £,

{a) (b)

Fig. 10-19
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Procedure for Analysis

The main purpose in using Mohr's circle here is to have a
convenient means for finding the principal moments of inertia for
an area. The following procedure provides a method for doing this.

Determine /,, /4, and /.

® Establish the x, y axes and determine [, /,, and /. Fig. 10-19a.

/L Axis for minor principal Construct the Circle,
A moment of inertia, fy,

® Construct a rectangular coordinate system such that the abscissa
represents the moment of inertia /, and the ordinate represents
the product of inertia /., Fig. 10-19b.

P /o . *® Determine the center of the circle, O, which is located at a
<3 distance (7, + 7,)/2 from the origin, and plot the reference point
A having coordinates (1, /,,). Remember, / is always positive,

= i —_— [ ; - v .
Axis for major principal whereas I, can be either positive or negative.
moment of inertia, f,,

*® Connect the reference point A with the center of the circle and
determine the distance OA by trigonometry, This distance
represents the radius of the circle, Fig. 10-19b. Finally, draw
the circle.

(a)

Principal Moments of Inertia.

® The points where the circle intersects the [ axis give the values
of the principal moments of inertia [y, and [,,,,. Notice that,
as expected, the product of inertia will be zero at these points.,
Fig. 10-19b.

Principal Axes.

* To find the ori¢ntation of the major principal axis, use
trigonometry to find the angle 20, . measured from the radius
OA to the positive I axis, Fig. 10-195. This angle represents twice
the angle from the x axis to the axis of maximum moment of
inertia /.. Fig. 10-194. Both the angle on the circle, 20, and
the angle @, must be measured in the same sense, as shown in
Fig. 10-19. The axis for minimum moment of inertia [, is
perpendicular to the axis for /.

Using trigonometry, the above procedure can be verified to be in
accordance with the equations developed in See. 10.6.
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EXAMPLE |10.9

Using Mohr's circle, determine the principal moments of inertia and
the orientation of the major principal axes for the cross-sectional area
of the member shown in Fig. 10-20a, with respect to an axis passing
through the centroid.

100 mm |
Mk -

¥

100 mm

F.
=100 mm
~600 mm———

SOLUTION “

Determine I, I, I,,. The moments and product of inertia have
been determined in Examples 10.5 and 10.7 with respect to the x, y
axes shown in Fig, 10-20a. The results are [, = 2.90(10") mm®,
I, = 5.60(10°) mm*, and 7,, = —3.00(10°) mm*.

Construct the Circle. The /and 7, axes are shown in Fig. 10-205. The
center of the circle, 0. lies at a distance (/,+1,)/2= (2.90+5.60)/2 =4.25
from the origin. When the reference point A(/,, I ,,) or A(2.90,—3.00) is
connected to point @, the radius OA is determined from the triangle
OBA using the Pythagorean theorem.

0A = V(135) + (-3.00)* = 329
The circle is constructed in Fig. 10-20c.

Principal Moments of Inertia. The circle intersects the I axis at
points (7.54, 0) and (0.960, 0). Hence,

Fae = (4.25 + 320107 = 7.54(10") mm* Ans,
Tin = (425 — 3.29)10 = 0.960(10") mm* Ans.
Principal Axes. As shown in Fig. 10-20c, the angle 20, is

determined from the circle by measuring counterclockwise from OA
to the direction of the positive I axis. Hence,

14 sl BAIN - 300N 5
20, = 180" — sin (1—0A| = 180° — sin 329) = 1142
The principal axis for 7, = 7.54(10”) mm* is therefore oriented at
an angle 8, = 57.17, measured counterclockwise, from the positive x
axis to the positive u axis. The v axis is perpendicular to this axis. The
results are shown in Fig. 10-204d.

1, (10" mm*

A (2,90, =3.00)

(b)

1, (10") mm*

A (290, -3.00)
(c)
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“lrromiems

*10-60. Determine the product of inertia of the parabolic *10-64. Determine the product of inertia of the area with
area with respect to the x and y axes. respect to the x and y axes.

*10-61. Determine the product of inertia /,, of the right
half of the parabolic area in Prob. 10-60, bounded by the
linesy = 2in.andx = 0. y

- - 4in *
T X
4m
=Pyl { : LIS
=X (e —8)
Y= (x.—8)
1 X
Probs. 10-60/61 Prob. 10-64
10-62. Determine the product of inertia of the quarter *10-65. Determine the product of inertia of the area with
elliptical area with respect to the v and y axes. respect to the x and y axes.
¥
¥
i .8 By =a" 4 20 + 4y
i — by + L= 1 T =
m o Y
> /
b \\ Im /;
| \ | |4 l
- a - 2m—
Prob. 10-62 Prob. 10-65
10-63. Determine the product of inertia for the area with 10-66. Determine the product of inertia for the area with
respect to the x and y axes. respect to the v and y axes.
.‘I
X X
Sin, ™ -2m =

Prob. 10-63 Prob, 10-66
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10-67. Determine the product of inertia for the area with 10-70. Determine the product of inertia of the composite
respect to the x and y axes. area with respect to the x and y axes.

Prob. 10-67

*10-68. Determine the product of inertia for the area of Prob. 10-70
the ellipse with respect to the x and y axes.

10-71. Determine the product of inertia of the cross-
_Fea=16 sectional area with respect to the x and y axes that have
X their origin located at the centroid C

I 4in. -

Prob. 10-68

*10-69. Determine the product of inertia for the parabolic
area with respect to the x and y axes

Prob. 10-71
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*10-72. Determine the product of inertia for the beam’s 10-74. Determine the product of inertia for the beam’s
cross-sectional area with respect to the x and y axes that cross-sectional area with respect to the x and y axes that
have their origin located at the centroid €. have their origin located at the centroid C.

*10-73. Determine the product of inertia of the beam’s 10-75. Locate the centroid x of the beam's cross-sectional

cross-sectional area with respect to the x and y axes. area and then determine the moments of inertia and the
product of inertia of this area with respect to the u and
v axes. The axes have their origin at the centroid C.

e

300

Prob. 10-73 Prob. 10-75



*10-76. Locate the centroid (x. y) of the beam’s cross-
sectional area, and then determine the product of inertia of
this area with respect to the centroidal x' and v' axes.

n X

|

20 mm ——-=

Prob, 10-76

*10-77. Determine the product of inertia of the beam's
cross-sectional area with respect to the centroidal x and
y axes.
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10-78. Determine the moments of inertia and the product
of inertia of the beam’s cross-sectional area with respect to
the u and v axes.

Prob. 10-78

10-79. Locate the centroid ¥ of the beam's cross-sectional
area and then determine the moments of inertia and the
product of inertia of this area with respect to the u and
v axes.

Prob. 10-77

Prob. 10-79
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*10-80. Locate the centroid x and y of the cross-sectional 10-82. Locate the centroid ¥ of the beam’s cross-sectional
area and then determine the orientation of the principal area and then determine the moments of inertia of this area
axes, which have their origin at the centroid C of the area. and the product of inertia with respect to the u and v axes.
Also, find the principal moments of inertia. The axes have their origin at the centroid C,

Prob. 10-80 Prob. 10-82

*10-81. Determine the orientation of the principal axes, 10-83. Solve Prob. 10-75 using Mohr's circle.
which have their origin at centroid C of the beam’s cross-
sectional area. Also, find the principal moments of inertia.

“10-84. Solve Prob. 10-78 using Mohr’s circle.

*10-85. Solve Prob. 10-79 using Mohr's circle.

10-86. Solve Prob. 10-80 using Mohr’s circle.

10-87. Solve Prob. 10-81 using Mohr's circle.

=100 mm "ﬁfz" mm

Prob. 10-81 “10-88. Solve Prob. 10-82 using Mohr’s circle.
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10.8 Mass Moment of Inertia

The mass moment of inertia of a body is a measure of the body’s resistance
to angular acceleration. Since it is used in dynamics to study rotational
motion, methods for its calculation will now be discussed.*

Consider the rigid body shown in Fig. 10-21. We define the mass
moment of inertia of the body about the z axis as

I= /rz dm (10-12)

Here r is the perpendicular distance from the axis to the arbitrary
element dm. Since the formulation involves r, the value of [is unique for
each axis about which it is computed. The axis which is generally chosen,
however, passes through the body’s mass center G. Common units used
for its measurement are kg - m* or slug - {t%.

If the body consists of material having a density p, then dm = pdV.
Fig. 10-22a. Substituting this into Eq. 10-12, the body’s moment of
inertia is then computed using volme elements for integration; i.e.

1= [Ppdv (10-13)
‘.’

For most applications, p will be a constant, and so this term may be
factored out of the integral, and the integration is then purely a function
of geometry.

I = pfﬁdv (10-14)
B

dm = pdV
(x.3.2)

7

x
(a)

Fig. 10-22

*Another property of the body which measures the symmetry of the body’s mass with
respect to a coordinate system is the mass product of inertia. This property most often
applies to the three-dimensional motion of a body and is discussed in Engineering
Mechanics: Dynamics (Chapter 21).

Mass MOMENT OF INERTIA

Fig. 10-21
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(c)

Fig. 10-22

Procedure for Analysis

If a body is symmetrical with respect to an axis, as in Fig. 10-22. then
its mass moment of inertia about the axis can be determined by
using a single integration. Shell and disk elements are used for this
purpose.

Shell Element.

® If a shell element having a height z, radius y, and thickness dy
is chosen for integration, Fig. 10-22b, then its volume is
dv = (2my)(z) dy.

* This element can be used in Eq. 10-13 or 10-14 for determining
the moment of inertia /. of the body about the z axis since the
entire element, due toits “thinness.” lies at the same perpendicular
distance r = y from the z axis (see Example 10.10).

Disk Element.

*® 1If a disk element having a radius v and a thickness dz is chosen
for integration, Fig. 10-22¢, then its volume is dV = (7y?) dz.

* In this case the element is finite in the radial direction, and
consequently its points do not all lie at the same radial distance r
from the z axis. As a result, Egs. 10-13 or 10-14 cannot be used to
determine /.. Instead, to perform the integration using this
element, it is first necessary to determine the moment of inertia
of the element about the z axis and then integrate this result (see
Example 10.11).
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EXAMPLE [10.10

Determine the mass moment of inertia of the cylinder shown in
Fig. 10-23a about the z axis. The density of the material, p, is constant.

(b)

Fig. 10-23

SOLUTION

Shell Element. This problem will be solved using the shell element

in Fig. 10-23b and thus only a single integration is required. The

volume of the element is dV = (27r)(h) dr, and so its mass is

dm = pdV = p(2whr dr). Since the entire element lies at the same

distance r from the z axis, the moment of inertia of the element is
dl. = r*dm = p2whr’ dr

Integrating over the entire cylinder yields
R -
I.= frldm = pZﬂ'hf P TR"h
m 0 L
Since the mass of the cylinder is

R
m= f dm = plwh / rdr = pehR*
m 1

then

[

mR Ans.

I | =
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EXAMPLE [10.11

A solid is formed by revolving the shaded area shown in Fig. 10-24q
about the y axis. If the density of the material is 5 slug/ft’, determine
the mass moment of inertia about the y axis.

SOLUTION

Disk Element. The moment of inertia will be determined using this
disk element, as shown in Fig. 10-24h. Here the ¢lement intersects the
curve at the arbitrary point (x, ¥) and has a mass

dm = pdV = p(wx*)dy

Although all points on the element are not located at the same
distance from the y axis, it is still possible to determine the moment of
inertia dI, of the element about the y axis. In the previous example it
was shown that the moment of inertia of a homogencous cylinder
about its longitudinal axis is [ = %m R?, where m and R are the mass
and radius of the cylinder. Since the height of the cylinder is not
involved in this formula, we can also use this result for a disk. Thus. for
the disk element in Fig. 10-24b, we have

dly, = %(dm)xz = %[p(ﬂ'x:) dy)a?

Substituting x = y*, p = 5slug/ft*, and integrating with respect to y,
fromy = Otoy = 1 {1, yields the moment of inertia for the entire solid.

S 0 S (3
Iy=== / Hdy = :;)~' [ v dy = 0.873slug- ft*  Ans.
; 0 < Jo
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Fig. 10-25

Parallel-Axis Theorem. If the moment of inertia of the body
about an axis passing through the body’s mass center is known, then the
moment of inertia about any other parallel axis can be determined by
using the parallel-axis theorem. To derive this theorem, consider the body
shown in Fig. 10-25. The 2" axis passes through the mass center G,
whereas the corresponding parallel = axis lies at a constant distance d
away. Selecting the differential element of mass dm. which is located at
point (x', v'), and using the Pythagorean theorem,r? = (d + x')* + v,
the moment of inertia of the body about the z axis is

1= /rz dm = /[(d + 2P+ v dm

= ‘/’(.u:'2 + v dm + 2d [.\" dm + dz‘/dm

Since r'* = x> + y'?, the first integral represents /. The second
integral is equal to zero, since the 2" axis passes through the body’s mass
center, 1.e., }x' dm = X [dm = Osince X = 0. Finally, the third integral
is the total mass m of the body. Hence, the moment of inertia about the z

axis becomes
=15+ ma‘2| (10-15)

I = moment of inertia about the £' axis passing through the mass
center G

m = mass of the body
d = distance between the parallel axes

549



550

CHaprTER 10

MOMENTS OF INERTIA

Radius of Gyration. Occasionally, the moment of inertia of a
body about a specified axis is reported in handbooks using the radius of
gyration, k. This value has units of length, and when it and the body's
mass /m are known, the moment of inertia can be determined from the
equation

[ o
.[ mk= or k ) (10-16)

Note the similarity between the definition of & in this formula and r in
the equation dI = r* dm, which defines the moment of inertia of a
differential element of mass dm of the body about an axis.

Composite Bodies. If a body is constructed from a number of
simple shapes such as disks, spheres, and rods, the moment of inertia of
the body about any axis z can be determined by adding algebraically the
moments of inertia of all the composite shapes computed about the same
axis. Algebraic addition is necessary since a composite part must be
considered as a negative quantity if it has already been included within
another part—as in the case of a “hole” subtracted from a solid plate.
Also, the parallel-axis theorem is needed for the caleulations if the
center of mass of each composite part does not lie on the z axis. In this
regard, formulas for the mass moment of inertia of some common
shapes, such as disks, spheres, and rods, are given in the table on the
inside back cover.

This flywheel, which operates a metal
cutter, has a large moment of inertia about
its center. Once it begins rotating it is
difficult to stop it and therefore a uniform
motion can be effectively transferred to
the cutting blade.
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EXAMPLE |10.12

If the plate shown in Fig. 10-26a has a densily of 8000 kg/m® and a
thickness of 10 mm, determine its mass moment of incertia about an
axis perpendicular to the page and passing through the pin at 0.

(b)

0125 m

0 Thickness 0.01 m
{a)

Fig. 10-26

SOLUTION

The plate consists of two composite parts, the 250-mm-radius disk
minus a 125-mm-radius disk, Fig. 10-265h. The moment of inertia about
O can be determined by finding the moment of inertia of each of
these parts about O and then algebraically adding the results. The
computations are performed by using the parallel-axis theorem in
conjunction with the data listed in the table on the inside back cover.

Disk. The moment of inertia of a disk about an axis perpendicular
to the plane of the disk and passing through Gis I; = }mr” The mass
center of both disks is 0.25 m from point O. Thus,

my = paVy = 8000 kg/m’® [7(0.25 m)*(0.01 m)] = 15.71 kg
(1o)a = %"'d"?} + myd®
= 1(15.71 kg)(025 m)? + (15.71 kg)(025 m)?
1473 kg + m?

I

Hole. For the smaller disk (hole), we have
my, = pp¥y = 8000 kg/m® [7(0.125 m)*(0.01 m)] = 3.93 kg
(Lo)y = Smpry + myd®
1(3.93kg)(0.125 m)* + (3.93 kg)(0.25 m)
= 0276 kg m?
The moment of inertia of the plate about the pin is therefore
To = (To)a = (1o)n
1473 kg-m* — 0.276 kg m*
1.20 kg -m* Ans,

-0.125m
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EXAMPLE [10.13

1 i—t—1n— :

Fig. 10-27

The pendulum in Fig. 10-27 consists of two thin rods cach having a
weight of 10 Ib. Determine the pendulum’s mass moment of inertia
about an axis passing through (a) the pin at O, and (b) the mass center
G of the pendulum.

SOLUTION

Part (a). Using the table on the inside back cover, the moment of
inertia of rod OA about an axis perpendicular to the page and passing
through the end point O of the rod is 1, = im!:. Hence,

L X 10 1b
I s D
(Toa)o m ( 322 ft)s2

3 3
Realize that this same value may be computed using /; = j5mi* and
the parallel-axis theorem: i.e.,

)(2 f1)* = 0.414 slug - f*

(Toa)o = Lml“" + md* = L(&)(2 fl)* + Lh,(l fr)*

12 12\ 32.2 f/s? 322 f/s?
= 0.414 slug - ft*
For rod BC we have
1 - 1 74018 . 101b -
o =mmlFHmlt=—(—= J@I) + =5 (21t
U = gomt 12(32‘2 ra;s-)( "+ Bane @M

= 1.346 slug - {¢*
The moment of inertia of the pendulum about O is therefore

lop = 0414 + 1.346 = 1.76 slug - {? Ans.

Part (b). The mass center G will be located relative to the pin at 0.
Assuming this distance to be y, Fig. 10-27, and using the formula for
determining the mass center, we have

_ Sym 1(10/322) + 2(10/32.2) _—

P= = = =]

- Em (10/32.2) + (10/32.2)
The moment of inertia /; may be computed in the same manner as
1, which requires successive applications of the parallel-axis theorem
in order to transfer the moments of inertia of rods OA and BCto G. A
more direct solution. however, involves applying the parallel-axis
theorem using the result for /; determined above: ie.,

20 1b ;
—————— )(1.50 ft)?
322 ft)s )( )

I; = 0362 slug - [t Ans.

Io=1g+mds: 176slg-f¢ = I+ (




10.8 Mass MOMENT OF INERTIA 553

Sleromiews

*10-89. Determine the mass moment of inertia /. of the
cone formed by revolving the shaded area around the z axis.
The density of the material is p. Express the result in terms
of the mass m of the cone.

Prob. 10-89

10-90. Determine the mass moment of inertia [, of the
right circular cone and express the result in terms of the
total mass m of the cone. The cone has a constant density p.

Prob, 10-90

10-91. Determine the mass moment of inertia [, of the
slender rod. The rod is made of material having a variable
density p = py(l + x/I). where p, is constant. The cross-
sectional area of the rod is A. Express the result in terms of
the mass m of the rod.

e

X

Prob. 10-91

*10-92. Determine the mass moment of inertia /, of the
solid formed by revolving the shaded area around the y
axis. The density of the material is p. Express the result in
terms of the mass /m of the solid.

1y
4

L g

Prob. 10-92
*10-93. The paraboloid is formed by revolving the shaded
area around the x axis. Determine the radius of gyration & .
The density of the material is p = 5 Mg/m’.

200 mm

Prob, 10-93
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10-94. Determine the mass moment of inertia /, of the
solid formed by revolving the shaded area around the v axis.
The density of the material is p. Express the result in terms
of the mass m of the semi-ellipsoid.

Prob. 10-94

10-95. The frustum is formed by rotating the shaded area
around the x axis. Determine the moment of inertia /, and
express the result in terms of the total mass m of the
frustum. The material has a constant density p.

Prob. 10-95

*10-96. 'The solid is formed by revolving the shaded area
around the v axis. Determine the radius of gyration k,. The
specific weight of the material is y = 380 Ib/ft’.

Prob. 10-96

*10-97. Determine the mass moment of inertia /. of the
solid formed by revolving the shaded area around the = axis.
The density of the material is p = 7.85 Mg/m".

Prob. 10-97



10-98. Determine the mass moment of inertia /. of the
solid formed by revolving the shaded area around the z axis.
The solid is made of a homogeneous material that weighs
400 Ib.

Prob. 10-98

10-99. Determine the mass moment of inertia /, of the
solid formed by revolving the shaded area around the v axis.
The total mass of the solid is 1500 kg.

Prob. 10-99

10.8 Mass MOMENT OF INERTIA 555

*10-100, Determine the mass moment of inertia of the
pendulum about an axis perpendicular to the page and
passing through point @, The slender rod has a mass of 10 kg
and the sphere has a mass of 15 kg,

Prob. 10-100

*10-101. The pendulum consists of a disk having a mass of
6 kg and slender rods AB and DC which have a mass per unit
length of 2 kg/m. Determine the length L of DC so that the
center of mass is at the bearing O. What is the moment of
inertia of the assembly about an axis perpendicular to the
page and passing through point O?

Prob. 10-101
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10-102. Determine the mass moment of inertia of the
2-kg bent rod about the z axis.

Prob. 10-102

10-103. The thin plate has a mass per unit area of
10 kg/m?. Determine its mass moment of inertia about the

v axis.
*10-104. The thin plate has a mass per unil area of
10 kg/m?, Determine its mass moment of inertia about the
Z axis,

) 'znu,:!.m

Probs. 10-103/104

*10-105. The pendulum consists of the 3-kg slender rod
and the 5-kg thin plate. Determine the location y of the
center of mass G of the pendulum; then find the mass
moment of inertia of the pendulum about an axis
perpendicular to the page and passing through G.

—1m -I
Prob. 10-105
10-106. The cone and cylinder assembly is made of

homogencous material having a density of 7.85 Mg/m®.
Determine its mass moment of inertia about the z axis.

Prob. 10-106
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10-107. Determine the mass moment of inertia of the 10-110. Determine the mass moment of inertia of the thin

overhung crank about the x axis. The material is steel plate about an axis perpendicular to the page and passing

having a density of p = 7.85 Mg/m® through point ©. The material has a mass per unit area of
20 kg/m’.

*10-108. Determine the mass moment of inertia of the
overhung crank about the x' axis, The material is steel
having a density of p = 7.85 Mg/m?,

150 mm 150 mm

20 mm —= }-50—- 30 mm|L—~;
mm
Probs. 10-107/108 Prob. 10-110

*10-109. II the large ring. small ring and each of the spokes 10-111.  Determine the mass moment of inertia of the thin
weigh 100 Ib, 15 Ib,and 20 Ib, respectively, determine the mass plate about an axis perpendicular to the page and passing
moment of inertia of the wheel about an axis perpendicular through point O, The material has a mass per unit area of
to the page and passing through point A. 20 kg/m’,

Prob. 10-109 Prob. 10-111
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. CHAPTER REVIEW

Area Moment of Inertia

The area moment of inertia represents the
second moment of the area about an axis. ;

It is frequently used in formulas related to Iy = / ydA
the strength and stability of structural 4
members or mechanical elements.

If the area shape is irregular but can
be described mathematically. then a
differential element must be selected Iy= [ *dA
and integration over the entire area must 4
be performed to determine the moment
of inertia.

Parallel-Axis Theorem

If the moment of inertia for an area is
known about a centroidal axis. then its
moment of inertia about a parallel axis I=T1+Ad
can be determined using the parallel-axis
theorem.

Composite Area

If an area is a composite of common
shapes. as found on the inside back cover, - — ~ e
then its moment of inertia is equal to the \_/

algebraic sum of the moments of inertia of
each of its parts. X o

Product of Inertia

The product of inertia of an area is used in
formulas to determine the orientation of L= f xydA
an axis about which the moment of inertia ' A

for the area is a maximum or minimum.

If the product of inertia for an area is L d
known with respect to its centroidal x’, ' 2t
axes, then its value can be determined L=l + Add,
with respect to any x, y axes using the ' - FLE.
parallel-axis theorem for the product of W }
inertia. o !

0
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Principal Moments of Inertia

Provided the moments of inertia, [, and
I,, and the product of inertia, /,,, are
known, then the transformation formulas.
or Mohr's circle, can be used to determine
the maximum and minimum or principal
moments of inertia for the area, as well as
finding the orientation of the principal
axes of inertia.

L+l [7h=Ty:
== *\/( ) i

=l

tan Zﬂ.‘, = m

Mass Moment of Inertia

The mass moment of inertia is a property
of a body that measures its resistance to a
change in its rotation. It 1s defined as the
“second moment” of the mass elements of
the body about an axis.

For homogeneous bodies having axial
symmetry, the mass moment of inertia can
be determined by a single integration, using
a disk or shell element.

The mass moment of inertia of a
composite body is determined by using
tabular values of its composite shapes
found on the inside back cover, along with
the parallel-axis theorem.

I= frzdm

f=pfr1d1f
¥

I = 1+ md

a
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| | REVIEW PROBLEMS

*10-112, Determine the moment of inertia of the beam’s 10-115. Determine the moment of inertia of the beam’s
cross-sectional area about the x axis which passes through cross-sectional area with respect to the x' axis passing
the centroid C through the centroid C.

*10-113. Determine the moment of inertia of the beam’s
cross-sectional area about the y axis which passes through
the centroid C.

0.51n,

Probs. 10-112/113 Prob. 10-115
10-114. Determine the moment of inertia of the beam’s #10-116. Determine the product of inertia for the angle's
cross-sectional area about the x axis. cross-sectional area with respect to the x’ and y' axes

having their origin located at the centroid €. Assume all
corners to be right angles.

20mm} £

Prob. 10-114 Prob. 10-116



*10-117. Determine the moment of inertia of the area
about the y axis.

10-118. Determine the moment of inertia of the area
about the x axis.

Probs. 10-117/118

10-119. Determine the moment of inertia of the area
about the x axis. Then, using the parallel-axis theorem, find
the moment of inertia about the x* axis that passes through
the centroid € of the area. ¥ = 120 mm.

el

Prob, 10-119

Review ProBLEMS 561

*10-120. The pendulum consists of the slender rod OA,
which has a mass per unit length of 3 kg/m. The thin disk
has a mass per unit arca of 12kg/m’. Determine the
distance y to the center of mass G of the pendulum: then
calculate the moment of inertia of the pendulum about an
axis perpendicular to the page and passing through G.

Prob, 10-120

#10-121. Determine the product of inertia of the area
with respect to the x and y axes.

Prob. 10-121



Equilibrium and stability of this articulated crane boom as a function of the boom
position can be analyzed using methods based on work and energy, which are
explained in this chapter.



Virtual Work

CHAPTER OBJECTIVES

* To introduce the principle of virtual work and show how it applies to
finding the equilibrium configuration of a system of pin-connected
members.

®* To establish the potential-energy function and use the potential-
energy method to investigate the type of equilibrium or stability of
a rigid body or system of pin-connected members.

11.1 Definition of Work

The principle of virtual work was proposed by the Swiss mathematician
Jean Bernoulli in the eighteenth century. It provides an alternative method
for solving problems involving the equilibrium of a particle, a rigid body,
or a system of connected rigid bodies. Before we discuss this principle,
however, we must first define the work produced by a force and by a
couple moment.
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(b)

Fig. 11-1

Fig. 11-2

VirTuar WoORK

e

Work of a Force. A force does work when it undergoes a
displacement in the direction of its line of action. Consider, for example,
the force Fin Fig. 11-1a that undergoes a differential displacement dr. If
6 is the angle between the force and the displacement, then the
component of F in the direction of the displacement is F cos 6. And so
the work produced by Fis

dU = F drcos

Notice that this expression is also the product of the force F and
the component of displacement in the direction of the force, dr cos 8,
Fig. 11-1h. If we use the definition of the dot product (Eq. 2-14) the
work can also be written as

dU = F-dr

As the above equations indicate, work is a scalar, and like other scalar
quantities, it has a magnitude that can either be positive or negative.

In the SI system, the unit of work is a joule (J), which is the work
produced by a 1-N force that displaces through a distance of 1 m in the
direction of the force (1J = 1 N-m). The unit of work in the FPS system
is the foot-pound (ft - Ib), which is the work produced by a 1-Ib force that
displaces through a distance of 1 ft in the direction of the force.

The moment of a force has this same combination of units; however,
the concepts of moment and work are in no way related. A moment is a
vector quantity, whereas work is a scalar.

Work of a Couple Moment. The rotation of a couple moment
also produces work. Consider the rigid body in Fig. 11-2, which is acted
upon by the couple forces F and -F that produce a couple moment M
having a magnitude M = Fr. When the body undergoes the differential
displacement shown, points A and B move dr, and drg to their final
positions A" and B’, respectively. Since dry = dr, + dr’, this movement
can be thought of as a translation dr 4, where A and B move to A" and
B",and a rotation about A, where the body rotates through the angle d6
about A.The couple forces do no work during the translation dr 4 because
cach force undergoes the same amount of displacement in opposite
directions, thus canceling out the work. During rotation, however, F is
displaced dr” = r d#, and so it does work dU = F dr" = F r d. Since
M = Fr, the work of the couple moment M is therefore

dU = Mde

If M and d have the same sense, the work 1s positive; however, if they
have the opposite sense, the work will be negative.
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Virtual Work. The definitions of the work of a force and a couple
have been presented in terms of actual movements expressed by
differential displacements having magnitudes of dr and df. Consider
now an imaginary or virtual movement of a body in static equilibrium,
which indicates a displacement or rotation that is assumed and does not
actually exist. These movements are first-order differential quantities and
will be denoted by the symbols ér and 80 (delta r and delia 8),
respectively. The wvirtual work done by a force having a virtual

displacement ér is
e

Similarly, when a couple undergoes a virtual rotation 86 in the plane of
the couple forces, the virtual work is

BU=M86| (11-2)

11.2 Principle of Virtual Work

The principle of virtual work states that if a body is in equilibrium, then
the algebraic sum of the virtual work done by all the forces and couple
moments acting on the body. is zero for any virtual displacement of the
body. Thus,

U =0 (11-3)

For example, consider the free-body diagram of the particle (ball) that
rests on the floor, Fig. 11-3. If we “imagine” the ball to be displaced
downwards a virtual amount 8y, then the weight does positive virtual
work, W éy, and the normal force does negative virtual work, —N 8y.
For equilibrium the total virtual work must be zero, so that
U=Waoy—Ndy=(W-N)éy=0. Since by #0, then N=W as
required by applying £F, = 0.

Fig. 11-3
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In a similar manner, we can also apply the virtual-work equation
8/ = 0 to a rigid body subjected to a coplanar force system. Here,
separate virtual translations in the x and y directions and a virtual
rotation about an axis perpendicular to the x-y plane that passes through
an arbitrary point O, will correspond to the three equilibrium equations,
LF, =0, 2F, =0, and M, = 0. When writing these equations, it is
not necessary 1o include the work done by the internal forces acting
within the body since a rigid body dees not deforn when subjected to an
external loading, and furthermore, when the body moves through a
virtual displacement, the internal forces occur in equal but opposite
collinear pairs, so that the corresponding work done by cach pair of
forces will cancel.

To demonstrate an application, consider the simply supported beam in
Fig. 11-4a. When the beam is given a virtual rotation 860 about point B,
Fig. 11-4b, the only forces that do work are P and A,. Since dy = [ 66
and 8y’ = (//2) 80, the wvirtual work equation for this case is
8U = A(180) — P(1/2) 80 = (A — Pi/2) 86 = 0.Since 50 # 0, then
Ay = P/2. Excluding 80, notice that the terms in parentheses actually
represent the application of EMy = (.

As seen from the above two examples, no added advantage is gained
by solving particle and rnigid-body equilibrium problems using the
principle of virtual work. This is because for each application of the
virtual-work equation, the virtual displacement, common to every term,
factors out, leaving an equation that could have been obtained in a more
direct manner by simply applying an equation of equilibrium.

'
A‘..i_____m:r

| p—-

[
e —
=~

= £ s i€ !
2 I 2

(b)

Fig. 11-4
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11.3 Principle of Virtual Work for a
System of Connected Rigid Bodies

The method of virtual work is particularly effective for solving equilibrium
problems that involve a system of several connected rigid bodies, such as
the ones shown in Fig. 11-5.

Each of these systems is said to have only one degree of freedom since
the arrangement of the links can be completely specified using only one
coordinate 0, In other words, with this single coordinate and the length of
the members, we can locate the position of the forces F and P.

In this text, we will only consider the application of the principle of
virtual work to systems containing one degree of freedom®. Because they
are less complicated, they will serve as a way to approach the solution of
more complex problems involving systems with many degrees of freedom.
The procedure for solving problems involving a system of frictionless
connected rigid bodies follows.

Important Points

* A force does work when it moves through a displacement in the
direction of the force. A couple moment does work when it
moves through a collinear rotation. Specifically, positive work is
done when the force or couple moment and its displacement
have the same sense of direction.

* The principle of virtual work is generally used to determine the
equilibrium configuration for a system of multiply connected
members.

* A virtual displacement is imaginary: i.¢., it does not really
happen. It is a differential displacement that is given in the
positive direction of a position coordinate.

* Forces or couple moments that do not virtually displace do no
virtual work.

*This method of applying the principle of virtual work is sometimes called the method
of virmal displacements because a virtual displacement is applied, resulting in the
calculation of a real force. Although it is not used here, we can also apply the principle of
virtual work as a method of virmal forces, This method is often used 1o apply a virtual force
and then determine the displacements of points on deformable bodies. See R, C. Hibbeler,
Mechanics of Materials, Tth edition, Pearson/Prentice Hall, 2007,

This scissors lift has one degree of
freedom. Without the need for
dismembering the mechanism, the
force in the hydraulic cylinder AB
required to provide the lift can be
determined directly by using the
principle of virtual work.
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Procedure for Analysis

Free-Body Diagram.

® Draw the free-body diagram of the entire system of connected
bodies and define the coordinate g.

® Sketch the “deflected position” of the system on the free-body
diagram when the system undergoes a positive virtual
displacement 6q.

Virtual Displacements.

* Indicate position coordinates s, each measured from a fixed point
on the free-body diagram. These coordinates are directed to the
forces that do work.

® Each of these coordinate axes should be parallel to the line of
action of the force to which it is directed. so that the virtual work
along the coordinate axis can be calculated.

® Relate each of the position coordinates s to the coordinate ¢;
then differentiare these expressions in order to express each
virtual displacement 8s in terms of 8q.

Virtual-Waork Equation.

® Write the virtual-work equation for the system assuming that,
whether possible or not, each position coordinate s undergoes a
positive virtual displacement ds. If a force or couple moment is in
the same direction as the positive virtual displacement, the work
is positive. Otherwise, it is negative.

* Express the work of each force and couple moment in the
equation in terms of 8q.

*® Factor out this common displacement from all the terms, and
solve for the unknown force, couple moment, or equilibrium
position gq.
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Determine the angle @ for equilibrium of the two-member linkage
shown in Fig. 11-64. Each member has a mass of 10 kg.

SOLUTION ; W -
Free-Body Diagram. The system has only one degree of freedom ~

since the location of both links can be specified by the single
coordinate (g =) #. As shown on the free-body diagram in Fig. 11-6b,
when # has a positive (clockwise) virtual rotation 86, only the force F

; : T - D,
are fixed, and B, does not displace along its line of action.) 5o { .
Do

Virtual Displacements. If the origin of coordinates is established at D,
the fixed pin support D, then the position of F and W can be specified W=981N W=981N
by the position coordinates xg and .. In order to determine the work, )
note that, as required. these coordinates are parallel to the lines of
action of their associated forces. Expressing these position Fig. 11-6
coordinates in terms of # and taking the derivatives yields

Xg=2(lcosf)m dxg = —2sinf# 860 m (1)

Yoo = %(l sinf) m Sy, = 0.5cos 60 m (2)

It is seen by the signs of these equations, and indicated in Fig. 11-6b, that
an fncrease in # (i.¢., 60) causes a decrease in Xz and an increase in y,,.

Virtual-Work Equation. If the virtual displacements dxg and 8y,
were both positive, then the forces W and F would do positive work
since the forces and their corresponding displacements would have the
same sense. Hence, the virtual-work equation for the displacement 56 is

oU = 0 Wy, + Woy, + Féxg =10 (3)

Substituting Egs. 1 and 2 into Eq. 3 in order to relate the virtual
displacements to the common virtual displacement 66 yields

98.1(0.5 cos # 60) + 98.1(0.5 cos 6 60) + 25(—2sinf60) = 0
Notice that the “negative work™ done by F (force in the opposite
sense to displacement) has actually been accounted for in the above

equation by the “negative sign” of Eq. 1. Factoring out the common
displacement 80 and solving for 6, noting that 86 # (), yields

(98.1cos# — 50sin 8) 66 = 0
98.
o= tan"'——l— =i53:0° Ans.

NOTE: If this problem had been solved using the equations of
equilibrium, it would be necessary 1o dismember the links and apply
three scalar equations Lo each link. The principle of virtual work, by
means of calculus, has eliminated this task so that the answer is
obtained directly.

and the two 98.1-N weights do work. (The reactive forces D, and D, I S-FB' Wcis
? g E=
4

.-,"-7?‘ £ Ny
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EXAMPLE |11.2

Determine the required force P in Fig. 11-7a, needed to maintain
equilibrium of the scissors linkage when 6 = 60°. The spring is
unstretched when § = 30°. Neglect the mass of the links.

SOLUTION

Free-Body Diagram. Only F, and P do work when # undergoes a
positive virtual displacement 86, Fig. 11-7b. For the arbitrary position
#. the spring is stretched (0.3 m) sin # — (0.3 m) sin 30°, so that

F, = ks = 5000 N/m [(0.3 m) sin @ — (0.3 m) sin 30°]
= (1500 sin 6 — 750) N

() Virtual Displacements. The position coordinates, xvg and xp,
measured from the fixed point A, are used to locate F, and P. These
coordinates are parallel to the line of action of their corresponding
forces. Expressing xz and xp in terms of the angle # using
trigonomeltry,

xp = (0.3m)sin¢
xp = 3[(0.3m)sind] = (0.9 m)sin @
Differentiating, we obtain the virtual displacements of points B and D.
oxg = 0.3 cos 1 66 (1)
Sxp = 0.9 cos 80 2)

Virtual-Work Equation. Force P does positive work since it acts in

the positive sense of its virtual displacement. The spring force F; does

(b) negative work since it acts opposite to its positive virtual
Fig. 11-7 displacement. Thus, the virtual-work equation becomes
au =0, —Féxpt+Pdxp =0

— [1500 sin # — 750] (0.3 cos 0.86) + P (0.9 cos 0 58) = 0

[0.9P + 225 — 450 sin @] cos 0 80 = 0

Since cos # 860 # 0, then this equation requires
P =500sin6 — 250
When 6 = 60°,
P = 500sin60° — 250 = 183N Ans.
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If the box in Fig. 11-8a has a mass of 10 kg, determine the couple
moment M needed to maintain equilibrium when 6 = 60°. Neglect
the mass of the members.

10(9.81) N

[ ]

Fig. 11-8
SOLUTION

Free-Body Diagram. When # undergoes a positive virtual
displacement 86, only the couple moment M and the weight of the box
do work, Fig. 11-8b.

Virtual Displacements. The position coordinate y;, measured [rom
the fixed point B, locates the weight, 10(9.81) N. Here,

e =(045m)sind + b
where b is a constant distance. Differentiating this equation, we obtain
Syg = 0.45 m cos 0 60 (1)

Virtual-Work Equation. The virtual-work equation becomes
U = 0; M36 — [10(9.81) N]sy, =
Substituting Eq. 1 into this equation

Maéf — 10(9.81) N(0.45 m cos 0 661) = 0

of(M — 44.145 cos ) = 0
Since 86 # 0, then
M — 44.145¢cos 0 = 0
Since it is required that # = 607, then
M = 44.145¢cos 60° = 221 N*m Ans.
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EXAMPLE [11.4

The mechanism in Fig. 11-9a supports the 50-1b eylinder. Determine
the angle # for equilibrium if the spring has an unstretched length of
2 ft when # = 0°. Neglect the mass of the members.

SOLUTION

Free-Body Diagram. When the mechanism undergoes a positive
virtual displacement 86, Fig. 11-9b, only F; and the 50-1b force do work.
Since the final length of the spring is 2(1 [t cos 6), then

F, = ks = (200 1b/ft)(2 ft — 2 ftcos 0) = (400 — 400 cos #) b

Virtual Displacements. The position coordinates x; and xp are
established from the fixed point A to locate F, at D and at E.
The coordinate yg, also measured from A, specifies the position of the
50-1b force at B. The coordinates can be expressed in terms of # using
trigonometry.

xp = (1LIt)cos @
xp = 3[(L 1) cos ] = (31t) cos #
yp = (20)sind

Differentiating, we obtain the virtual displacements of points D, E,
and B as

dxp = —1sinf &6 (1)
Sxp = —3sinf 80 (2)
Syyp = 2cos b 60 (3)

Virtual-Work Equation. The virtual-work equation is writlen as il
all virtual displacements are positive. thus

ot/ = 0 Foxg + 508yy — Fox, =0
(400 — 400 cos 0)(—3 sin 6 80) + 50(2 cos 6 56)
—(400 — 400 cos B)(—1sinf d8) = 0
&f (800 sin # cos # — 800 sin# + 100 cos @) = 0
Since 66 # (), then
800 sm @ cosf — 800sinf + 100cos @ = 0

Solving by trial and error,
0= 349° Ans.
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| | FUNDAMENTAL PROBLEMS

F11-1. Determine the required magnitude of force P 1o Fl1-4. The linkage is subjected to a force of P = 6 kN.
maintain equilibrium of the linkage at # = 60°. Each link Determine the angle # for equilibrium, The spring is
has a mass of 20 kg. unstretched at # = 60°. Neglect the mass of the links.

F11-1 F11-4
Fl11-2. Determine the magnitude of force P required to F11-5. Determine the angle # where the 50-kg bar is in
hold the 50-kg smooth rod in equilibrium at # = 60°, equilibrium. The spring is unstretched at # = 60°.

Fi1-2 s
Fl1-3. The linkage is subjected to a force of P = 2kN. F11-6. The scissors linkage is subjected to a force of
Determine the angle # for equilibrium. The spring is P = 150 N. Determine the angle # for equilibrium. The
unstretched when # = 0°. Neglect the mass of the links. spring is unstretched at # = 0°. Neglect the mass of the links

Y P=150N

F11-3 Fl1-6
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“leromiems

*11-1. The 200-kg crate is on the lift table at the position 11-3. The “Nuremberg scissors”™ is subjected to a
f = 30°, Determine the force in the hydraulic cylinder AD horizontal force of P = 600 N. Determine the angle 6 for
for equilibrium. Neglect the mass of the lift table’s equilibrium. The spring has a stiffness of &k = 15 kN/m and
components. 1s unstretched when 6 = 157

“11-4. The “Nuremberg scissors” is subjected to a
horizontal force of P = 600 N. Determine the stiffness k of
the spring for equilibrium when # = 60° The spring is
unstretched when # = 157,

Probs. 11-3/4

Prob. 11-1

11-2. The uniform rod OA has a weight of 10 Ib. When the *11-5. Determine the force developed in the spring
rod is in a vertical position,# = 0, the spring is unstretched. required to keep the 10 Ib uniform rod A8 in equilibrium
Determine the angle f for equilibrium if the end of the spring when # = 357,

wraps around the periphery of the disk as the disk turns.

AS

YEYNY

k= 301b/t

Prob. 11-2 Prob, 11-5
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11-6. If a force of P = 5Ib is applied to the handle of the
mechanism, determine the force the screw exerts on the cork
of the bottle. The screw is attached to the pin at A and passes
through the collar that is attached to the bottle neck at B.

P=3lb

Prob. 11-6

11-7. The pin-connected mechanism is constrained at A by
a pin and at B by a roller. If P = 10 lb. determine the angle
@ for equilibrium. The spring is unstretched when f = 457,
Neglect the weight of the members.

*11-8. The pin-connected mechanism is constrained by a
pin at A and a roller at B. Determine the force P that must
be applied to the roller to hold the mechanism in
equilibrium when # = 30°. The spring is unstretched when
f = 45°. Neglect the weight of the members.

Probs. 11-7/8

*11-9. Ifa force P = 100 N is applied to the lever arm of
the toggle press, determine the clamping force developed in
the block when # = 45°. Neglect the weight of the block.

11-10. When the forces are applied to the handles of the
bottle opener, determine the pulling force developed on
the cork.

Prob. 11-10
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11-1L If the spring has a stiffness k and an unstretched
length /. determine the force P when the mechanism is in
the position shown, Neglect the weight of the members,

*11-12. Solve Prob. 11-11 if the force P is applied
vertically downward at B.

Probs. 11-11/12

*11-13. Determine the angles # for equilibrium of the
4-b disk using the principle of virtual work. Neglect the
weight of the rod. The spring is unstretched when 6 = 0” and
always remains in the vertical position due 1o the roller guide.

11-14. The truck is weighed on the highway inspection
scale. If a known mass m is placed a distance s from the
fulcrum B of the scale. determine the mass of the truck m, if
its center of gravity is located at a distance o from point .
When the scale is empty. the weight of the lever ABC
balances the scale CDE.

Prob. 11-14

11-15. The assembly is used for exercise. It consists of four
pin-connected bars, each of length L, and a spring of
stiffness & and unstretched length a (< 2L). If horizontal
forces are applied to the handles so that 6 is slowly
decreased. determine the angle # at which the magnitude of
P becomes a maximum.

Prob, 11-13

Prob. 11-15
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*11-16. A 5-kg uniform serving table is supported on each
side by pairs of two identical links. AB and CD. and springs
CE. If the bowl has a mass of | kg, determine the angle 0
where the table is in equilibrium. The springs each have a
stiffness of kK = 200 N/m and are unstretched when ¢ = 90°
. Neglect the mass of the links.

*11-17. A 5-kg uniform serving table is supported on each
side by two pairs of identical links. AB and CD, and springs
CE.If the bowl has a mass of 1 kg and is in equilibrium when
i = 45°, determine the stiffness & of each spring. The springs
are unstretched when # = 907 Neglect the mass of the links

L 2stmm 150 mm

™

Probs. 11-16/17

11-18. If a vertical force of P = 50N is applied to the
handle of the toggle clamp, determine the clamping force
exerted on the pipe.

Prob. 11-18

11-19. The spring is unstretched when 6 = 457 and has a
stiffness of & = 1000 1b/ft. Determine the angle # for
equilibrium if each of the cylinders weighs 50 Ib. Neglect the
weight of the members. The spring remains horizontal at all
times due to the roller.

Prob. 11-19

*11-20. The machine shown is used for forming metal
plates. It consists of two toggles ABC and DEF, which are
operated by the hydraulic cylinder. The toggles push the
moveable bar G forward, pressing the plate into the cavity.
If the force which the plate exerts on the head is P = 8 kN,
determine the force F in the hvdraulic cyvlinder when
= 30°

Prob, 11-20
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*11-21. The vent plate is supported at B by a pin. If it weighs
15 Ib and has a center of gravity at G, determine the stiffness
k of the spring so that the plate remains in equilibrium at
# = 30°. The spring is unstretched when # = 0°.

Prob. 11-21

11-22, Determine the weight of block G required to
balance the differential lever when the 20-1b load F is
placed on the pan. The lever is in balance when the load and
block are not on the lever. Take x = 12 in.

11-23. If the load F weighs 20 Ib and the block &G weighs
2 Ib, determine its position x for equilibrium of the
differential lever. The lever is in balance when the load and
block are not on the lever.

Probs, 11-22/23

*11-24. Determine the magnitude of the couple moment
M required to support the 20-kg cylinder in the
configuration shown. The smooth peg at B can shide freely
within the slot. Neglect the mass of the members.

Prob. 11-24

*11-25. The crankshaft is subjected to a torque of
M = 501b-ft. Determine the vertical compressive force F
applied to the piston for equilibrium when ¢ = 60°.

Prob. 11-25



*11.4 Conservative Forces

If the work of a force only depends upon its initial and final positions, and
is independent of the path it travels, then the force is referred to as a
conservative force. The weight of a body and the force of a spring are two
examples of conservative forces.

Weight. Consider a block of weight W that travels along the path in
Fig. 11-10a. When it is displaced up the path by an amount dr, then the
work is dU = W+ dror dU = —W(dr cos #) = —Wdy, as shown in Fig.
11-10b. In this case, the work is negative since W acts in the opposite
sense of dy. Thus, if the block moves from A to B, through the vertical
displacement A, the work is

h
U= -*./ Wdy = -Wh
1]

The weight of a body is therefore a conservative force, since the work
done by the weight depends only on the vertical displacement of the
body. and is independent of the path along which the body travels.

Spring Force. Now consider the linearly elastic spring in Fig. 11-11,
which undergoes a displacement ds. The work done by the spring force
on the block is dU = —F, ds = —ks ds. The work is negative because F,
acts in the opposite sense to that of ds. Thus, the work of F, when the
block is displaced from s = 5 lo s = 5, is

U= —/’ksdx - —(gks:: -§ksf)

Here the work depends only on the spring’s initial and final positions, 5,
and s,, measured from the spring’s unstretched position. Since this result
is independent of the path taken by the block as it moves, then a spring
force is also a conservative force.

F, -
=t
s

Undeformed
position

Fig. 11-11

11.4 Conservative FORCES

(a)

e
dy = drm{flg i

(b)

Fig. 11-10

579



580

CHAPTER 11

VirTuar WoORK

w
— V=4 Wy
+y

Dawm .y

w
Ly
- Ve=—Wy

Fig. 11-12

Friction. In contrast to a conservative force, consider the force of
friction exerted on a sliding body by a fixed surface, The work done by
the frictional force depends on the path: the longer the path. the greater
the work. Consequently, frictional forces are nonconservative, and most
of the work done by them is dissipated from the body in the form of heat.

*11.5 Potential Energy

When a conservative force acts on a body, it gives the body the capacity
to do work. This capacity, measured as potential energy. depends on the
location of the body relative to a fixed reference position or datum.

Gravitational Potential Energy. If a body is located a distance
v above a fixed horizontal reference or datum as in Fig. 11-12, the weight
of the body has positive gravitational potential energy V, since W has the
capacity of doing positive work when the body is moved back down to
the datum. Likewise, if the body is located a distance y below the datum,
Ve 1s negative since the weight does negative work when the body is
moved back up to the datum. At the datum, V, = 0.

Measuring y as positive upward, the gravitational potential energy of
the body’s weight W is therefore

V, = Wy (11-4)

Elastic Potential Energy. When a spring is either elongated or
compressed by an amount s from its unstretched position (the datum),
the energy stored in the spring is called elastic potential energy. 11 is
determined from

Ve =1 ks® (11-3)

This energy is always a positive quantity since the spring force acting on
the attached body does positive work on the body as the foree returns
the body to the spring’s unstretched position, Fig. 11-13.

Undeformed Undeformed
position position
}.\‘ - %
1 |
; v
A i Yy
V.= + ;—ks:

Fig. 11-13



Potential Function. In the general case, if a body is subjected 1o
both gravitational and elastic forces, the portential energy or potential
function V of the body can be expressed as the algebraic sum

[v=%+m|

where measurement of V depends on the location of the body with
respect to a selected datum in accordance with Egs. 11-4 and 11-5.

In particular, if a systemn of Irictionless connected nigid bodies has a
single degree of freedom, such that its vertical position from the datum is
defined by the coordinate g, then the potential function for the system
can be expressed as V' = V(q). The work done by all the weight and
spring forces acting on the system in moving it from g, 10 ¢, is measured
by the difference in Viie.,

(11-6)

U2 = Viqi) = V(q2) (11-7)

For example, the potential function for a system consisting of a block of
weight W supported by a spring, as in Fig. 11-14, can be expressed in
terms of the coordinate (¢ =) v, measured from a fixed datum located at
the unstretched length of the spring. Here

Vv

I

Ve + Ve

Wy + Lky? (11-8)

If the block moves from y; to ys. then applying Eq. 11-7 the work of W
and F, is

Upa = V(y) = V() = =W — ») + 3kyi — 3kyi

Datum
TR
LY
£
-

R
. .

(a)

Fig. 11-14

11.5 PotennaL ENERGY
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*11.6 Potential-Energy Criterion for
Equilibrium
If a frictionless connected system has one degree of freedom, and its

position is defined by the coordinate g, then if it displaces from ¢ to
q + dgq, Eq. 11-7 becomes

dU = V(q) — V(g + dq)

or

dU = —=dV

If the system is in equilibrium and undergoes a virtual displacement 8q,
rather than an actual displacement dg. then the above equation becomes
8U = —8V. However, the principle of virtual work requires that 8U = 0,
and therefore, 8V = (), and so we can write 8V = (dV /dg)dg = 0. Since
8q # 0, this expression becomes

dv
e =0 (11-9)

Hence, when a frictionless connected system of rigid bodies is in
equilibrium, the first derivative of its potential function is zero. For
example, using Eq. 11-8 we can determine the equilibrium position for
the spring and block in Fig. 11-14a. We have

Y it
dy .

Hence, the equilibrium position v = v is

Yeq

~|€

Of course, this same result can be obtained by applying £F, = 010 the
forces acting on the free-body diagram of the block. Fig. 11-145.
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*11.7  Stability of Equilibrium
Configuration

The potential function V of a system can also be used to investigate the
stability of the equilibrium configuration, which is classified as stable,
neutral, or unstable.

Stable Equilibrium. A system is said to be stable if a system has a
tendency to return to its original position when a small displacement is
given to the system. The potential energy of the system in this case is at
its minimuem. A simple example is shown in Fig. 11-154. When the disk is
given a small displacement, its center of gravity G will always move
(rotate) back to its equilibrium position, which is at the lowest point of its
path. This is where the potential energy of the disk is at its minimuni.

Neutral Equilibrium. A system is said to be in neutral equilibrium
if the system still remains in equilibrium when the system is given a
small displacement away from its original position. In this case, the
potential energy of the system is constant. Neutral equilibrium is shown
in Fig. 11-15b, where a disk is pinned at G. Each time the disk is rotated,
a new equilibrium position is established and the potential energy
remains unchanged.

Unstable Equilibrium. A system is said 1o be unstable if it has a
tendency to be displaced further away from its original equilibrium
position when it is given a small displacement. The potential energy of
the system in this case is a maxinmm. An unstable equilibrium position
of the disk is shown in Fig. 11-15¢. Here the disk will rotate away from its
equilibrium position when its center of gravity is slightly displaced. At
this highest point, its potential energy is at a maximum.

Stable equilibrium Neutral equilibrium  Unstable equilibrium

() (b) (c)

Fig. 11-15

The counterweight at A balances the
weight of the deck B of this simple lift
bridge. By applving the method of
potential energy we can study the stability
of the structure for various equilibrium
positions of the deck.
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During high winds and when gong around
acurve, these sugar-cane trucks can become
unstable and tip over since their center of
gravity is high off the road when they are

fully loaded.

v
‘-'-"i: <=
e £V =
di &V _
&V av
S — =)
di? =V, dq
v
dyg
L/ if £
oy J Teq Hey !
Stable equilibrium Unstable equilibrium Neutral equilibrium
(a) (b) (c)
Fig. 11-16

One-Degree-of-Freedom System. If a system has only one
degree of freedom, and its position is defined by the coordinate g. then the
potential function V for the system in terms of g can be plotted. Fig. 11-16.
Provided the system is in equilibrium, then dV /dg, which represents the
slope of this function, must be equal to zero. An investigation of stability
at the equilibrium configuration therefore requires that the second
derivative of the potential function be evaluated.

If d*V /dq” is greater than zero, Fig. 11-16a, the potential energy of the
system will be a smimimnom. This indicates that the equilibrium
configuration is stable, Thus,

dVv d*v
—_—= —_— >

= {), 0 stable equilibri -10
e dq? stable equilibrium (11-10)

If d*V/dq? is less than zero. Fig. 11-16b, the potential energy of the
system will be a maxinnoan. This indicates an unstable equilibrium
configuration. Thus,

dV d*V

— =), <0
dq dg?

unstable equilibrinm (11-11)

Finally, if ¢°V/dg* is cqual 1o zero, it will be necessary 1o investigate
the higher order derivatives to determine the stability. The equilibrium
configuration will be stable if the first non-zero derivative is of an even
order and it is positive. Likewise, the equilibrium will be unstable if this
first non-zero derivative is odd or if it is even and negative. If all the
higher order derivatives are zero, the system is said to be in neutral
equilibrium, Fig 11-16¢. Thus,

V 1*v v
ay  a¥ = il === () neutral equilibrium (11-12)

This condition occurs only if the potential-energy function for the
system is constant at or around the neighborhood of g,
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Procedure for Analysis

Using potential-energy methods, the equilibrium positions and the
stability of a body or a system of connected bodies having a single
degree of freedom can be obtained by applying the following
procedure.

Potential Function.

* Sketch the system so that it is in the arbitrary position specified
by the coordinate g.

* Establish a horizontal dattem through a fixed point* and express
the gravitational potential energy V, in terms of the weight W ol
each member and its vertical distance y from the datum,
Ve = Wy.

® Express the elastic potential energy V, of the system in terms of
the streich or compression, s, of any connecting spring,
V=12

® Formulate the potential function V =V, + V, and express the
position coordinates y and s in terms of the single coordinate g.

Equilibrium Position.

® The equilibrium position of the system is determined by taking
the first derivative of V and setting it equal to zero, dV /dg = 0.

Stability.

® Stability at the equilibrium position is determined by evaluating
the second or higher-order derivatives of V.

® If the second derivative is greater than zero, the system is stable:
if all derivatives are equal to zero, the system is in neutral
equilibrium; and if the second derivative is less than zero, the
system is unstable.

*The location of the datum is arbirary, since only the changes or differentials of
V are required for investigation of the equilibrium position and its stability.
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EXAMPLE |11.5

The uniform link shown in Fig. 11-17a has a mass of 10 kg. If the spring
is unstretched when # = 07, determine the angle # for equilibrium and
investigate the stability at the equilibrium position.

SOLUTION

Potential Function. The datum is established at the bottom of the
link, Fig. 11-17b. When the link is located in the arbitrary position 8,
the spring increases its potential energy by stretching and the weight
decreases its potential energy. Hence,

S k= 200 N/m

V:V,+V_‘.=%k.\':+w_\-'
Since!/ =5 + lcosors = I(1 —cos@),and y = (//2) cos #, then

Lo Ak ol
V—zkf(l cos f) +W(2cosﬂ)

Equilibrium Pesition. The first derivative of Vis
(a) dV

e ey il
dﬂ_k”l cos f) sin # 2mn{:I-—()

or

![k!(l — cosf) — g]sinﬂ =0

This equation is satisfied provided

sinf) =0 =10 Ans.
W 10(9.81)
f=cosY1——)=cos|1 = | =538%Ans
cos ( ZH) cos [ 2(200)(0.6) .
Stability. The second derivative of Vis
1V 2 g o wi
E—-: = kI*(1 — cos 0) cos # + kiI*sin @ sinf — ——cos 0
di 2
wi
= ki*(cos 6 — cos 20) — ?cosﬂ
Substituting values for the constants, with = 0° and # = 53.8, vields
IV 5 10(9.81)(0.6
(b) £ = 200(0.6)*(cos 0° — cos 0°) — L
do- B 2
Fig 11-17
» — 294 <0 (unstable cquilibriumat 6 = 0°)  Ans.
12V = ) 10(9.81)(0.6)
‘—,— = 200(0.6)"(cos53.8" — cos 107.6%) — {—}()cus 53.8°
e =338 2

=469 >0 (stable equilibrium at § = 53.87) Ans.
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EXAMPLE |11.6

If the spring AD in Fig. 11-184 has a stiffness of 18 kN/m and is
unstreiched when # = 607, determine the angle @ for equilibrium. The
load has a mass of 1.5 Mg. Investigate the stability at the equilibrium
position.

SOLUTION

Potential Energy. The gravitational potential energy for the load
with respect to the fixed datum, shown in Fig. 11-18b.is

Vi = mgy = 1500(9.81) N[(4 m) sin 6 + h] = 58 860 sin ) + 14 715k

where h is a constant distance. From the geometry of the system, the
clongation of the spring when the load is on the platform is
s=(4m)costl — (4m)cos60° = (4m)cosf —2m.

Thus, the elastic potential energy of the system is

V. = Lks® = (18 000 N/m)(4 m cos # — 2m)* = 9000(4 cos 8 — 2)*

The potential energy function for the system is therefore
V=V, +V,=5880sin0 + 14715k + 9000(d cos 6 — 2)* (1)

Equilibrium. When the system is in equilibrium,

1%
%ﬁ = 58860 cos # + 18 000(4 cos # — 2)(—4sinf) = 0

58860 cosfl — 288000 sinf# cos + 144 000 sin 6l = 0
Since sin 26 = 2 sin # cos 6,
58 860 cos # — 144 000 sin 20 + 144 000 sinf = 0
Solving by trial and error,
# = 28.18° and 6 = 45.51° Ans.
Stability. Taking the second derivative of Eq. 1,

2
% = —58 860 sin # — 288 000 cos 26 + 144 000 cos #
[
Substituting # = 28.18° yields
2
% = —60409 <0 Unstable Ans.
do?

And for # = 4551°,

d*v
vl

do-

=64073 >0 Stable Ans.

(b)

Fig 11-18
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EXAMPLE |111.7

The uniform block having a mass m rests on the top surface of the half
cylinder, Fig. 11-19a. Show that this is a condition of unstable
equilibrium if i > 2R.

SOLUTION

Potential Function. The datum is established at the base of the
cvlinder, Fig. 11-195. If the block is displaced by an amount # from the
equilibrium position, the potential function is

V=V, +V,

=0+ mgy

From Fig. 11-18b,

y= (R 3 g)cosf?+ Rt s

Thus,

h <
YR+ —"2’—] cos fl V= mg[(R i E) cos fl + RO sin 0]

(b)

Fig 11-19 Equilibrium Position.

dV N ; 1
s mg[ (R + 2) sinfl + Rsin® + Rﬂcosﬂ] =0

= mg(—;—'sin 0 + RO cos u) =0
Note that # = 0° satisfies this equation.
Stability. Taking the second derivative of V yields

1*V h
‘!'ﬂ‘ mg(—%cos fl + Rcosfl — R sin H)

)
= —mg| —— R
=t g(2

Since all the constants are positive, the block is in unstable
equilibrium provided h > 2R, because then d°V /do® < 0.

ALO = 07,
&V
o’
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“leromems

11-26. If the potential energy for a conservative one-
degree-of-freedom system is expressed by the relation
V = (4x = x? = 3x + 10) fu+ Ib, where x is given in feet,
determine the equilibrium positions and investigate the
stability at each position.

11-27. If the potential energy for a conservative one-
degree-of-freedom system is expressed by the relation
V= (24sin0 + 10cos20) ft-lb, 0° = 6 = 90°, determine
the equilibrium positions and investigate the stability at
each position.

*11-28. If the potential energy for a conservative one-
degree-of-freedom system is expressed by the relation
V = (3y* + 2y* — 4y + 50) J. where y is given in meters,
determine the equilibrium positions and investigate the
stability at each position.

*11-29. The 2-Mg bridge, with center of mass at point G, is
lifted by two beams €D, located at each side of the bridge.
If the 2-Mg counterweight E is attached to the beams as
shown, determine the angle # for equilibrium, Neglect the
weight of the beams and the tie rods.

Prob, 11-29

11-30. The spring has a stiffness & = 6001b/ft and is
unstretched when 6 = 45° If the mechanism is in equilibrium
when # = 60°, determine the weight of cvlinder D. Neglect
the weight of the members. Rod AB remains horizontal at all
times since the collar can slide freely along the vertical guide.

Prob. 11-30

11-31. If the springs at A and C have an unstreiched
length of 10 in. while the spring at 8 has an unstretched
length of 12 in., determine the height /i of the platform
when the system is in equilibrium. Investigate the stability
of this equilibrium configuration. The package and the
platform have a total weight of 150 Ib.

ky = 201b/in. kx=301b/in,

Prob. 11-31
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*11-32. The spring is unstretched when ¢ = 45° and has a 11-34. Ifa 10-kg load [ is placed on the pan, determine the
stiffness of & = 1000 Ib/ft. Determine the angle # for position x of the 0.75-kg block # for equilibrium. The scale is
equilibrium if each of the cylinders weighs 50 Ib. Neglect the in balance when the weight and the load are not on the scale.
weight of the members.

50.m™m 100 mm | 100 mm

X

Prob. 11-34

11-35. Determine the angles # for equilibrium of the
200-1b eylinder and investigate the stability of each position.

Prob. 11-32 The spring has a stiffness of & = 3001Ib/ft and an
unstretched length of 0.75 ft.

*11-33. A 5-kg uniform serving table is supported on each
side by pairs of two identical links, AB and CD, and springs
CE. If the bowl has a mass of 1 kg, determine the angle #
where the table is in equilibrium. The springs each have a
stiffness of k£ = 200 N/m and are unstretched when # = 90°.
Neglect the mass of the links.

250 mm 150 mm

Prob. 11-35

*11-36. Determine the angles @ for equilibrium of the
50-kg cylinder and investigate the stability of each position.
The spring is uncompressed when # = 60°.

Prob. 11-33



*11-37. If the mechanism is in equilibrium when 8 = 307,
determine the mass of the bar BC. The spring has a stiffness
of k = 2kN/m and is uncompressed when # = 0°. Neglect
the mass of the links.

600 mm

Prob. 11-37

11-38. The uniform rod QA weighs 20 Ib, and when the rod
is in the vertical position, the spring is unstretched.
Determine the position # for equilibrium. Investigate the
stability at the equilibrium position.
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11-39. The uniform link AB has a mass of 3 kg and is pin
connected at both of its ends. The rod BD, having negligible
weight, passes through a swivel block at C. If the spring has a
stiffness of & = 100 N/m and is unstretched when 8 = 0°,
determine the angle # for equilibrium and investigate the
stability at the equilibrium position. Neglect the size of the
swivel block.

e 400 mm 7-‘

Prob. 11-39

*11-40. The truck has a mass of 20 Mg and a mass center at
G. Determine the steepest grade @ along which it can park
without overturning and investigate the stability in this

position.

Prob, 11-38

Prob. 11-40
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*11-41. The cylinder is made of two materials such that it 11-43. Determine the height ;i of the cone in terms of the

has a mass of m and a center of gravity at point G. Show radius r of the hemisphere so that the assembly is in neutral
that when G lies above the centroid C of the cylinder. the equilibrium. Both the cone and the hemisphere are made
equilibrium is unstable. from the same material.

Prob. 1141 Prob, 11-43
11-42. The cap has a hemispherical bottom and a mass m. *11-44. A homogeneous block rests on top of the
Determine the position /& of the center of mass G so that the cylindrical surface. Derive the relationship between the
cup is in neutral equilibrium. radius of the cyvlinder, r, and the dimension of the block, b,

for stable equilibrium. Hinr: Establish the potential energy
function for a small angle 6, i.e.. approximate sin # = 0. and
cos = 1 — ¢%2.

Prob. 1142 Prob. 11-44
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*11-45. The homogeneous cone has a conical cavity cut “11-48. The assembly shown consists of a semicircular
into it as shown. Determine the depth « of the cavity in cylinder and a triangular prism. If the prism weighs 8 1b and
terms of /i so that the cone balances on the pivot and the cylinder weighs 2 Ib, investigate the stability when the
remains in neutral equilibrium. assembly is resting in the equilibrium position.

Prob. 1145 Prob. 11-48
11-46. The assembly shown consists of a semicylinder and *11-49. A conical hole is drilled into the bottom of the
a rectangular block. If the block weighs 8 Ib and the cylinder, and it is then supported on the fulerum at A.
semicylinder weighs 2 Ib, investigate the stability when the Determine tl}e: minimum distance d in order for it to remain
assembly is resting in the equilibrium position. Set i = 4 in. in stable equilibrium.

11-47. The 2-1b semicylinder supports the block which has
a specific weight of ¥ = 80 Ib/ft". Determine the height /&
of the block which will produce neutral equilibrium in the
position shown.

Probs. 11-46/47 Prob. 11-49
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. CHAPTER REVIEW

Principle of Virtual Work

The forces on a body will do virtual work 8y, 8y’ —virtual displacements
when the body undergoes an imaginary =

differential displacement or rotation. Sfi—virtual rotation

For equilibrium, the sum of the virtual
work done by all the forces acting on the
body must be equal to zero for any virtual
displacement. This is referred to as the
principle of virtual work. and it is useful for
finding the equilibrium configuration for a
mechanism or a reactive force acting on a
series of connected members.

If the system of connected members has
one degree of freedom. then its position
can be specified by one independent
coordinate such as 0.

To apply the principle of virtual work, it is
first necessary to use position coordinates |
to locate all the forces and moments on
the mechanism that will do work when
the mechanism undergoes a virtual
movement o6,

The coordinates are related to the
independent coordinate @ and then these
expressions are differentiated in order to
relate the viriual coordinate displacements
to the virtual displacement 86.

Finally, the equation of wvirtual work is
written for the mechanism in terms of the
common virtual displacement 86, and then
it is set equal to zero. By factoring 66 out of
the equation. it is then possible to determine
either the unknown force or couple
moment, or the equilibrium position 6.
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Potential-Energy Criterion for Equilibrium

When a system is subjected only to
conservative forces. such as weight and
spring forces, then the equilibrium
configuration can be determined using the
potential-energy function V for the system.

The potential-energy function is established
by expressing the weight and spring
potential energy for the system in terms of
the independent coordinate .

Once the potential-energy function is
formulated, its first derivative is set equal
to zero. The solution yields the equilibrium
position ¢, for the system.

The stability of the system can be
investigated by taking the second derivative
of V.

(a)

V=V, + Vo= W, + 1 ky?

av _
dq
% =iif); % >0  stable equilibrium
av = [), qj’,- <0 unstable equilibrium
dqg dg~
v _ &V &V S
— === =0 neutral equilibrium
dg  d¢t  dg i




596 CHaPTER 11 VirRTUAL WORK

- REVIEW PROBLEMS

11-50. The punch press consists of the ram R, connecting
rod AB, and a flywheel. If a torque of M =50N-m is
applied to the flywheel, determine the force F applied at the
ram to hold the rod in the position 8 = 60°,

*11-52. The uniform links AB and BC each weigh 2 Ib
and the cylinder weighs 20 Ib. Determine the horizontal
force P required to hold the mechanism at # = 45°. The
spring has an unstretched length of 6 in.

Prob. 11-50

11-51. The uniform rod has a weight W. Determine the
angle # for equilibrium. The spring is uncompressed when
f = 90°. Neglect the weight of the rollers.

Prob, 11-51

Prob, 11-52

*11-53. The spring attached to the mechanism has an
unstretched length when 6 = 90°. Determine the position 0
for equilibrium and investigate the stability of the
mechanism at this position. Disk A is pin connected to the
frame at B and has a weight of 20 Ib.

Prob. 11-53



11-54. Determine the force P that must be applied to the
cord wrapped around the drum at C which is necessary to
Iift the bucket having a mass m. Note that as the bucket is
lifted. the pulley rolls on a cord that winds up on shaft 5 and
unwinds from shaft A.

Prob. 11-54

11-55. The uniform bar AB weighs 100 Ib, If both springs
DE and BC are unstretched when # = 90°, determine the
angle # for equilibrium using the principle of potential
energy. Investigate the stability at the equilibrium position.
Both springs always remain in the horizontal position due
to the roller guides at Cand E.

¥

k= 41b/in. '

Prob. 11-55

Review PROBLEMS 597

*11-56. The uniform rod AB has a weight of 10 Ib. If the
spring DC is unstretched when # = (°, determine the angle
# for equilibrium using the principle of virtual work. The
spring always remains in the horizontal position due to the
roller guide at D.

*11-57. Solve Prob. 11-56 using the principle of potential
energy. Investigate the stability of the rod when it is in the
equilibrium position.

Probs. 11-56/57

11-58. Determine the height / of block B so that the rod
is in neutral equilibrium. The springs are unstretched when
the rod is in the vertical position. The block has a weight W,

h

Prob, 11-58



APPENDIX

Mathematical Review
and Expressions

Geometry and Trigonometry Review
The angles # in Fig. A-1 are equal between the transverse and two
parallel lines.

For a line and its normal, the angles # in Fig. A-2 are equal,

Fig. A-2

598
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For the circle in Fig. A-3 5 = 0r, so that when # = 360° = 27 rad then
the circumference is s = 2@r. Also. since 180° = 7 rad, then
0 (rad) = (7/180°)6°. The area of the circle is A = 777,

i3 gy
a 2 \
b B

Fig. A4 Fig. A-3

The sides of a similar triangle can be obtained by proportion as in

@& . h c
Fig. A4, wh — e
ig wcreA B C

For the right triangle in Fig. A5, the Pythagorean theorem is
h= V(o) + (a)?

The trigonometric functions are

h (hypotenuse)

o (opposite)

sinf = 2 i (adjacent)
h
p Fig. A-5
cosfh =—
h
0
tanf = —

This is easily remembered as “soh, cah. toa™, i.e., the sine is the opposite
over the hypotenuse. cte. The other trigonometric functions follow

from this.
csefl = ;“11—0 =E
sech = c—(;i-‘—g =E
cotfl = t:rli_ﬂ =;
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Trigonometric Identities

sin®f + cos* 0 = 1

sin(f = &) = sin @ cos ¢ + cos fsind
sin 20 = 2 sin 6 cos 6

cos(fl + &) = cosfcosd F sin 0 sin

cos 28 = cos” B — sin® 0

+ cos 20 [T —cos 20
cosf = + 1— %2—.sin8=i I— (;J;Z

sin )

cos f#

tan

1 +tan’fd = sec’# 1+ cot*# = esc?h

Quadratic Formula

—b £ Vb — dac

Ifax® + bx + ¢ =0, thenx =
2a

Hyperbolic Functions

X X
. et — ¢
sinh T e
2
x = 1
e+ e
coshxy = ————,
2
sinh x
tanh x =
cosh x

Power-Series Expansions

’ % 32

sinx=%— o+ orgeosx =1 —-
3! 2!

inh x = +£+ -h-—1+x—2+

sinhx = x + 3 ,cosh x = 2

Derivatives

d [FLe g r-]di i ok i @
e (") = nu' = P (sinu) = cosu 7
i(m:]l = ‘d_v t:dj L cosu) = —sin 2
dx Uk TV et =iy
du _ dv
i(z) oy gy B i) =t
dx\v/) ~ v? der T “dx
5 it d e - _Li"g
- (cotu) = —csecu dx e (sinh «) = cosh u

d du d L du
d_x{s"c“] = tan u sec uT — (cosh 1) = sinh “dx

dy dx

4 (escu) esc i col t de
S —(CBCu) = —Cscucot -
dx dx
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Integrals

41
/‘x”d.\':x +Con# -1
n+1
dx

fa+bx

= :;[n(a +bx)+C

[ g [“[a + xV—ab e
J a+bx* 27/=ba la-xV—-ab '
ab < 0
xdx 1 i
= —In(bs’ +

.[a b 2bln[br* a) +C
f .\"'d.\'1=£_ a tan“'t\/{E-FC,abbU

a+ b b pNab a

f Va -+ bxdx = gng(a+b.t)3+ &
—2(2a — 3bx)V (a + bx)? @

156

f xVa+ bxde=

f ¥*Va + bxdx =
2(8a* — 12abx + 15h*x%)V(a + bx)* L

105h°
f Va* — Pdx = Hx Va* — x* + alsin"'ﬂ +C,

a >0

fxmdx = —%m+ C

f *Va? - Pdx = —% V(a®* = &%)

+%(xVa2—x3 +u1sin"i)+C.ﬂ>‘vU
foztazd.t=
%[.\‘V.tztalinzln[x+ xzinz)]+C

j Vil aldx = % V(2xd®)l +C
PVt £ dtde = i\/(.\:2 + a?)?

2 4
- %.tvxz £a* - ﬂEln(x +Vaixad®)+C

f dx _2Va+bx+c,
Va+ bx b
Y _Fra+c

_V ¥+ ot

a+ bx + ext +

f dx " —l—ln[
Va + bx + ex? Ve
Ve + L] +Cc>0
2Ve

—2¢ex:— b

)
( Vb — dac

f sin xdy = —cosx + C

= ——sin

e )+C.c<0

/ cosxdx =sinxy + C

f xcos(ax)dx = lzcns{ax] + Esin(a.r} +€
a

axt =2

f X2 cos(ax) dx = z—fcos{ax) - T
a a

f = et + C

eu.[

f xedy =—(ax—1) +C
a

/ sinh xdx = coshx + C

f coshx dx = sinhx + C

601

sin(ax) + C
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Fundamental Problems

Partial Solutions And Answers

Chapter 2

F2-1.

Fr= V(2KN)* + (6kN)* = 2(2 kN)(6 kN) cos 105°

= 6798 kN = 6.80 kN Ans
sind  sin 105 §
6kN ~ 679skn’ ¢ = 3849
#=45° + & = 45° + S8.49° = 103° Ans.

Fr = V2000 + 500° = 2(200)(500) cos 140°

= 666N Ans
Fr = V6007 + 800° — 2(600)(800) cos 60°
=72L1IN = 721N Ans.
sina  sin 60°
800 - 21110 4T
é=a - 30° =T7390° - 30° = 43.9° Ans.
k, 0,
sinds° " sinpogr [v= 2200 -
F, 0
sn30° ~ snioses [+ 1330 s
Fu 450
sin 105°  sin 30°
F‘n = 869 Ib Ans
Fac _ 450
sinds®  sin 30°
Fye = 6361b Ans
F 6
Sn30° - sin 108° F=311kN Ans
F, 6
dnds° smmi0sr v 49N e
(F), =0 (F),=300N Ans.
(Fy), = —(450 N) cos 45° = —318 N Ans
(Fy), = (450 N) sin 45° = 318N Ans.
(Fy), = (1)600N = 360N Ans
(Fy), = ({)600N = 480N Ans

F, = 300 + 400 cos 30° — 250(%) = 446.4 N
Fyy = 400sin 30° + 250(1) = 350N

Fr = V(#46.4)" + 350" = 567N Ans
0 = tan”'}8 = 38.1°2 Ans.

LFp), = EF:
(Fg), = = (7001b) cos 30° + 0 + (1) (600 Ib)

= -246.221b
+1(Fg)y = =F;
(Fg), = —(7001b) sin 30° — 4001b — (£) (600 Ib)
= ~1230Ib
Fp= V(246221b) + (12301b)’ = 12541b  Ans
& = tan"!(L00 ) = 78.68°
0= 180" + ¢ = 180° + T8,68° = 259 Ans.

F2-10.

F2-11.

F2-13.

L(Fg), = F;

750N = Fcos @ + (1)(325N) + (600 N)cosd5®
+1(Fy), =2F;;
0= Fsino + (3325 N) — (600 N)sin 45°

tané = 0619 0= 31.76" = 31.8°2
F=236N

Ans.
Ans.
L(Fp), = EF;

(800 Ib) cos 45° = Fcos @ + 50 1b — (1)90 b
+T(Fp), = 3F,;

~(801b) sind5” = Fsino — ({)(901b)

tan @ = 0.2547 0= 1429" = 432 Ans.

F=6251b Ans.

(Fg), = 15(3) + 0 + 15(f) = 24kN—

(Fp), = 15(3) + 20 — 15(3) = 20kN 1

Fg=312kN Ans
6 =398° Ans

F, = 75¢os 30" sin 45° = 4593 1b

F, = 75 cos 307 cos 45° = 4593 Ib

F, = ~75sin30° = -37.51b

a = cos”!(HPF) = 52.2° Ans.

B = cos () = 522° Ans
y = cos”' (%) = 120° Ans.

603
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F2-14.

F2-16.

F2-17.

F2-18.

F2-19.

F2-2L

PARTIAL SOLUTIONS AND ANSWERS

cos B =V1 - cos® 120° - cos® 60° = £0,7071

Require g = 1357,

F = Fup = (S00N)(~0.5i — 0.7071j + 0.5k)

= [~250i — 354 + 250k} N

cos’a + c0s’135° + cos?120° = 1
a = 60"

F = Fup = (500 N)(0.5i — 0.7071j — 0.5K)

= {250i - 354j — 250k} N

F. = (50 1b) sin 45° = 3536 Ib

F' = (50Ib) cos 45° = 35.36 Ib

F, = (1) (35.361b) = 2121 Ib

, = (1)(35361b) = 28.281b

F = {~21.2i + 283 + 35.4k} Ib
F. = (750 N) sin 45° = 53033 N
F' = (750 N) cos 45° = 530.33 N
Fy = (530.33 N) cos 60° = 265.1 N
Fy = (530,33 N) sin 60° = 4593 N
F, = {265i—459f + 530k} N

-

F, = (1)(5001b) j + (3) (500 Ib)k
= (400§ + 300k} Ib
F, = [(800 Ib) cos 45°] cos 30° i
+ [(800 Ib) cos 45°] sin 30°j
+ (800 Ib) sin 457 (~k)

= [489.90i + 282.84j — 565.69K) Ib
Fr=F, + F, = {490i + 683j — 266k} Ib

Tan = {~6i + 6j + 3k} m

rag = Vi=6m)* + (6my + 3m) = 9m

a=132". B=482", y=705
tap = {—4i + 2 + K} At

rap = V(=417 + 207 + (4 f)° =61t

a = cos|(34) = 1318°
0= 180" - 131.8° = 482°
g = {2i + 3j — 6k} m
Fy = Fgug
= (630N)(3i + 1j - §k)
= {1800 + 270 — 540k} N

Ans.

Ans.

Ans.

Ans.

F2-22.

F = Fu,, = 900N(-}i + 1j - ik)
= (~400i + 700§ — 400K} N

Fy = Fpuy
= ($40N)(3i - 3j - %K)
= (360 — 240j — 720k} N
Fr = Foue
= @20N) (i + 3j - Ix)
= {120i + 180j - 360k} N

Fr= V(480 N)* + (=60 N)* + (—1080 N)*

= LISKN

Fy = Fyuy
= (6001b)(~4i + 1j - 1K)
= {—200i 4 400j — 400k} Ib
Fe = Feue
= (490 1b)(-§i + 3j - ik)
= {—420i + 210§ — 140k} Ib

Fg = Fg + Fe = {~620i + 610j —540k} Ib

uo=-4i+dj-3k
up = —0.5345i + 0.8018j + 0.2673k
= cos ™ (a0 *up) = 57.7°

Wap = ‘%j i 5 g.-

=4
.;—_"l'::j

0 = cos " (uyy “ug) = 68.9°

nos = Bi+ i
Uga*j = tipa (1) cosd
cosl =5 0 =674

Uga = }ii in ;sij

F = Fup = |650§] N
Foa=Frupy =250N
Foa = Foatps = {2318 4+ 96.2j} N

Anx

Ans.

Ans

Ans

Anx
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4i+1j-6k =F, =0 in 15° - =
F2-29.  F = (400N) { j-6k}m F3-6. +15F, =0. T,gsin15° - 10(981)N =0
Viam) + (Im) + (-6m)’ T .5 = 379.03N = 379N Ans
= {219.78i + 54.94j — 329.67k} N LEF, =0: Ty~ 379.03Ncos15° = 0
a {=4j-6kjm Tpe = 36611 N = 366 N Ans.
o Ay + (~6m) SXF, =0 Tepcos — 366.11N =0
= ~05547j - 08321k +1SF, =0:  Tepsing — 15981)N =0
(Fao)pwi = Fruyo = 244N Ans. Tep=395N Ans.
6=219 1
F2-30. F = [(—600Ib) cos 60°] sin 30 .
+ [(600 Ib) cos 60°] cos 30° j -1 XF, =0 [()F)(E)+600N-F=0 ()
o ) o 2F =0 (§)F - [G)R)E) =0 @
= {—150i + 259.81j + 519.62k} Ib ) Z ;
w,=-di+ 3+ 1k SF.=0 (F;+ (§)F -90N=0 (3
(F Apees = F-u, = 446,41 Ib = 446 Ib Ans. F3=TI6N Ans
- < F, = 466 N Ans
(F Dper = V(600 IbY — (446.41 Ib)’ Fy=89N Ans
=401 Ib Ans.
F3-8, IF, =0 Fupfi)-900=0
Chapter 3 Fap=1125N = L125kN Ans,
Pl % SE=0; {Fic— Fipcos30° = 0 SF, =0 Faclf) - 125(3) =0
$TSF, =0, L Fac + Fagsin30® - 550 = 0 Fac=843I5N = 84N Ans.
Fag=4781b Ans. SF,=0; Fas-84375(3) =0
F e =S5181b Ans. Fag = 50625N = 506 N Ans.
F3-2, F,=0; - in@ + 700 = 0 r 2 :
+13F, 2(1500) sin 6 + 700 F39. F,,= &B(ﬂ) =1F i —3Fpj + 3 Fpk
0= 135° Tap
ST Y EF. = iFap — 600 =0
Lage =2(285) = 1030 Ans. F o 90N e
F3-3, LEF,=0; Tcost - Tcosd =0 SF, =0 Fagcos30° - 35 (900) = 0
i Fap=69282N = 693N Ans.
+1ZF, =0;  2Tsino - 905N =0 SF, = 0; 1(900) + 692.82sin30° — Fae = 0
D lan"(%f,:) = 36.87° Fac=64641 N = 646 N Ans,
T = 409N Ans. F3-10. F,c = Fyo[—cos60°sin 30"
F34.  +7%5F, =0 1(F,) - 5(981)sin45° = + cos 60° cos 30° j + sin 60° k}
F,, =4335N = ~025Fci + 04330F,cj + 0.8660F,  k
F,p = (I — I 4335 = 200005 — Iy Fap = Fapleos 120°§ + cos 120° j + cos 45k}
I, = 0283 m Ans = —05F spi — O.SF,qu + 07071 F spk

_ SF, = 0; 04330F — 05Fp =0
F3-5.  +TXF, =0 (3924 N)sin 30° = m,(9.81) = 0 SE, = 0: 08660F,c+ 07071F,p ~ 300 =0
my =20 kg Ans Fap=175741b = 1761b Ans.
Fac = 202921b = 203 1b Ans.
SE =0 Fg - 025202.92) - 0.5(175.74) = 0
Fau = 138601b = 1391b Ans.
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PARTIAL SOLUTIONS AND ANSWERS

P11 Fy= r,('ﬂ)
Tag
{—6i + 3j + 2k} f ]
Vi(=60) + (301) + (20)°
= ~8Fgi + 3 Faj + 3 Fgk
Fo= ﬁ(;ﬁg)
AC
{—6i — 2j + 3k} 1t
= Fe : - 3
VI=6M) + (=21)° + (3n)
= S Fci - 3Fc + 1 Fek
Fp = Fpi
W = {—150k} Ib
EF, =0 S$F-3F - +Fp=0 (1
SF,=03F-3F=0 2)
SE=03F+3F-150=0 (3)
Fy=1621b Ans,
Fe = 1.5(1621b) = 242 1b Ans.
Fp = 346.151b = 346 1b Ans.
Chapter 4
F4-1. C +M, = 600sin 50° (5) + 600 cos 50° (0.5)
=249kip-ft Ans.

F4-2.

F4-3.

Fd-4,

F4-5.

Fi-6.

F4-1.

€ +Mp = —(£)(100 N)(2 m)~(3)(100 N)(5 m)

= —460N-m = 460 N-m) Ans.

G +Mp = [(300N) sin 30°)[0.4m + (0.3 m) cos 457

~ [(300 N) cos 30°][(0.3 m) sin 457]
=367N-m
G +My = (6001b)(4 ft + (3ft)cos 45° — 1 1)
= 3.07kip+ft
¢ +M, = 50sin 60° (0.1 + 0.2 cos 45° + 0.1)
— 50 cos 60°(0.2 sin 457)
=112N-m
G +Mg = 500sin 45° (3 + 3 cos 45%)
— 500 cos 457 (3 sin 45°)
= 1.6 KN'm
q +(Mg)o = ZFd:
(Mg)o = —(600 N)(1 m)
+ (S00N)[3m + (2.5m) cos 45°]
= (300N)[(2.5 m) sin 457|
1254 N-m = 1.25kN-m

Ans.

Ans.

Ans.

Ans.

Ans.

F4-8.

F4-10.

F4-11.

F4-12.

c“(Hg)g = ZFd,
(Mo = [(2)500 N (0425 m)
- [($)s00N](0:25 m)
~ [(600 N) cos 60°](0.25 m)
~ [(600 N) sin 60°}(0.425 m)
= ~268N-m = 268 N-m )
C+(Mg)o = EF;
(Mg = (300 cos 30° Ib)(6 ft + 6 sin 30” 1)
~ (300 sin 30° Ib)(6 cos 30° ft)
+ (200 Ib)(6 cos 30" ft)

= 2,60 kip-ft Ans.

F = Fug = 500 N({i - {j) = {400i — 300§} N
Mg = 1o, X F = {3j} m x {400i - 300§} N
= (=1200k} N-m Ans.
or
Mo = rop % F = {4i} m x {400i - 300j} N
= {=1200k} N*m

F = Fuye

Ans.

= 1201

(4i-4j-2K} N ]
VAR + (40 + (-2 1)}
= {80i ~ 80j — 40k} Ib

i i k
Mpo=sxF=|5 0 0
80 80 -40
= [200j — 400k} Ib-ft Ans,
or
i i k
Moo= xF=|1 4 2
80 -80 -40
= {200§ — 400k} Ib- ft Ans.
Fe=F+F
= {(100 — 200)i + (—120 + 250)j
+ (75 + 100)k} Ib
= {-100i + 130j + 175k} Ib
i i k
Mplo=ry xFg=| 4 5 3
-100 130 175
= {485i — 1000f + 1020k} Ib+ft Ans.



F4-13.

Fi-14.

F4-15.

F4-16.

F4-17.

F4-18.

1 0 0
M, = i(rgpxF) = |03 0.4 =02
300 =200 150
=20N'm Ans.
ey 03I+ 04} m
Yor = ta ™ Vioamy + 0am)
0.6 0.8 0
Mos = ugu(ryg x F) = | 0 0 -02
300 =200 150
==T2N'm Ans.

F = (200 N) cos 1207 i

+ (200 N) cos 60° j + (200 N) cos 45" k
= {~100i + 100j + 14142k} N

1
Mp=i(r,xF)=| 0

~100
= 174N-m

0 1

M, =jltaxF) = |-3 -4
300 <20 50

=210N'm

T e R 111

M e Vianyis GRy

Mg = wap(rac X F)
i § ok
~08 06 0

0
0.25
141.42

0
2

Ans.

—0.8i + 0.6

= —41b-ft

0 0o 2
50 -40 20

Mo = Mupupp = {321 - 24j} lb-nt

F. = [(:)s00N](%) = 240N
Fy = [($)s00N]({) = 320N
F. = (S00N)({) = 300N

M, = 300 N(2m) - 320 N(3m)

= =360N-m

M, = 300 N(2m) - 240 N(3m)

= =120 N‘m

M. = 240N(2m) - 320N(2m)

= —160 N'm

Ans.

Ans.

F4-19.

FUNDAMENTAL PROBLEMS
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C+Me, = M, = 400(3) — 400(5) + 300(5)

+ 200(0.2) = T4ON-m
Also,

C+Me, = 300(5) — 400(2) + 200(0.2)

=T740N*m

F4-20. C+Mc, = 300(4) + 200(4) + 150(4)

F4-21.

F4-22.

F4-23.

= 2600 |b-f
CH(My)g = M,

F =233kN

~L5kN'm = (2kN)(0.3 m) - F(0.9 m)

Ans,

Ans.

Ans.

G +Mq = 10(1)(2) = 10(4)(4) = ~20kN-m

=20kN+'m)

Y (<20 + 2j + 3.5k] ft

u =
S
= i 2 3
= =usi+ 5] + 35k
u = -k
= bdg _ 2
uy =yl = 5%

(M) = (M)m

Vi—2n) + 20 + (351

= (450 t)(~Fei + &j + 1K)

= {—200i + 200§ + 350k} Ib-ft

(M,); = (M,)u; = (250 Ib-ft)(~k)

= {=250k} Ib-nt

(M)s = (M)sus = (300 Ibei)(33i - %j)

= {180 ~ 240§} Ib-ft
(Mg = IM;

(M) = (~20i ~ 40j + 100k} Ib-ft
F424. Fu = (})EsoN) - ()4soN) k

= [360f — 270k} N
I |
M=rpxFzg=|04 0
0 360

= (108] + 144K) N-m
Also,
M = (ry X Fy) + (rg X Fp)

N i
= 10 0 03] + |04

0 -360 270 |o
= (108] + 144k] N-m

=270

i
0
360

Ans,

Ans.

=270
Ans.
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F4-25. . Fp, = SF; Fg, = 200 -} (100) = 1401b
+|Fg, = 2F: Fg, = 150 = {(100) = 701b

Fr= V140" + 70° = 157 1b Ans.
o= tan"'(,%) = 26.6" 7 Ans.

C + M,.-‘. = }:MA:
My, = g{mmw - ;um)(a) + 150(3)
My, =210Ib-f1 Ans.

F4-26. ' Fy, = SF.: Fg, =1(50) = 40N
+4Fg, = SF: Fp, = 40 + 30 + {(50)

= 100N
Fg = V(407 + (100§ = 108N Ans.
0 =tan('¥) = 682° % Ans.
C+ M, =My,
M., = 30(3) + £ (50)(6) + 200
=470N-m Ans.

F&-21. 1 (F), = SF;
(Fg), = 900sin 30° = 450N —
+1(Fp, = F;:
(Fy), = —900 cos 30° — 300
= —107942N = 107942N |

Fr = V450° + 1079.42°
= 116947 N = LITkN Ans.
0 = an'(Y57) = 67.4° Ans.

CH+(Mg)y = EM
(Mg)4 = 300 — 900 cos30° (0.75) — 300(2.25)
= —=959.57N*m
=960N-m) Ans,
F4-28. . (Fp), = EF:
(Fg), = 150(3) + 50 — 100(%) = 601b—
+T{Fg)_. = IF:

(K, = —150(%) - 100(3)

= —1801b = 1801b |
Fr = V60' +180° = 189.741b = 1901b Ans.
0=tn'()=716< Ans.

CH+(Mp)a = =M,
(Mg)a = 100(3)(1) = 100(3)(6) ~ 150({)(3)
= —640 = 640 Ib+f1) Ans.

F429.  F, - XF.

F“=F| ‘*‘l"_-
= (—300i + 150j + 200k) + (—450k)
= {—300i + 150§ — 250k} N Ans.

Toa = (2 -0) = {2j} m
rog = (—1.5-0)i + (2 - 0} + (1 - 0)k
= [-15i+2j + lk}m

(Mglo = EM;
(Mglo =rop X Fy + 1o X Fy
i i k i j k
=|-15 2 1|+10 2 0
=300 150 200 0 0 -450
= [—650i + 375k}N-m Ans
F4-30. F, = {-100j} N
% o5 {—04i - 03k} m
ko ’[ V(=04 m) + (-03 m)’]
= {=160i - 120k} N
M, = {=75i} N°'m
Fp = [=160i — 100j — 120k} N Ans,
Mg)o = (0.3K)(~100j)
i j k
+]1 0 05 03[+ (-75)
-160 0 -—120
= |-105i — 48 j + 80k} N°-m Ans.
Fa-31. +lFg=SF; Fg=500+ 250 + 500
= 1250 Ib Ans,
C4Fpx=XEMg
1250(x) = 500(3) + 250(6) + S00(9)
x=6MN Ans,

F4-32.  —(Fy), = XF;
(Fg), = 100(3)+ 50sin30° = 851b —
+1(Fp), = XFy:
(Fe), = 200 + S0cos 30° — 100(%)

= 163.301b1
Fr= V85 + 16330° = 1841b
0 = tan”' (%) = 625° 2 Ans,

CH(Mp)a = EM 4
163.30() = 200(3) — 100(2)(6) + 50 cos 30°(9)
d=3121 Ans.



F4-33. (Fp), = SF
(Fg), = 15() = 12kN—
+1(Fp)y = 2F;
(Fr)y = =20 4+ 15(3) = -11 kKN = 11 kN |
Fre= V127 + 1P = 163 kN Ans.
6=rtan'(1) = 425°<g Ans.
C"'(MR}A =EIM,;
~11(d) = -202) - 15(¢)(2) + 15(2)(6)
d=0909m Ans.
F4-34. ‘(Fp), = SF;
(Fg), = (3) SkN — 8kN
= —5kN =5kN«—
+1(Fr)y = ZF;:
(Fp), = —6kN — ({) SkN
= —10kN = 10kN|
Fr= V5 + 10° = 11.2kN Ans.
0 =tan '(BK) = 63477 Ans.
CH(Mgla = ZMy
SKN(d) = 8 KN(3m) — 6 kN(0.5 m)
= [(#)5kN|@ m)
— [(3)5kN (4 m)
d=02m Ans.
F4-35. +lFg= SF. Fp=400+ 500 — 100
= 800 N Ans.
My, = EM;—800y = —400(4) — 500(4)
¥y =450m Ans.
Mg, = IM: 800x = 500(4) — 100(3)
x=2125m Ans.
F4-36. +lFgp=SF.
Fr =200+ 200 + 100 + 100
= H00N Ans,
My, =EM;
~600y = 200(1) + 200(1) + 100(3) — 100(3)
y= —0.667Tm Ans.
Mg, = M,

600x = 100(3) + 100(3) + 200(2) — 200(3)
x = (L667 m Ans.
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F431.  +1Fp=3F;
—Fgp = —6(15) — 9(3) — 3(1.5)
Frp=405kN | Ans.
CHMpla = EM
—40.5(d) = 6(1.5)(0.75)
— 9(3)(1.5) — 3(1.5)(3.75)
d=125m Ans.
F4-38. Fg = 1(6)(150) + 8(150) = 165016 Ans.
c +M_.|‘ = EM4
16504 = [ (6)(150)](4) + [8(150)](10)
d = 8361t Ans.
F4-39, +1Fy = 3F,
—Fp = —1(6)(3) — }(6)(6)
Fp=27kN Ans.
C+{MR)A =ZIM,:
=27(d) = 3 (6)(3)(1) — 1 (6)(6)(2)
d=1m Ans.
F4-40. +|Fy=3Fy
Fg = }(30)(6) + 150(6) + 500
= 1550 1b Ans.
C+ M,y =EMy
1550d = [5(50}(6)](4) + [150(6)](3) + S00(9)
d=3503M Ans,
F4-41. +1Fp=EF;
~Fp=—1(3)(45) - 3(6)
Fp=2475kN | Ans,
C+(MR];| =M
~24.75(d) = — 1 (3)(4.5)(L.5) — 3(6)(3)
d=259m Ans.
F4-42. Fy= f'w{.r) dx = fZ,SxS dy = 160N
(]
C+M, =M
.
[ xw(x) dx f 255 dx
xX= = =320m

f wix) dx R
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Chapter 5
FS-1.  =XF, =0 -A,+500(1) =0
A, =3001b Ans.
C+IM,=0; B,(10) - 500(%)(5) - 600 = 0
B, = 260 1b Ans.
+1EF, = 0; A, + 260 - 500(%) = 0
Ay = 1401b Ans.
F5-2. C+EM, =0
Fepsind5°(1.5m) — 4kN(Gm) = 0
Fep=1131kN = 11.3kN Ans.
LEF, =0: A, + (1131kN)cos45° =0
A, = —8kN = 8kN+— Ans.
+13F, =0
A, + (1131 kN) sin 45° — 4kN =0
Ay=-4kN =4kN | Ans.
F5-3, C+IM,=0;

Nyl6m + (6 m) cos 457
=~ 10kN[2m + (6 m) cos 45°|

~SkN(M4m) =10
Ny = 8.047 kN = B.05 kN Ans.
LEF, =0
(S5kN)cosd5®° — A, =0
A, = 354kN Ans.
+1ZF, =0
A, + BI4TKN — (SkN)sin45° = 10kN =0
A, = 549kN Ans.

SXF o =0; —A, + 400 cos 30° = 0

A, = 36N Ans.
+1EF, =0
Ay = 200 = 200 - 200 ~ 400sin30° = 0

A, = 800N Ans,
C+EM, =1

M, — 200(2.5) - 200(3.5) — 200(4.5)
= 400 sin 30°(4.5) — 400 cos 30°(3 sin 60°) = 0
M, =390kN-m Ans.

F5-7.

C+IM, =0

N(0.7m) - [25(9.51) N] (05 m) cos 30° = 0

Ne=151L7IN = IS2N Ans.

LEF, =0

T ycos 15° = (151.71 N) cos 60° = 0
Tag=T7853N=785N Ans.

+15F, =0

F, + (7853 N) sin 15°
+ (15171 N) sin 60° — 25(9.81) N = 0

Fy=935N Ans,
LEF,. =0

Nesin 30° = (250 N) sin 60° = 0

Ne = 4330N = 433N Ans.
C+EM=0;

=N 4 5in 30°(0.15 m) — 433.0 N(0.2 m)

+ [(250 N) cos 30°](0.6 m) = 0

N,=51T4N =5TIN Ans.
+12F, =0

Ny—=5774 N + (433.0 N)cos 30°

= (250 N) cos 60° = 0

Ng=32IN Ans.
IF, =0

To+Tg+Te—200-500=0
IM, =0

TA(3) + Te(3) = 500(1.5) — 200(3) = 0
IM, =0

=T yld) = Te(4) + 500(2) + 200(2) = 0

T, =3501b, Ty =2501b, T = 10016 Ans.

M, =1l
600 N(02m) + WONO.6m) — Fy(lm) =0

F,= 660N Ans.
M. =0
D (0.8m) — 600 N(0O.5Sm) — %ON(0.Im) =0
D.=487T5N Ans.
SF, =0 D, =0 Ans
XF, =0 D=1 Ans
ZF. =0

Tye + 660N + 4875N — 900N - 600N = 0
Type = 3525N Ans.



F5-9.

F5-10.

F5-11.

ZF, =0 400N+ C, =0,
C,=—400N

Ans.

EM,=0: -C,(04m)—600N(0.6m) =20

C, = -9%0N
EM,=0; B.(0.6m) + 600N (1.2 m)
4 (=400 N)(04m) =0
B.=-9333N
EM.=0;
=B, (0.6m) + —(—900 N)(1.2m)
+ (=400 N)(D6m) = 0

B, = 1400N

SF, =0; 400N + (=900N)-A, =0
A, =500N

SF,=0; A.-9333N + 600N =0
A.=3333N

SF, = 0: B, =0

IM.=;

C0dm +06m)=0 C,=0

SFy=0; A,+0=0 A,=0

EM, = 0:C(0.6m + 0.6m) + B.(0.6m)

~ 450N(0.6m + 0.6m) = 0

1.2C, + 0.68. — 540 = 0

IM, =0 —C(06m + 04m)

- B.(0.6m) + 450 N{(0.6m) = 0

-C.— 068, +270 =0

C.=1350N B. = —1800N

ZF. =10,

A, + 1350N + (—1800N) —450N =0

A.=900N

IFy=0: Ay=0

IM,=0: —9(3) + Fce(3) =0

ch = UkN

EM.=0: Fcr(3)—6(3) =0

Fep = 6kN

EM, =0: 94) — A.(4) —6(1.5) =0
A. = 6T5kN

EF,=0; A, +6-6=0 A;=0
EF. = Fpg+9—-9+675=0
Fpg = —6.75kN

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.
Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.
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F5-12. EF . =1(; A,=0 Ans.
EF, = A, =0 Ans.
ZF.=0 A+ Fpe—80=10
SM, = 0:(M,), + 6Fg — 80(6) = 0
IM, = 0:3Fy — 80(1.5) =0 Fge=401b Ans
IM. =0:(Mu).=10 Ans.

A, =401b (M), =2401b-ft  Ans

Chapter 6

Fo-1.  Joinr A.
+T£F_..=U: 2251b — F 4psind5® =0
Fap = 318201b = 3181b (C) Ans.
LEF; = F g — (318201b) cos 45 = 0
Fag=2251b(T) Ans.

Joint B.

YEF.=0; Fpe—2251b=0

Fre = 2251b(T) Ans.
+1ZF, =0 Fgp=0 Ans.
Joint D.

LEF, =0

Fepcos43® 4 (318.201b) cos 45° — 4501b = 0
Fep = 318201b = 318 1b (T) Ans.

F6-2. Joint I
H1ZF, =0; 1 Fep — 300 =0;

Fep =5001b(T) Ans.
=EF, =0;~Fp+ 1(500) =0

Fap =4001b (C) Ans,
Fpe =5001b(T). Foe=Fpp=10 Ans.

F6-3. A, =0, A,=C,=4001b

Joint A:

+1EF, =0 =3 F ¢ +400=0

F e = 6671b(C) Ans.

Joint C:

+1EF, = 0;—F pe + 400 = 0

Fpe = 4001b (C) Ans.



612

F6-5.

F6-7.

PARTIAL SOLUTIONS AND ANSWERS

Joint C.

+1ZF,=0: 2Fcos30°-P=10
Faoc=Fge=F= :Tn.':_ii- = 0.5774P (C)
Joint B.

LEF, =0 05T14Pcosbl® = Fup =10
F oy = 02887P (T)

Faa=02887P = 2kN

P = 6928 kN

F o= Fge = 05T4P = 1.5kN

P = 2598 kN

The smaller value of P is chosen,

P = 2598 kN = 2.60 kN Ans.
Feg=0 Ans.
Fep=10 Ans.
F Ae=10 Ans.
Fpg =10 Ans.,
Joint C.

e TEF, = 25981 16 = Fepsind0® =0

Fep = 519621 = 520 1b (C)
LEF, =0 (519621b) cos 30° — Fue = 0

Ans.

Fpe = 4501b(T) Ans.
Joint D.
+7ZF . =0 Fgpeos30® =0 Fgp=0 Ans
+NEFy =0, Fpe—-519621b =10

Fpg = 519.621b = 5201b (C) Ans.
Joint B.
TEF, =0: Fgesind=0 Fge=0 Ans.
LEF =00 4500b - Fap=10
Fap=4501b(T) Ans.
Joint A.
+1SF, =0 340191b — Fae =0
F e =3401b(C) Ans.

+1EF, = 0: Fepsind5® — 600 — 800 = 0

Fep = 198016 (T) Ans.
C+EMc = 0: Fpgld) — 800(4) = 0

Fep = 8001b(T) Ans.
CH+EM; = 0; Fydd) - 600(4) — 800(8) = 0

Fye = 220010 (C) Ans,

Fo-8.

Fo-10.

+18F, =0; Fyge+ 3333kN - 40kN =0

Fye = 6.67TkN(C) Ans.
C"- }:Mg =
3333KkN(8Sm) — 40kN(2m) — Fep(3m) =0
Fep = 6222kN = 62.2kN (T) Ans.
-"..EF‘ =0 FLK —62.22kN =10

Fix = 622kN(O) Ans.

C+IM, =0 G(12m) — 20kN(2m)
= 30kN(4m) - 40kN(6m) = 0
G, = 3333kN

From the geometry of the truss,

¢ = tan"'(3m/2 m) = 56.31°.

C+EIMg =1

3333kN(Sm) = 40kN(2m) - Fep(3m) =0

Fep = 622kN (T) Anz
C+EMy=0; 3333kN(6m) - Fy,(3m) =0
Fyr = 66.7kN(C) Ans,
+15F, =0
3333kN — d0KN + Fgpsin56.31° = 0
Fgp = 801kN(T) Ans.
From the geometry of the truss,
tan g = “MEK = 1732 ¢ = 60"
C+EMc =0

Frpsin30°(6ft) + 300Ib(6ft) =0
Fgp = —6001b = 6001b (C) Ans.
C+EMpy =0
300 Ib(6 1t) = Fepsin60°(6f) = 0
Fep = 34641 1b = 346 1b (T) Ans.
C+EMp=(;
300 Ib(9 f1) — 300 Ib(3 ft) — F (9 ft)tan 30° = 0
Fpe = 34641 1b = 346 1b (T) Ans.
From the geometry of the truss,
o = tan' (1 m/2m) = 26.57°
¢ = tan ' (3m/2m) = 5631°

The location of G can be found using similar
triangles.

m 2m

ﬁ=2m+x
dm=2m+ x

x=2m



F6-14.

F6-15.

C+IM; =0
2625 kN(4m) — 1SkN(2m) = Fep(3m) =0
Fep=25KN(T) Ans.
C+IMp =10
2625 kN(2m) = Fgpcos 2657°(2m) = 0
F(,‘F = 20.3kN (C} Ans.
15 kN(4 m) — 26.25 kN(2 m)
= Fupsin 5631°4m) = 0
Fop=2253kN = 225kN(T)  Ans
C+EMy =0
Fpe(12 ft) + 1200 1b(9 ft) - 1600 Ib(21 ft) = 0
Fpe = 19001b(C) Ans.
C+IM,=0:
1200 Ib(21 ft) — 1600 1b(9 ft) — F,,(1211) = 0
Fup = 9001b(C) Ans.
C+EMe = 0: Fypcos45°(1211) + 1200 Ib(21 fr)
= 900 Ib(12 f1) — 1600 Ib(9 1) = 0

C"‘}‘-Mu =0

F” = () Ans.
+1ZF, =0 3P -60=0
P =201Ib Ans,
C+EMc=0:
~(3)(F 45)(9) + 400(6) + 500(3) = 0
Fag = 541671b
L3F, =0.-C, + }(541.67) = 0
C, = 3251b Ans.
+12F, = 0:C, + {(541.67) — 400 - 500 = 0
C, = 4671b Ans.
C+EM, = 0;100 N(250 mm) ~ Ng(50mm) =0
Ns = 500N Ans.
LSF, = 0. (S00N)sind5® — A, =0
A, = 35355N
+1EF, =0: A, - 100N — (500 N) cos 45° = 0
A, = 45355N
F, = V(35355N) + (45355 N)
= 515N Ans.

613

F6-16. C+EM. = 0;
F 4y c0s 45°(1) = F ,5sin 45°(3)
+ 800 + 400(2) = 0
Fap=11313TN
LEF, =0; -C, + 113137 cos45° = 0
C,= 800N Ans
+1EF, = 0. =C, + 1131.37sin 45° - 400 = 0
C, = 400N Ans.
F6-17. Plate A:
+12F, =0 2T + Nyg— 100 =0
Plate B:
+1EF, =0 2T = Ng—-30=0
T =325Ib,Nys=350b Ans.
F6-18. Pulley C:
+1ZF, =0T -2P=0:T=2P
Beam:
+15F, =0 2P +P-6=0
P =2kN Ans.
C+EM,=0: 2(1) —6(x) =0
x =0333m Anx
Chapter 7
Fi-1. C+EM,=0; By6) — 10(15) - 15(45) = 0
B, = 1375kN
LEF, =0 Ne=0 Ans.
+1EF, =0 Ve+1375-15=0
Ve =125kN Ans,
C+EMe =0 1375(3) - 15(1.5) = M¢c =0
Me=1B75kNm Ans
F7-2. C+3XMp=0; 30 -10(15) - A(3) =0
A, =5kN
ZIF, =0 Ne=0 Ans
+1EF, =0 5-V.=
Ve=5kN Ans
C+EMc=0. Mc+30-5(15)=0
Me=-225kN'm Ans.



614

F7-4.

F7-5.

F7-6.

F71-7.

PARTIAL SOLUTIONS AND ANSWERS

LEF,=0. B,=0
CHEM, =1 3(6)(3) - B(9) =0
B, = 6Kkip
LEE, =10 Ne=10 Ans,
C+IZF, =00 Ve-6=0
Ve = 6kip Ans.
C+EMe=0; —M;—6(45)=0
My = —27kip-ft Ans.
CH+EMy=0;  B,(6) — 12(1.5) — 9(3)(4.5) = 0
B, = 2325kN
*IF, = Ne=10 Ans.
+TEF, =0;  Ve+2325-9(15) =0
Ve=—-975kN Ans.
C+EMe=0;
23.25(1.5) — 9(1.5)(0.75) — M = 0
M= 2475kN-m Ans.
CHEMA=0: By(6) —3(9)(6)(3) = 0
B, = 135kN
LEZF,=0: Nc=0 Auns.
+1SF, =0 Ve+135-1(9)3) =0
Ve=10 Ans.
CHEMe=0: 135(3) - LGN -Ms=0
M-=27TkN:m Ans.
C+EM,=0;
1
B\(6) - 3 (6)3)2) — 6(3)(4.5) = 0
B, = 16.5kN
LEF, =0, Ne=0 Ans.
+12F,=0; Ve+165-6(3)=0
Ve = 150 kN Ans.
CAIMe=0:  165(3) - 6(3)(1.5) = Me=10
Me=225kN:m Ans.
+1ZF,=0: 6-V=0 V=6kN
C+EMy=10; M+ 18-6x=0

M = (6x — 18)kN-m

F7-8.

F7-9.

F7-10.

F7-11.

F7-13.

+12F, =0, -V -2x=0
V = (=2x) kip
C+EMy=0. M+2x(})-15=0

M = (15 — &) kip-ft
Viwan = —2(9) = =18 kip
M|yuop = 15 — 9* = —66 kip-ft

+1EF, =00 -V -1@2x)Kx) =0
V= —(x*) kN
C+EMo=0; M+ L1@ow(i)=0

M= ~(1¥)kN-m

+18F,=0; -V-2=0
V = -2kN
C+EMp=0; M+2x=0

M= (-2x)kN-m
Region3i=x <3m
+1EF,=0; -V-35=0 V=-5kN
C+EMy =0 M+5x=0

M = (-5x)kN-m
Region0 < x = 6m
+1SF,=0: V+35=0 V=-5kN
C+EMp=0; S(6-x)-M=0

M = (5(6 — x)) kN-m

Region0 = x < 3m

+1ZF, =0, V=40
C+EMo=0, M-12=0
M =12kN'm
Region3m < x = 6m
+1EF, =0, V+4=0 V=-4kN
C+EMp=0; 46-x)-M=0
M = (4(6 — x)) kN-m
x=0 V=-4 M=0
x=1, V=-10, M=-4
¥x=2, V=-18, M=-14
x=3 V=-18 M=-32
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F7-14. x =10, V =18, M = =27, Crate B
x=15 V=6 M=-9% + T2F, =0:  Ng+ Psin30° - 50(9.81) = 0
X =23, V=6 M=0 Ny = 4905 - 0.5P

FI-15. x=0, V=8, M =0 LEF, =0
x=6. V=2 = 48: P cos30® — 0.25(490.5 — 0.5 P) — 12262 = 0
=12 E=ta - & P =204TN Ans.
x=18; = 10, =0 F84. LSF,=0; N,—-03Nz=0

F7-16. x=0, V=0, = 0; ;Tzf::mp —

= + 03N, + P — 100(9.81) =
x=15% V=0, = —6.75; L a4
x=1 :. 0 5 C+IMy = 0:
x=45", V=9 = —6.75; P(0.6) + N(0.9) — 03N (0.9)
x =6, =0 M=0

X ' ~03N,4(09) =0

F7-17. x= 0. =9 M= N.& = 175.70N NB = 585.67N
x=3. =), M=9 P =33N Ans,
x =6, =9 M=0 F8-5.  Ifslipping occurs:

F1-18. x =0, = 135 M =0 +15F, =0: N¢—-2501b=0 N¢c=2501b
x=3 V=0 M =27 TEF,=0; P -04(250) =0 P =1001b
x=6, V=-135, M=0 If tipping occurs:

Chapter 8 C+EM, = 0; —P(4.5) + 250(1.5) = 0

(!) P =8331b Ans.

F8-1.  +12F, =0: N -50(981) - 200(3) =0

N = 6105N Chapter 9 1
m
LEF,=0;  F-200(3)=0 /It‘ dA };_ vy
F = 160N Pl F=A— =0 =04m  Ans
F < Fpp = p,N = 03(610.5) = 183.15N, f dA f iy
therefore F = 160 N Ans. A 0
im
B2 C+IMy=0; [ ¥ dy
N 4(3) + 02N 4(4) ~ 30(981)(2) = 0 =t == -051Im  Ans
N, =15489N f dA f vi3dy
LEF =0 P - 15489 =0 * 0
= = im
P =15489N = 155N Ans, fi 4% f SR
F8-3. Cratc A P2 F¥=24 == :
m
+1SF, =0: N, - 500981) =0 f‘“ / 2 di
N, =4905N £ 9
=08m Ans,
LEF, =0 T - 025(490.5) =0 iy
T = 12262N j ¥dA / = x(xt dx)
= A _Jo 2

Y=

- 1m
f dA f X dx
A 0

= (.286m Ans,
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PARTIAL SOLUTIONS AND ANSWERS

L ydA A lm,y(z(%;%))dy
[‘M [mz(%)dy

=12m

v d /L.\' myl 1+ i)dx
mxcm h i 2

=

L 2
dm X
_/; '[ m.,(l + L:)rfx

Im
T
= ~ vdy
j‘:_vu'l/ A )'(4. )
= lmw
vV LU
[(‘ .L 4)d_v

= 0.667 m

= £ 9 3
ﬁzdl’ % A z[a 4-2) 114]
= i
97
Vv 254 - 2V dz
ﬂf A 64(4 ) dz

0.786 ft
YL
S5
150{300) + 300(600) + 300(400)
300 + 600 + 400

= 265 mm

L
77
~0(300) + 300(600) + 600(400)
) 300 + 600 + 400
= 323mm
_ EZL
TS
~0(300) + 0(600) + (~200)(400)
. 300 + 600 + 400
= 615 mm
_XFA1S0[300(50)] + 325[S0(300)]
TUEA 300(50) + 50(300)
= 237.5mm

Ans.

Ans.

Ans.

Ans,

Ans.

Ans.

Ans.

Ans.

Iy A _ 100[2(200)(50)] -+ 225[50(400)]

-9 Y="54 = 2(200)(50) + 50(400)
= 162.5 mm Ans.
O SFA - 025[4(0.3)] + 1.75[0.5(2.5)]
Pl A=y S 4(05) + 0.5(2.5)
= (L.827 in. Ans.
S STA_20409)] + 025((05)(25)]
7T 34 4(0.5) + (0.5)(2.5)
= 1.33in. Ans.
_ XXV 1[2(7)(6)] + 4[4(2)(3)]
PHL X =5y =" 30)6) 42)0)
= 1.67Ht Ants,
i Iy V3526 + 1[42)3)]
sV 2(7)(6) + 4(2)(3)
=294 1t Ans.
L Szv _3[20)6)] + 1.5[42)3)]
TV 2ANNE) +42)3)
= 2670 Ans,
X
P2 x=35Y

0.25[0.5(2.5)(1.8)] + ﬂ,"_ﬁ[ %{[.5]“.5]{0.5):] + [%{I.SJ[!.H}{U.S)]

0.5(2.5)(1.8) + é (L5)(1.8)(0.5) + %(I,Sit!.tl)(ﬂ.i}

=039 m Ans.
¥V 500625
SV e = 1.39m Ans.
SV 2835
z Sy SE 0.7875 m Ans.
F9-13. A =273FL
= 27{0.75(1.5) + 1.5(2) + 075V(1L5)" + (2)?]
=377m’ Ans,
V = 2z3FA
= 270.75(1.5)(2) + 0.5(})(1.5)2)]
= 188m’ Ans.

F9-14. A =2s%fL
= 22[195V(09) + (1.2 + 24(1.5) + 1.95(0.9) + 1.5(2.7))

=T5m Ais.
V= 223iA

=27 [ 1.8(1)(0.9)(1.2) + 1.95(0.9)(1.5)]

=226m’ Ans.



F-15. A =2=37L
= 27{7.5(15) + 15(18) + 225V15* + 20 + 15(30)]

= 8765 in.* Ans,
V =273rA

= 2] 7.5(15)(38) + 20(})(15)(20)]

= 45710in.! Ans.

F-16. A =2#ZFL
= 20US(TUI9) 4 1.502) + 0.75(1.5)]

=401 m* Ans.
V = 2a3FA

= 2={43(=F) + 0750.5)2)]

=212m Ans,

F9-17.  w, = p.ghb = 1000(9.81)(6)(1)
= 5886 kN/m

Fi=1(5876)(6) = 176.58kN = 177kN  Ans

F9-18. wy, = v, hD = 62.4 (4)(4) = 9984 Ib/ft
Fp = 998.4(3) = 3.00 kip Ans.

F9-19. w, = p,ghyzb = 1000(9.81)(2)(1.5)
= 2943 kN/m
Fg=12943)(V(15) + 2))
= 368 kN Ans

F9-20.  w, = pyghab = 1000(9.81)(3)(2)
= 58.86 kN/m
wg = pughab = 1000(9.81)(5)(2)
= 98.1 kKN/m
F=}(5886 + 98.1)(2) = 157 kN Ans,

F9-2L  wy = y, /i b = 624(6)(2) = 748.8 Ib/ft
wg = v, hgb = 62.4(10)(2) = 1248 Ib/ft

Fgp=1(7488 + 1248)( V(3)* + (4))

= 4.99kip Ans.

Chapter 10
F10-1.

Im
I, = [,Vsz = f yz[{l - ym}ﬂ‘j] =011l m' Ans
Ja o

FUNDAMENTAL PROBLEMS 617

Fl0-2.
Im
I, = /}" dA = / v(y*2dy) = 0222 m* Ans
A o

F10-3,
Im
1= f FdA = f (xP)dx = 0273 m* Ans.
A (1]

F10-4.
Im
Iy = fxzd/l ﬂf xz[(l -2 u‘x] = 0.0606 m* Ans
A 0

FI0-5. 1, = [{5(50)(450°) + 0] + [{5(300)(50%) + 0]
i 383{ IB“) mm* Ans.
Iy = [1’5 {450}[50’) iy 0]
+ 2 (50)(150%) + (150)(50)(100)’]

= 183(10°) mm* Ans,

Fl0-6. 1, = {5 (360)(200°) — 5 (300)(140")
= l?l(l[l")mm" Ans.

1, = [ (200)(360°) — L(140)(300°)
= 463(10°) mm* Ans.

F10-7. 1, = 2[}(50)(200°) + 0]
+ [ 5300)(50°) + 0]
= 69.8 (10°) mm* Ans.
F10-8.

- Iy A = 15(150)(30) + 105(30)(150) -
YA 150(30) + 30(150)

Fa' - -\:(? + M:)
= [{5 (150)(30)° + (150)(30)(60 ~ 15)?]
% [iﬁ(w)(lﬂ))’ + 30(150)(105 — 65)’]

60 mm

= 25.1 (10") mm* Ans.
Chapter 11
Fll-L. y; = 075sin# Sy = 0,75 cos 0 50
Xe = 2(1.5)cos Sx- = =3sinf o
SU =0;  2Way, + Péxp =0

(2943 cos @ — 3P sin )80 = 0
P = 98.1 cot By = 566 N Ans.
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FI1-2.

F11-3.

Fll-4.

PARTIAL SOLUTIONS AND ANSWERS

X4 =5cosh 8x,y = —3sind 50
Yo = 2.5sinf 8Y; = 2.5cos 060
U =0; =Py, + (-Wdy;) =0

(5P sin 0 — 122625 cos #)50 = 0

P = 24525 col Bl = 142N
xg = 06sind dxg = Db cosd i
Yo = 06cosd 8y = —0.6sin 080
aU =0 —F,8xg+ (—Pdyc) =0
~9(10%) sin # (0.6 cos 0 50)
— 2000(~0.6 5in 6 80) = 0
sintl = 0 =0

=5400 cos @ + 1200 = 0
0= 77.16° = 77.2°

Xp=0Ycosb Sxg = —0.9 sin 056
Xe=209cosh)  dxe = —1.8sindd0
8U =0:  Péxg+ (-F,éx;)=0

6(10°)(~0.9 sin 0 60)
~ 36(10%)(cos f — 0.5)(—1.8sinf89) = 0

Ans.

Ans.

Ans.

F11-5.

sin f (64 800 cos # — 37 800)58 = 0

sinfl =0 0=10 Ans
64800 cos 8 — 37800 = 0
= 54.31° = 54,37 Ans.
Yo =2.5sinp 8y = 2.5cos ) 60
Xy =35cosh dxe = —Ssinf 80
U =0 ~Way+ (~Fydxa) =0
(15 000 sin # cos @ — 7500 sin ¢
— 1226.25 cos 8)80 = 1)
f = 56.33" = 56.3° Ans.

F,, = 15000 (0.6 — 0.6 cos 8)

x¢c = 3[0.35in ] dxe = 0.9 cos 8 o6

vg = 2[0.3 cos 0] Svy = —0.6sin 050
U =1 Péxe + Fdyy =0

(135 cos # — 5400 sin # -+ 5400 sin ¢ cos 0)8¢ = 0
= 209" Ans.
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Answers to Selected Problems

Chapter 1

1-1.

1-6.

1-7.

1-9

1-10.

1-11.

1-13.

1-18.

1-19.
1-21.

620

a. 4.66 m

b. 556s

4,56 kN

277 Mg

N

MN/m

N/s*

MN/s

0431 g

353kN

532m

GN/s

Gg/N

GN/(kg-s)

45,3 MN

56.8 km

563 pg

3.65 Gg

. W, = 358 MN

W,, = 589 MN

d. m,, = m, = 3.65Gg

1 Pa = 20.9(10 %) Ib/f®

1 ATM = 101 kPa

W =0981N

W = 490 mN

W = 44.1 kN

0.447 kg -m/N

0911 kg-s

18.8 GN/m

271 N-m

. 70.7 kN/m?
1.27 mmi/s

71 Mg/m*

. = 1.00 Mg/m?
m=204g

. m = 153 Mg

m = 6.12Gg

0.04 MN?

25 pm?

0.064 km*

F =741 uN

26,9 um - kg/N

FEFBEOFEAFELFTEAS B ASD

EPpFEOFE

e

e

pFEoFTE

Chapter 2 S
21 Fp= V6 + 8 —2(6)(8) cos 75° = 8.67 kN
soe = gnlf & = 63.05°
& = 3.05°
22, Fp=105kN
=175
2-3. T =657kN
0 = 30.6°
F, 200
i sin 1057 sin 30° fpaele
F,=2831b
2-6.  F,=1501b
F,=2601b
2-7.  0=786"
Fgp=392kN
299, Fp=\/8 + 68 - 2(8)(6) cos 100° = 10,8 kN
sinf. _ sin JOd)
[ = 1080
0" = 33.16°
& = 3.16°
2-10. 0= 54.9°
Fr=104kN
2-11.  Fgp= 400N
0 = 60°
~Fy 360
8. ——ems  Fu==1N
Fy 360 =
Sn70° sngpr - 24N
2-14. =535
Fay=6211b
2-15. ¢ = 383°
Fa, 150
2. == Fy, = TIEN
F, 150
Gn75°  sn7se = 190N
2-18. F,=T7M4N
F” = 346N
2-19. Fy=325N
F,=893N
8= 700°
2-21. F, = 6cos30° = 520kN

]

Fy = 6sin 30°
0= 60°

JkN



2-23.

2-25.

2-26.

2-27.

2-29.

o= 90°

F; = 250 kN

Fgr=433kN

Fg=809kN

& = 98.5°

o E

n S unid - &)

¢=3

Fg = VI(FY + (F)* = 2(F)(F) cos (180° — )
Fg=2Fcos(§)

FA = 3.66 kN

Fg=7.07kN

Fy=500kN

FA = B.66 kN

0= 60°

F A = 600 cos 30° = 520N

Fy = 600sin 30° = 300N

0= 109"

Fuin = 2351b

F=9741b

0= 162"

Fr= V499.62 + 493.01% = 702N

0= 44.6°

b = 424°
F,=6731b
F,=~1621b
5196 = =2 + Ficosd + 4
~3 = ~3464 + Fysind - 3

Fy=T3IN

& =473° Fy=4T1kN
Fy = 129KkN

Fg=132kN

0=291° Fy=215N

0 = 700 sin 30° = Fycosd
1500 = 700 cos 30° + Fgsin ¢
fl = 68.6° Fg=90N
Fy=839N

& = 14.8°

Fg=4631b

f = 39.6°

0= Fysind — 180 — 240
Fg= Ficosd + 240 — 100

Fy =4201b

Fr = 1401b

0=637 Fy=120F
=543  F,= 686N

ANSWERS TO SELECTED PROBLEMS 621

2-54.

2-57.

2-58.

Fr= V(=103.05)% + (-42.57) = 111 1b
o= 202°

1.22kN = P = 3.17kN

Fg=391N

0= 164°

Fg = V(05F, + 300)* + (0.8660F, — 240)
Fy = F} = 115.69F, + 147600

ZFR@ = ZFI - 11569 =0

dF,

F,=518N, Fp=380N

8 = 103°

F,=8811Ib

Fg=1611b

0= 38.3°

Fi = (—4.1244 — F cos 45%)* + (7-F sin 45°)
ZF,%E = 2(—4.1244 — F cos 45°)(—cos 45°)

+ 27 = Fsind45°)(~sin45") = 0

F = 203kN

Fy=78TkN

Fy = [Ficosti + FysinfijjN
F, = [350i | N

Fy = {-100§) N

= 67.0"

F|_—“'34N

F, = {~159i + 276j + 318k} N
F, = {424 + 300j — 300k} N
Fy = 600(2)(+D)+0j+600(})(+k)

= {480i + 360k} N
F, = 400 cos 60°i + 400 cos 45%j
+ 400 cos 120°k
= {200i + 283j — 200k} N
Fp=T51Ib
a = 25.5°
B = 68.0°
y=T1.7°
F,=-200N
F,=200N
F,.=283N

—100k = [(Fy, — 33.40)i + (Fy + 1928)j
+ (Fy, ~ 45.96)k)

Fu=66.41b

a = 59.8°

8= 107°

y = 144°
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2-66.

2-67.

2-70.

2-71.

2-73.

2-74.

2-T7.

2-T78.

2-79.

ANSWERS TO SELECTED PROBLEMS

a = 1247
B =713
y = 140°
F, = [14.0§ — 48.0k} Ib

F, = (90i — 127j + 90Kk] Ib

=300i + 650§ + 250k
= (459.28i + 265.17j — 530.33k)

+ (Fcosai + Fcos Bj + F cosyk)
F(cos* a + cos® B + cos y) = 1333 518.08
F = L15kN

a=131° B=75 y=415
F=882N

a=121° B=527° y=3530°
Fg=T7181b

ag = 86.8°

Br =133"°

yr = 103°

Fr= V(550 + (52.1)* + (270)* = 615N

a = 26.6°

B =851°
y = 64.0°
ayp = 45.6°
By =331°
71 = 66.4°
oy = 90"

By = 53.1°
v = 66.4°

Fscos ax = —150.57
Ficos B = —86.93
Fscosys = 46.59

F; = 180N
o = 147°

By = 119"
Y= 75.07

a = 121°

y =353.1°
Fr=T84N
B = 525°

F; =958 kN
a; = 15.5°
B; = 984°
s = T10°

a = 64.67°
F,=128kN
F, = 2.60kN

F.= 0776 kN

2-86.
2-87. z=353m
2-89,

2-82. F =202kN
2-83

F, = 0523kN

F; = 166N

o =975

B =637

y = 215°

2-85. Fy= V(-17.10)7 + (8.68)° + (—26.17)°

=3241b

ay = 122°

Ba=T45°

y2 = 144°

Fap = {—3i +6j +2k}m
Fag = Tm

Fgs = {400i — 400j — 200k} Ib

Fe = {250i + 500j — 500k} Ib

Fr = V650° + 100° + (—=700)* = 960 Ib
a=474°

B = 84.0°

y = 137
290, o =728

B =833

y = 162°

Fg=82N
291 Fp=138kN

a=824°

B = 125°

y = 144°
9. (4cos 30° i — 4sin 30°j — 6Kk)

V(4 cos 30°) + (—4sin 30°)° + (—6)°
= (2881 - 16.6j — 499Kk} Ib
Fp = [-288i - 166j — 49.9Kk]Ib

(4j - 6k)
e V(@) + (-6)
= (333§ — 499k] Ib
Fr=1501b
a = 90°
B = %r
y = 180°

294 F=35211b
2-95. F = (59.4i — 88.2j — 83.2k] Ib

a = 639°
B = 131°
y = 128°



2-97.
2-98.
2-99.
2-101.

2-102.

2-103.
2-105,

2-106.
2-107.
2-109.

2-110.

tap = 10 = 0§ + [0 - (-2299)]
4+ (0 = 0.750) k) m
fep = [[-0.5 = (=25)]i + [0 - (-2.299)]
+ (0 = 0.750) k] m
F, = [285j - 93.0k] N
Fe = (159 + 183] — 59.7k| N
F,y = [-43.5i + 174 - 174k| N
Fy = [53.2i — 79.8] ~ 146k) N
Fe = 1.62kN
Fg=242kN
Fg =346 kN
u=§= -0~ %i- Nk
x=24f
y=181
z=16M
Fgp= 1.24 lup
a = 90°
B =9%"
y = 180"
F,‘ - Fﬂ - F( = 3261b
F, = {30i = 20§ - 60k} Ib
Fy = {30i + 20j - 60k} Ib
Fe = {=30i + 20j — 60k} Ib
Fp = {=30i - 20j - 60k} Ib
Fyi=2401b
a =W
B ="
y = I80°
F = 1051b
F = |=6.61i — 3.73j + 929} Ib
ry=(0-075i+ (0 -0+ ((3-0k
= [-075i + 0f + 3k|m
F,= [~146i + S82k| kN
re = [0 = (=0.75sin 45%)]i
+ [0 = (—0.75 cos 45°)]j + (3 — O)k
Fe = [0.857i + 0.857j + 485k} kN
ry = |0 = (=0.75 sin 30°) i
4+ (0 - 0.75cos 30%)j + (3 - O)k
Fy = [0.970i — 1.68] + 7.76k| kN
Fgr=185kN
a = §8.8°
B = 92.6°
y = 2.81°
F = [143i + 248j ~ 201k) Ib

ANSWERS TO SELECTED PROBLEMS 623

113, (Fyo)y = (24)(3) + (-48)(-5)
+ 16(-3) = 469N
(Fio), = V(56) — (46.86)" = 307N

2114, rpe =539m

2-115. (Fgp)y = 334N
(Fep), = 498N

2-117. w, = cos 120°i + cos 60" j + cos45°k
|Proj Fyl = 716N

2-118. Fy- = 452N
Fpe = (32 - 32N

2-119. F, = 333N
F,=373N

2-121. u,- = 0.1581i + 0.2739) — 09487k
(F ac): = =569 1b

2-122, F ¢ = 3661b
Fac = {293] + 219k} Ib

2-123. (Fgc)” = 245N
(Fﬂ"l. - 316N

2-125. uyy, = —sin 30% + cos 30%
uoa=}i+3j-jk
& = 65.8°

2-126. (F)g, = 506N

2-127. 0 = 973"

2-129. r,,; = |15 + 3j + 8k| ft
fac = | =151 = 8j + 12k} ft
f=342°

2-130. F,=4781b
Fao=4551b

2-13L. F, = -I5N
F,=260N

2-133.

ug, = cos 30" sin 30%i + cos 30° cos 30°j — sin 30°k

uy, = cos 135% + cos 607§ + cos 60°k

(F,);__ =541b

2-134. Fi= 178N
f = 100°

2-135. Fy=2151b
0= 527"

2-137. ry, = |-3ilN
rac = (61 + 4 — 2K ft
0= 143°

2-138. F, = 178N
0 = 852"

2-139. F,u = 2151b
0 =357
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2-141.

ANSWERS TO SELECTED PROBLEMS

250 Fa

sin 120°  sin 40°
F,= 987N

F, = 186N

2-142. Proj F = 48.0N
2-143. Fy = (—324i + 130j + 195k| N

Fo = |-324i — 130§ + 195k} N
Fp = [~194i + 291k N

Chapter 3
31 Fp,sin30° - 20009.81) = 0 Fp, = 3.92kN
Fm_‘ = 340 kN
32 Fue=290kN,y =084l m
33, Fap=294kN
Fue = 152kN. Fyp = 2L.5kN
35 T =133kN,F, = 102kN
36. 0 =363°7T = 143kN
37.  Tge=223kN
Typ = 326 kN
39, Fagcosds® — Fuli) =0
F e = 29463 Th
W =4121b
310, T =720kN
F =540kN
311 T =766kN
i = 70.1°
313, Weceos30® — 275costl =10)
f =409 We = 2401b
4 2 =0799m
Xap = 0467Tm
3-15. m =856kg
3-17. Fegcostl — Fe, cos30° =0
o= 64.3° Fep=852N
Feq=426N
318, Fap=986N  Fu =267N
9. d=242m
321 Jomt D EF, =0,

Fepeos30° — Frpcos45” =0
Joint B.XF, =10,

Fpe + 8.7954m cos 457 — 12.4386m cos 30° = 0

3-22.
3-23.

3-25.

m=482kg

B =350°

40 = 50(V12 = I').I' = 2.66 ft

Joint E, F gy cos 307 — Fm(::} =10

Joint B,

1.395TW cos 30° — 0.8723W(3) — Fyy = 0

W =35271b

3-26.

3-27.
3-29.

3-50.

Fga=80.71b
F(‘,{; = 6591b

Fype =57.11b

8 =295°

We =1231b

100 cos 6 = W(%)

0 =787°

W =35101b
T=35311b

F=3931b
2(Tcos30’) =50=0
T =289N
Fg=149N,(Aand D)
Fgp=408N,(BandC)

P=14TN

/= 19.11in.

~Tar + Ficos0 =10
d=713in.

k = 6.80 Ib/in.

We = 1831b

=150 + 2T sin@ = 0
-2(107.1) cos 44.4° + m(9.81) = 0

m=156kg
m=23Tkg
¥y=659m

Fag=3Fap =0
— FpctiFap=0
YFap— 981 =0

F_,u} =294 kN

Fag = Fae = 196kN
m=102kg

F,“] = 2.52kN

Fep = 2.52kN

!"m} = 364 kN

~3Fap—Fac+ Fap=10
%F.ut = %FAC =0

2Fag + Fac—W =0

F_,“— =2251b F,\ﬂ = 450 Ib
W =3751b

.F_,\c = 0.744 kip

1.70 kip

= 147 kip

F ¢ = 0914 kip

Fap = 142Kkip

]

Fap

-

=

&=
|



3-53. 0.1330 Fc — 02182 Fp =0
0.7682 F — 0.8865 Fc — 08729 Fp = 0
0.6402 Fy — 04432 Fo — 0.4364 F 3 — 4905 = 0

Fg=192kN
Fe = 104 kN
Fp=632kN

3-54. F_.m = 1.21 kN
Fac = 606N
Fap=T750N

3-55. F,p=131kN
Fac=T63N
Fap =7085N

357 {Fg—{iFc - HFp=0
—ﬁifs - ﬁFr +1iFp =10
-:—Ef'a-:j"F(‘-{in+W=u

m = 2.62 Mg
3-58, Fag=83N
FA[_‘ = 356N
Fap=4I15N

3-59. m=903kg
36L  (Fup), —3Fap—3Fap=0

(Fap): + {iFap + $5F 5 — 4905 =0

Fap = 520N
Fac = Fap=260N
d=36lm

362. y=03741t
z=2511

363 F=831lb
=207t

1.5 cos 30° 0.5 cos 30°
; F""( VoI + ,:3) g F""( Vos + :3)

0.5 0.5 sin 30”
F e -2 F o e o i i =10
’"’( Vo5t + :1) [ (\/0,53 ; 5)

3!-‘( S | - 1009.81) = 0
0.5+ 2

z= 173 mm
3-66. o = 1.640
367, Fap= Fue=Fup=3750

3-69. 03873 Fyy + 03873 Fye + 100sinf = 0

= [°
~0.4472 F, — 02236 Fop
02236 Fpe + 100 =10

ANSWERS TO SELECTED PROBLEMS 625

3-70.
3-7L

3-73.

3-74.

3-75.

3-77.

0.8944 F o — 0.8944 Fop — 0.8944 Foe = 0
Fo_.{ = 149 |b
FUB ) F{K’ =T7451b

p=115

= 4.69°

Fy=431kN

1.699(10) cos 60° — F =0
F = 0.850 mN

FJlﬁ' = 110N

Far=858N  Fu5=319N
P =6391b

ay=T712°

Ba = 148°

Y= 119

Fy+ Fycos60° — 800(2) = 0

800 (1) + Fycos135° — Fy =0
Fyeos60° — 200 = 0

Fi =400 1b
Fy=12801b
F3=3571b

3-18. Fep=6251b
F(‘A - F("B - 198"3

319. Fi=40
Fy=3111b
Fy=2381b

Chapter 4

45 30(cos45°) (18) = F(%) (12)
F=3981b

46 M,=721kN-m)

7. 0=640°

49,  —500 = —F cos 30°(18) — F sin 30°(5)
F=2161b

410. My =120N-m?

My =520N-m?

411. M,=382kN-m)

413. M, = (36cosf + 18sin ) kN-m
%‘ = -36sin6 + 18cosfl =0
= 26.6°% (M )pmax = 40.2kN-m
When M, = 0,

() = 36cosf + 18sing, 6 = 117°

414 C+ M,=1231b-in.)
F=2371b

415, (Mg),=209N-m)
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4-17.

4-18.
4-19.

4-21.
4-22.
4-23.

4-25.

4-26.
4-27.
4-29.

4-31.
4-33.

ANSWERS TO SELECTED PROBLEMS

(M) e = =30(3)(9)
= —1621b-ft = 1621b-M1)
(‘MF«]C = Zﬂ}]h-fl)

Since (Mg )¢ > (Mg )¢, the gate will rotate

counterclockwise.
F,=2891b
Mp=1(3375cos8 + 75sinf) Ib- ft
a. M, =400V (3)" + (2
M,=144kN-m9
f = 56.3°
G+M, = 1200sin 6 + 800 cos #
My = 144 kN-m 9

foas = 56.3°

Mya =0

Bin = 146°

BC = 2457 ft

T =5 6 = 23.15°
1500 = F sin 23.157(20)
F=1911b

(M), = 1181b-in.)

(M,)s = 1401b-in.)

M,=739N-m )

Fe=822N+

C+Mpy = 40cos 25°(2.5) = 90.61b-f1%
C+Mec=1411b-11 5

G +M,=1951b-11Y)
C+M,=T77IN-mH

Maximum moment, 08 L BA
CH(Mp)max = S0.0KN-m

fi = 33.6°
F=1I5N
F=83N

My = 1y, X Fy = [110i — 50§ + 90k]lb-ft
M, = {90i — 130j — 60k} Ib-ft
(Mg)p = [200i — 180§ + 30k} Ib-ft
M, = 1ty X Fe = (1080i + 720§} N-m
My = 1y % Fe = {1080 + 720§} N-m
Mg = {=720i + 720§} N-m
(My)p={—18i + 9 — 3k} N'm
(Mp)o = {18i + 7.5] + 30k} N-m
M,=r,X%F

= [-539 + 13.1j + 114k} Nm
M, = (106 + 13.1j + 292k N'm
yv=1m
z=3m
d=115m

449, b=r X1y

Uy =
My = rpe % F = [10i + 0.750f — 1.56k) kN -m
4-50. Mg =427N'm

=&

a=952°
g = 110°
y = 20.6°

451, M,p = {9.33 + 933j — 467k} N-m
453 u-=k
r = 0.25sin30°i + (.25 cos 30° §

M.=155N"m
4-54. M, =1501Ib+1t
M, =4001b-ft

M. = 3601b-fi

4-55. M, = (1150 + 8.64j) Ib- 1t

4-57. rop = [0.2 cos 457 — 0.2 sin 45°k} m
M, =0828N'm

4-58. M,=T730N-m

4-59. F=TIN

461. Mcp=ucp-rca xF
=teptpg X F= —4321b-ft

4-62. F=1621b

4-63. M, =4641b- 1

4-65. u, = —sin30°i’ + cos 307§’
ri = —6cos 15°1" + 3" + 6sin 157k
M,=2821b-11

4-66. M =2821b-in.

4-67. (M,); = 301b-in.
(M,): = $1b-in.

469. Moy =upatop X W =1u0,1og < W
W = 56.81b

470. M,=148N-m

471, F=202N

473 M,=424N-'m
0 = 424.26 cos 45° — M5
M;=300N'm

4-74. F = 625N

475, (M, )g=2601b-ft)

477. F'=333N
F=133N

478. F=11IN

4+79. 6= 356.1"

4-8l. C+Mp= 100cos 30° (0.3) + 100 sin 30° (0.3)

~ Psin 15°(0.3) — Pcos 15°(0.3) = 15

P=T07N



4-82,

4-83,
4-85.

For minimum F require # = 45°
P =495N

N =260N

a.

Mg = 8cos45°(1.8) + 8sin 45°(0.3) + 2 cos 30°(1.8)

- 2sin 30°(0.3) — 2 cos 30°(3.3) — 8 cos 45°(3.3)

Mg =969kN-m)

4-90.

4-91.

4-93.

4-94.

4-97.
4-98,

4-101.

4-102.

4-103.

4-105.

b. Mg = 9.69kN- m)
(Mg = 520kN-m)

F=142EN-m
2. C+Mc = 40 cos 30°(4)-60(2)(4)
= 5341b- 1)

b. (+Me=—5341b- ft = 5341b- ft)
a C+Mc=5341br ft)

b. C+Mge=5341b- 1)

(Mg = 1LO4KN-m

a = 120°

B =613

v = 136°

M. =r 5 XF=rg, X =F
M, =408N-m

a= 113"

B = 101°

¥-= 90"

F=981N

(Mg), = 484 kip-ft
(Mg), = 298 kip-fi
Me=F(15)
F=154N
Mg = [-12.1i - 100j — 173k} Nm
d = 342 mm
=-M+3iM;+ 75
0=M; -3iM;—75
0= M- 1067
Ms=3181b-fi
M, = M, =2871b-ft
(M) = 224N-m

a =153

B = 634°

=N

Fy, = 2001b

Fy=1501b

Frp=V 125 + 5799 = 593kN
0=T718

Mg, = 348kN-m)

ANSWERS TO SELECTED PROBLEMS

4-106.

4-107.

4-109.

4-110.

4-111.

4-113.

4-114.

4-115.

4-117.

4-118.

4-119.

4-121.

4-122.

4-123.

4-125.

4-126.

627

Fg = 593kN
0=T71.8%
Mg, =116 kN-m?)
Fr=2991b
= 784°2
Mg, =21d41bsin. 9
Fr= V53301 + 100° = 542N
= 106"
(Mg)y =44IN-m5
Fg = 502kN
0 = 843°%
(Mg)s = 239kN-m)
Fg =461 N
0 = 4947
(Mg)o = 438N-m)
Fx = {2i — 10k} kN
(Mglo = rog % Fg + roc x Fp
= | ~6i + 12} kN-m

Fp = [~210k] N
Mgo = [~15i + 2255 N-m
Fg=[6i—1j- 14k N
Mgo = (130§ + 3.30j — 0450k} N-m
F> = |-1.768i + 3.062j + 3.536k] kN
F = [0.232i + 5.06j + 12.4k] kN
Mg, =nxFi+nxF

= [36.0i - 26.1j + 122k} kN-m
Fr=1075kip |
Mg, = 95kip-ftd)
d=1371
Fp=1075kip |
d=9260
Fr= V(100) + (898.2)° = 904 Ib
f# = 6.35°
& = 236°
d = 6.101Mt
Frp=1971b
0= 42.6°2
d=5241t
Frp=1971b
0= 426°2
d=0841
Fe= V(42.5) + (5031)* = 6591b
0 = 49875
d =210t
Fg=6591b
0 = 4987
d=4.621t
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4-127.

4-129.

4-130.

4-131.
4-133.

4-134.

4-135.
4-137.

4-138.

4-139.

4-141.

4-142.

4-143.

4-145.

4-146.

4147,

4-149.

ANSWERS TO SELECTED PROBLEMS

Fp=542N

= 106"

d =0827Tm

Fr=140kN!

=140y = =50(3)-30(11)—40(13)
y=T7l4m

xX=57lm

Fg = 140 kN

x=643m

y=1729m

Fe = 600N Fp= 500N

0 = 200(1.5 cos 45°) — F (1.5 cos 30°)
Fg=1631b
F(‘ =2231b
Fg=215kN
y=2368m
x=33m
Fu=30kN
Fp=26kN
~26(y) = 6(650) + 5(750)~7(600)—8(700)
y = 827 mm
x = 385mm
F, = 180kN
Fr=48.7kN
Fg = 8081b
X=3520t y=0138ft

My = =1003 b+ ft

Fr=90N

up, = —05051i + 03030 + 0.8081 k
Mg=30TKkN'm x=Ll6m
y=206m

Fe=T75kN |

X=120m

Frp=30kN |

X=34m

FR = }“’uL 1

=hwpl(¥) = ‘g"'u(g(*)'%"'n(%)GLJ
Xx=5L

Fr=39kip !

d=113Mt

wy = 190 Ib/ft

wy = 282 Ib/ft

Fp = [-108§] N

Mgo = —(1 + 3(1.2)) (108) j

Fy=20kN Fg=19kN

Fg=167kN

| e
bort 1

4-150.

4-151.

4-153.

4-154.

4-155.

4-157.

4-158.

4-159.

4-161.

4-162.

4-163.
4-165.
4-106.
4-167.
4-169.

4-170.
4171

4-173.

~(0.1 + }(1.2)) (108) k
Mgy = - 194j — 54k|N-m
b=4501t

a="9751

Fe=17Ib

X = 02681t

Fg=107kN «

owdz
(1]

f wdz
0

_ fm[(zuﬁ) {w-‘)]d:

T =

“

4dm
f (202) (10%)dz
(1]
h=1.60m
Fp=107kN |
X=1m

Fp=5771b,0 = 47.5°<%
Mgy = 220kip-ft D
Fg=806kip 1

806407 = 34560(6) + f (x + 12) wdx
o

¥=l46M

Fp=75331b

X = 160 ft

Wy = 18 b/t

Fp=5331b

X' = 2400

(dFg), = 62.5(1 + cos #)sin @ d

Fp=2231b 1

Fp=5330b |

Mg, = 53310119

d=35541

My = 1o, % F = [298i + 151j — 200k} Ib-in

M, = 289kip-ft )

M, = [-597i — 159} N-m

a Mc=r 5% (25k)
M, = [-5i + 875j|N-m

b. M- =rpp X (25K) + 154 X (-25Kk)
Mg = [=5i + 875j) N-m

F=92N

Fy = |-80i — 80j + 40k} Ib

Mgp = [—240i + 720§ + 960Kk} Ib- fi

M. =k (rg, X F) = k+(rpy X F) = =4.03N-m



Chapter 5

5L

52,

5-3,

5-7.

s-10.

=11

5-13.

W is the effect of gravity (weight) on the
paper roll.

N, and N, are the smooth blade reactions on
the paper roll.

N, force of planc on roller.

B..B_force of pin on member.

W is the effect of gravity (weight) on the
dumpster.

A and A_are the reactions of the pin A on the
dumpster.

Fy is the reaction of the hydraulic cylinder BC
on the dumpster.

€, and C_are the reactions of pin C on the truss.
T, is the tension of cable AB on the truss.

3 kN and 4 kN force are the effect of external
applied forces on the truss.

W is the effect of gravity (weight) on the boom.
A, and A are the reactions of pin A on the
boom.

Ty 18 the force reaction of cable BC on the boom.
The 1250 Ib force is the suspended load reaction
on the boom,

A ANy forces of eylinder on wrench.

N . Ny N forces of wood on bar.

10 1b forces of hand on bar.

€. C, forces of pin on drum.

F ,z forces of pawl on drum gear.

500 Ib forces of cable on drum.

Ny= 245N

N,=425N

T 45 €08 30°(2) + T 45 5in 30°(4) ~ 3(2) — 4(4) = 0

5-14.

5-15.

5-17.

T s = SSOKN
C, = S.11kN

C, = 405kN

Tac = 111 kip

A, = 102 kip

A, = 6,15 kip

Ny = 1401b

A, = 1401b

A, =201b

Ne=5771b

10cos 30°(13 — 1.732) = N 4(5 — 1.732)
~ 5.77(3.464) = 0

N,=2371b

Nyp=1221b

ANSWERS TO SELECTED PROBLEMS

5-18. Fau=4011b
C, = 3331b
C,=721b
5-19. (N,), = 9861b, (Ng), = 2141b
(N4), = 1001b, (Ng), = 201b
s21 7(3)3) + T(H)) - 60(1) - 30 =0
T = 34.62kN
A, = 208kN
A, = 81.7kN
§22. Fy=4.19kip
A, = 321 kip
A, = 1.97 kip
5-23. ;\r( n 213N
A, = 105N
A, = 118N
525, Ng(3) - 300(1.5) = 0
Ng = 1501b
A, = 300 Ib
A, = 1501b
§-26. Fep= 131N
B, = 340N
B, = 954N
§-27. Fap= 0864 kN
C, = 6.56 kN
. = 266 kN
5-29.  Fy{1)(1.5) — 700(9.81)(d) = 0
Fac = 57122.54
Fa= V(34335d) + (45784 — 6867)
530. A, =50Ib
Ng = 160 kip
A, = 151 kip
53l F=93751b
A, = L42kip
A,

= 4691b
5-33.

40 000(3)(4) + 40000()(0.2) - 2000(9.81)(x) =

x=52m
C, = 32kN
C, = 438kN
53. Ng=104kN
A,=0
A, = 600N
535 d =61
w o= 267 Ib/it
537, —490.5 (3.15) + Lwg(0.3) (9.25) = 0
Wy = 144 kN/m

629

0
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5-38.

5-39.

3

£Lf

5-50.

5-51L.

5-58.

5-59.

ANSWERS TO SELECTED PROBLEMS

k = 1.33kN/m

A, = 300N

A, = 398N

0=231°

A, = 300N

A, = 353N

A, =T7501b

N g (4 sin 30°)~300(1)—450(3)
Np = 8251b

A, =8251b

Ng=127kN

A, = 900N

My=227N.m

T =9081b

2500(1.4 + 8.4) — S00(15 cos 30° — 8.4)

~N,22+14+84) =0

N, = 1.85kip

Ny = LI1Skip

W = 534 kip

Fo=432b Fy=0 Fc=4321b
S0(9.81) sin 20° (0.5) + S0(9.81) cos 20°(0.3317)
— P cos 6(0.5) — Psin6 (0.3317) = 0
ForP..; =0

9= 33.6°
Pain = 395N

F = 520kN

Na=173kN

Ng=249kN

0= 63.4°

T =292kN

Fc(6cos0) — Fu(6cost) =0
0= 128

k= 11.2 Ib/ft

a=1.02°

For disk E: ~P + N(—V;ﬂ) =0
For disk D: N 4(3) - N(?) =0
Na=2501b

Ng=9.181b

N¢ = 1411b

Pasx = 2101b

N,y =2621b

Ne = 1431b

a = 104°

5-70.

571

5-73.

5-74.

95.35 sin 45°(300)~ F(400) = 0

F=3506N

A, = 108N

A, = 488N
a=V@EArl -4
Ne= 289N
N,=2I3N
Ng=332N
Tep(2)-6(1) = 0
Tep =3kN

Ter = 225kN

Tas = 0T5kN

v = 0.667m,x = 0L667m
Ry, = 22.6kip

Ry = 226 kip

Ry = 137 kip

C, =450N

C.(0.9 + 0.9) — 900(0.9) + 600(0.6) = 0
C.=250N

B. = LI2SKN

A, = 125N

B, =25N

A, +25-500=0
A, =4T5N

Tnn = T('n = 117N
A, = 66TN

A, =0

A, = 100N
Fpe=3751b

E, =0

E,=56251b

A, =0

A,=0

A, =6251b

Ng(3) — 200(3) — 200(3sin 60°) = 0
Np=373N

A, =333N

Tep+ 37321 + 33333 — 350 — 200 - 200 = 0
Tep =435N

A, =0

A, =0

Fep=0

Fep = 1001b

F.ﬁ'l} = 1501b

A, =0



5-75.

5-77.

5-79.

5-90.

ANSWERS TO SELECTED PROBLEMS

631

Ay =0 591 N, = SO0KN
A. = 1001b B, = 520kN

F = 9001b B, = 500kN
A =0 593, S(14) + 7(6) + 0.5(6) — 2(6) — A,(14) = 0
A, =0 A, = 7.36 kip
A, = 6001b B, = 0.5 kip
My =0 B, = 166 kip
My.=0 594. T =101kN
Ter(L) — W(k)-075W(% — dcos45°) = 0 By === aulibai
d = 0550L Fp =90
= 595 P =1001b

Tpr = 0583W

T = 114W Be=A%

AT e B, = —3571b
Ter = 0570W A, = 1361b
Tep = 0.0398W i e
Tg=167kN 2
ol A= 401b

= q
ﬁ" 2 ];’2 :: Chapter 6
i 6-1.  Joint D; 600 — Fpesin 26.57° = 0

3 )
1,4+ | —=|Fep=0
= (\/51 -
~55(3) + (L)Fﬂ, (3) =0

V54
Frg = 6741b
A, =-27151b
A, = =-2151b
A, =0
M., = 1651b-ft s
My =0
Fge = 1751b
A, = 1301b
A, =-=101b
My, = =3001b-fit
My =0 &%
M. = —=T7201b-ft
Fge = 1051b
EMap = 0Te(r + reos60®) — W(rcos60%)

— P(d + reos60°) =0

d= ;(] + 3‘:
d=4 6-5.
P=05W
600(6) + 600(4) + 600(2) — Nycos437(2) =0
Ny = 3509kN
A, = 360 kN
A, = LBOKN
F = 354N

Fye = 1.34KkN (C)

Fpe = 1.20kN (T)

Joint C: —Fepc0$26.57° = 0
F{_‘E =0

Fer = 134 KN (C)

Joint £: 900 — Feysind5® =0
Fgg = L2TKN (C)

Fea = 2.10kN (T)

Fip = 8491b(C)

FAB = 600 Ib (T)

Fyp = 400 1b (C)

FB(' = 600 1b [T)

Foe = 141 kip (T)

FDE = 1.60 kip (C]

Fip = 113 kip (C)

Fig = 8001b (T)

Fen =10

Fg(' = 800 1b [T]

Fpe = 113 kip (T)

Fmg = 1.60 kip (C]

1
Joint A: F,,,-( ——) - 16622 = 0
V5

Fype = 372N (C)
Fip = 332N(T)

Joint B: Fye — 33245 = 0 Fye = 332N(T)

Fyp- = 196 N (C)
Joint E: Fy- cos 36.87°

= (1962 + 302.47) cos 26.57° = 0



632

6-T.

6-10.

6-11.

6-13.

6~14.

ANSWERS TO SELECTED PROBLEMS

Fee = 558 N(T)

Fep = 929N (C)

Fpe = 582 N(T)

Feg = 3.00kN(T)

Fep = 260 kN (C)

Fop = 260kN (C)

Fpg = 200kN (T)

Fyr = 200kN (C)

Fgq = 5.00kN (T)

Fep = BOOKN (T)

Frp = 6.93kN ()

Fop = 6.93kN (C)

F‘-_‘w =400 kN (T)

Fyr = 4.00kN (C)

Fyq = 120kN(T)

Joint A: Fpsind5° — P =10

Joint F: Fpycos 45° — 14142 Peos 457 = ()
Joint E: Fpy — 2P = 0

Joint B: Fypysin 45° — 1.4142 Psin 45° =
Joint C:3P — N-=10

2P = 800 Ib P = 400 1b

3P = 600 1b P = 200 Ib (controls)
Fpg = Feg = Fyg = Fpr = Fep = Fge= 0
F_,“‘ — FLIE = 667 Ib (C)

Fye = Fepp = 667 1b (C)

Fyo = Foe=Fga =0

FDF = 400 1b [C)

Fee = Fpg = 33310 (T)

Fye = Fgq = 7081b (C)

Fpe = Fpe = 8251b(C)

Joint A: Fypsinft = 0

Joint D: 2.60 P, cos 22.62° — Fj = 0
Joint B: Fge — 2.60 P, sin 22.62° = 0
P=1351b

Fya =0

Fpe = 24501b (C)

Fe; = 1768 1b (T)

Fep = 12501b(C)

Fop = 1768 1b (C)

Fgp = 25001b (T)

Fyp = 24501b (C)

Fip=0

Fep = 125016 (C)

Fep = 1768 1b (T)

Fep = 1768 1b (C)

6-15.
6-17.

6-18.

6~19.

6-21.

6-22.

6-23.

6-25,

P = 2000 Ib

Joint A: (.8333F cos 73.74° + P cos 53.13°
= FAH =0

Joint B: 0.8333P(%) — Fye(i) = 0

Joint D: Fpp — 0.8333P — P cos 53.13°
—~ 0.8333Pcos 73.74° = 0

P = 1.50 kN (controls)

Fpy = 1500 1b (C)

Feg = 12001b (T)

Fep = 12001b (T)

F.EA =0

Fyp = 125010 (C)

Fyg = 2001b (C)

Fye = 20016 (C)
Fap =0

Fpe = 2501b (T)
Fip = 7516(C)
Fep = 601b(T)
Fep = 601b (T)
Fey = 551b(C)
Fyp = 1541b(C)
Fuy = 63.31b(T)
Fye = 63310 (T)

Fyp = 551b(T)
Foe = 79216 (C)

Joint I; Fyesin 45° + Fypeos3025° = W =10

Joint A: Fy; — 1.414 Wsin 457 = 0
m = 1.80 Mg

Fep = TIBN (C)

Fey = 550N (T)

Fga =TJ0.7N {C)

'FD.E = 500N {C)

Fry = 636N (C)

Feg = T0IN(T)

Fzq = 450N (T)

Fep = 286 N (C)

Feg = 202N (T)

Fpp = 118N (T)

Fppr = 286 N (C)

Fye = 118N (T)

Fyq = 202N (T)

Fyy = 286 N (C)

Joint A: 1.4142 Pcos 45° — Fig =10
Joint D: Fpe — 14142 Pcos45° = 0
Joint F: Fpp — 14142 Psin 45° =

Joint E: 1.4142 Psin 45° — P — Fpgsind3” =0



6-26.

6-27.

6-29.

6-30.

6-31.

6-33.

6-34.

6-35.

Joint C: Fey = P (C)
P = 1kN (controls)
14142P =15
P=106kN

Fep = 7801b(C)

Feg = 72010 (T)
Epy=0

Fpp = 7801b (C)

Fge = 297 1b(T)

Fya =7221b(T)

Eee = 0.667P (T)
F.(.'ﬂ = 1.67P [T)
Fyp = 0471P (C)
Fip = 1.67P(T)
Fye = 149P (C)
Fgr = 141P(T)

Fyp = 1.49P (C)
Fee = 1.41P (T)
Fep = 0471P (C)

Joint A: F, 2 404["(
- V325

1.5
Joint B: 24(14!‘( ) .
V325

I )_F(u.s )=n
BF 125 8D 125
Joint Fi Fppy + “{l 8631’(—[15—)]

= 2.00P =0
P = 125kN
127° = @ = 196°
336° = 0 = 347°
Fyy = 255 b (T)
Fye = 1301b(T)
Fye = 180 1b (C)
A, = 65.0kN

;=0
Fyc (#) + 20(4) + 30(8) — 65.0(8) = 0
Fye = S0.0KN (T)
Fyy = 350 kN (C)
Fyg = 21.2kN (C)
Fye = 11.1KN (C)
Fep = 12N (T)
Fey = 1L60KN (C)
Fep = 129kN(T)
FH = T.21 kN (T]
Fyr = 21.1KN (C)

=0

‘\.___./

ANSWERS TO SELECTED PROBLEMS

6-37.

6-38.

6-39.

6-50,

E, = T7333kN
7.333 (4.5) — 8(1.5) — Fp(3sin 60°) = 0
Fre = 8.08KkN (T)

Fep = 84TkN (C)

Fep = 0.770kN (T)

Fyy = 425kN(T)

Fye = 100 kN (T)

Fpe = 125kN (C)

Fer = 16.TKN (T)

Fep = 100kN (C)

Feyy = 292kN (T)

A, = 2401b
A, = 1001b
240(8) — Fyecos 14.04°(4) = 0

Foe = 495 1b (T)
Fiy; = 4201b (C)
Fs(; = 2001b (C]

AB, BC, CD, DE, HI, and GI are all zero-force

members,
Fye = 5.62kN (C)
Fri = 9.00kN (T)

AB, BC, CD, DE, HI, and GI are all zero-force

members,
Fip = 9.38kN (C)
FGF = 5.625kN [T]
N, = 13001b
Fyq, (8) + 1000(8) —
Fyp = 38001b (C)
Fep = 26001b (T)
Fip=4241b(T)
Fge = 325kN (C)
F('H = 1.92kN (T)
Fep = 1.92kN (C)
fgr = L33KN(T)
Frp = Fe =0
A,=0

= 155kN

900(8) —

633

1300(24) = 0

Fyy $in 33.69°(4) + 5(2) + 3(4) — 15.5(4) = 0

Fo = 180KN (C)
Fee = 750 kN (C)
Fye = 15KN (T)

]

Fyp = 2L9KN (C). Fy = 13.1 KN (T).
Fye = 13.1 kN (C), Fys = 17.5 kN (T),
Feg = 312kN (T). Frs = 11.2kN (T).
Fep = 312KN (C), Fep = 9.38 kKN (C),
Foe = 15.6 kN (C), Fpp = 125 kN (T),

Fep = 938 kN (T)
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6-51.

6-55.

6-58.

6-59.

ANSWERS TO SELECTED PROBLEMS

Fyy = 43.8kN (C), Fyg = 262 kN (T)
Fge = 26.2kN (C). Fyg = 35.0kN(T)
Fge = 625 kN (T), Fgp = 225 kN (T)
Fep = 3L2KN (C), Fee = 188 KN(T)
Fpe = 188KN (C), Fyp = 25.0kN (T)
Fre = 6.25kN (C)

G, = 1.60 kip

1.60(40) — F; (30) = 0

Fy = 2.13kip (C)

Fpe = 2.13kip(T)

Fpy = 83310 (T)

ch = 667 Ib (C)

Fep = 33316(T)

Fap = Eyg = 3541b (C)

Fpy = 501b(T)

Feq = 10001b (C)

Fep = 406 1b (T)

Feg = 344 1b (C)

Fug = Eip = 4241b(T)

an = 544 1b (C)

Joint D: — LEp +

5
e
NEE
1
+——F ¢p = 200=10
735 R
F,uj =343N {T)

Fygp = 186 N (T)
F(‘g = 397N (C]
1
Joimt C: Fprr — ——(397.5) =0
b s
Fge = 148N (T)
Fye = 221 N(T)

Fee = 295N (C)
Fyc = LISKN (C)
Fpr = 416 kN (C)
Fye = 416 kKN (T)
F(‘F =0

Fep = 231 KN (T)
Fip = 346 kN (T)
F_.‘s = 346 kN (C)

D, = 1001b
C, = 6501b
E, = 5501b
F, = 1501b
F, = 6501b
E =T7001b

6-63.

6-70.
6-71.

6-73.

6-74.

6-75.

6~77.

Joint C: Foy = 0
F(_‘n = 650 1b {C)
Fep=0

Joint F: Fye = 2251b (T)

Fpp = 12301b (T)

Fep = 52516 (C)

Fre = Fyc = 220N (T)

E.”; = 583N (C]

Fgp = TOT N (C)

FHE = FBf =141 N (T]

F=170N

Joint F: Fr;, Fp, and Fe are lying in the
same plane.

FFE cosf =0 FFE =0

Joint E: Fig, Fre and Fig are lying in the
same plane.

Fepeos@ =0 Fep =0

Fep = 1571b(T)

Fee = 5051b (C)

Fep =0

P=1251b

Apply the force equation of equilibrium along

the y axis of each pulley
2P + 2R + 2T - 50(9.81) = 0
P=189N

P=5lb
P=2501b

F,=P=2501b Fy=6001b
Ny (0.8) = 900 = 0

Ng = 1125N

A, =T95N

A, = 795N

C, = 795N

€, = 130kN
Me=125kN-m

A, = 601b

C, = 1611b

C, = 901b

A, = 1611b

C, = S00kN

B, = 150kN

M, = 300kN+m

A, = S.O0kN

A,=0

C, =100 B, =4491b
C,=2736b A, =923



6-78.

6-79.

:

X

6-91.

A, = 1861b
M, =331Ib-1t
A, = 300N
A, = 300N
C, = 300N
C, = 300N
Np = 333N
A, =3BN
A, = 10N

Segment BD: B, = 30 kip
D=0

D, = 30 kip

Segment ABC: C, = 135 kip
A=0

A, = T5kip

Segment DEF: F, = 135 kip
E =0

E, = 75kip
Ne= 12.7kN
A, = 127kN
A, = 294kN
Np = 1O5kN
A= 16TN
A, = L1TkN
C, = 1.33kN
C, = 833N

Member AB, Fy; = 2649 N
Member EFG. Fgpy = 1589 N
Member CDI,m, = 1.71 kg

m; = 106 kg
Fig = 194kN
an = 2.60 kN

Member AB: Fy;, = 1624 1b
B, =9741b

B, = 1301b
A, =5261b
A, = 1301b
E, = 9451b
E, = 5001b
D, = 9451b
D, = 1000 Ib
N, = 4.60 kN
C, = 7.05kN
Ng = 705 kN

ANSWERS TO SELECTED PROBLEMS

6-93. Pulley E: T = 3501b
Member ABC: A, = 700 1b
Member DB: D, = 1.82kip
D, = 1.84 kip
A, = 2.00 kip

6-94. W =3351b

6-95. F=36235N

6-97. 80 — N; cos 36.03° — N-cos 36.03° = 0
Ny = No=495N

6-98. M =243kN-m

6-99. F=507kN

6-101. Member ABC

A, =245N
Member CD
D, =245N
D, = 695N
A, = 695N
6-102. Fp = LOLKN
FAB(' = 319N
6-103. A = 183N
E. =0
E.=417TN
Mg =500N-m
6-105. Member BC
C, = 133kN
B, = 549N
Member ACD
C, = 298 kN
A, =235N
A, = 298 kN
B, = 298 kN
6-106. F;- = 2.51 kip
Fyg = 3.08 kip
Fip = 343 kip
6-107. F=1751b
Ne=3501b
F=8151b
Ne=8751b
6-109. Clamp
C,=175N
Handle
F= 370N
F;;f = 271969 N

6-110. N, =284 N
6-111. W, = 0.812W

635



636 ANSWERS TO SELECTED PROBLEMS

6-113. EM; =0; W) - Ng(3b + %) =0 G =6lIN
Y .= 125N
EMy =00 Feple) - m{;'—) 0 Mg, = —429N - m
M. =0

6-127. Fy = 1331b

6-129. Fpp = Fpe =0
Joint C: Fg = 179kN (C)
F(n = B.00 KN (T}
Joint D: Fypy = 8.00 kN (T)
Joint B: Fyy = 17.9KN (C)

X
= ic)“” ~ Wila) = 0

B (4b) + !F(l -
W o="tw

6-114. Fy = 9.06 kN (T)
Fye = 154kN (C)

6-115. Ny = 187N

6-117. 145 = 861.21 mm. Leag = 7641°, . if'f‘:}; B =5005N 0
Fus = 923kN Fo=0
G = 217kN Fgp = 5001b (T)
C, = 701 kN Fup = 3001b(C)
D, =0 Fye = 5831b(T)
D, = 1.96 kN Fyp = 33310 (T)
Mp = 266 kN-m Fyg = 6671b(C)
6-118. A, = 1201b Fpg =0
A, =0 Fgp = 3001b (C)
Ne = 15.01b Fep = 3001 (C)
6-119. A, = 801b Fep = 3001b (C)
A, =80b Fop = 4241b (T)
B, =1331b 6-131. ;'mr = t:’
- /e
= e~ som o
¢, = 5331b by = X0IOAC)
e, Fye = 9721b(T)
6-121. N = “iné Fip=0
M= #‘:;‘Li;“'f'.'g{cm[‘ﬁ - )] Fye = 3671b(C)
6-122. W, = 31lb Fpe =0
Wi =211b Fyp = 3001b(C)
W= 751b Fop = 50016 (C)
6-123. P =283N Fep = 3001b(C)
B, =D, = 425N Fpp = 4241b (T)
B,=D,= 283N 6-133. Member AC: C, = 4026 N
B.= D, = 283N C, = 974N
6-125. — Fpe(3) + 180(3) = 0 Member AC: A, = 117N
Fpe = 2701b A, = 397N
B. + 5(270) - 180 = 0 Member CB: B, = 974N
B.=0 B, = 974N
By = -3 6134, P = sl (2 - csch)
— i»_- . ;'3-3 Ib 6-135. A, = 8.31 kip
A-=l72N A, = 0308 kip
A: - 1SN E, = 831 kip
C. = 473N E, = 569 kip



Chapter 7
7-1. B, = 1L.00kip
A, = 700 kip
A,=0
Ne=0
V. = —1.00 kip
Mg = 56.0kip-ft
Nﬂ’“
Vp = —1.00 kip
M, = 480 kip-ft
72 N.=0
V. = 386 1b
My = —8571b-fi
Np =0
Vy = 3001b
My = =6001b-t
7-3.  Ne= -18041b
V.= ~1251b
M = 9750 1b-ft
7-5. A, = 400N
A, = 96N
Np = 400N
Vo= <9 N
M= =144 N'm
7-6. N.=0
Vo= -1kN
My = 9kN-m
1. Ne=0

V=0

M, + 80(6) = 0

M = ~4801b-in.
7-10. N‘-uu

Vo=0

Mo =15kN-m
71 Ne=0

Vi = 325kN

M = 9375kN-m

N,o,==0

Vp = 1kN

My = 135KkN-m

ANSWERS TO SELECTED PROBLEMS

7-13.

7-14.

7-15.

7-17.

7-18.

7-19.
7-2L.

7-22

7-23.

Member AB: B, = 500N
Member BC: B, = 125833 N
Np = 126 kN
Vp=0

Mp = 500N-m
Ng = ~148kN
V; = SOON

Mg = 1000N-m
Np =0
Vﬂ=m“’
Mp = ~1.60kip+ fi
N‘-=0

V=0

M = 800 1b-ft
A, = 5(2a + b) (b - a)
e

L)

Np = 4kN

Vp = -9kN
My = ~1SkN+m
N,_'"l‘kN
V£==3.75|=N
M, = ~4875kN-m
a=3L

D, =0
Fa(-=56(||b

D, = 5401b

E, = 5801b
A=0

A, = 5201b
Nf=0

V= 201b

My = 1040 Ib- ft
Ne=0

V= ~S801b
Mg = 1160 1b-ft
Np =0

V, = ~106kN
My = 425KkN-m
Np=0

Vp = 260N
Mp" 190Nm
V=0

Ny = 860N
M£=U

637



638

7-25.

7-26.

7-217.

7-29.

7-30.

7-3L

7-33.

7-34.

7-35.

7-37.

ANSWERS TO SELECTED PROBLEMS

Use top segment of frame.

Np = 2001b

"?} =10

Mp = 9001b-ft
N = 360 1b

Vi = 1201b

Mg = 11401b- 1t
Ne= ~Fcsco
e

My = %msﬂ
Ne = —191kN
V(‘ =10
Me=382N-m
Beam reaction

R = 7001b

My = —17.8kip-fi
Vo= —841b
Me= —8441b-1t
Np = 844 1b

Vi, = 1.06 kip
Mp = 106 kip-ft
B, =2939N

By =315N

N,[, = -204N
Vp=315N

My = 889N'm
(N(‘),l =0

(Vf).\' = 104 1b
(Vo). = 10.01b

(Mc), = 20016+t
(Mc)y = 7201+t
(Me). = 178 b~
(Ne)y, = ~3501b

(Vo) = —1501b
(Vo). = 7001b
(M), = 140 kip-ft
(M¢), = 120 kip-ft
(M¢). = =750 1b -t

. = SSON
B, = 900N
(Ng)y =0
(Vo) = 450N
(Vo). = =550N
(Mc), = —825N-m
To=30N-m

(Mc). = 675 N-m

7-38.

7-39.

741

T7-42.

743,

745,

7-46.

7-47.

7-49.

7-50.

7-5L

7-53.

(Vp), = 116N

(Np), = —65.6 kN
(VD)I = U

(M”)_‘ =492 kN -m
(Mp), = 87.0kN-m
(Mp). = 262kN-m
(Ne)y =0

(Ve), = 53.6 kN

(Vg). = —8T.0kN
(Mp), =0

(Mg), = =435kN-m
(M), = —268kN-m
0=x <4m

V = 3kN

M = [3x]kN-m

4m <x =6m

V = —6kN

M = (36— 6x)kN-m
M|,.s=12kN-m
x=8"V =-833, M =1333
x=12'V=-333.M=0
x=0,V=4kN
M=—-10kN-m

For Ve = My/,. My = 45kN-m
For My = My/so My = 44 kN -m

Mi,= 44kN-m

=)

M= E!s'“'"!-»:
x=1L/2

_ L

T
x=175m
M =T759N+m
0=x<5m
V=25-Xx
M =25x - a*
Sm <ux < 10m
V=<=75
M=-15x+735
V= 250(10 — x)
M = 25(100x — 5:° — @)
x=1732m
M, .. = 0866 kKN-m
0=x<9ft
V=125 - 1.667x*
V=0atx =381



7-54.
7-55.

7-57.

7-58.
7-59.
7-61.

7-62.

7-63.

7-65.

7-66.

7-67.

7-69.

7-70.

M = 25x — 0.5556x°

M= 6451b-f1

Ift <x <1351

V=20

M = —180

w = 222 Ib/ft

V= {480 - £} kip

M = {48.0x — & — 576} kip-fi
V= {424 - v} kip

M= {4 - x)*} kip-fi
0=x<3im

v ={-3 -4} kN
M= {3 - 4x} kN-m
Im<y=6m

V = {24 - 4x} kN

={-2(6 — x)*} kN-m
Vlr-lm- = —10kN
V]_.=3m| = 12kN
M|3m = —18kN-m
w, = 218 Ib/ft
wy = 8.52 kN/m
V = (3000 — 500x) Ib
= [3000x — 250x2 — 6750) Ib-ft
x=~6f1
M|,oqs5q = 22501b-f1

¥ ”Tm[(L +xp - Ll]
fr'yr'![ 4 3
- = 4
M IPYE (L + x) L(4x + L)
=20

V. = (240 — 4] Ib
M, = (2% — 24y + 64.0}1b- ft

M, = 8.001b-ft
M. =0

x=2,V =675 M = 1350
x =45V =275 M = 1900
x=6V=-625M =125
x=2"V=5M=-10
x=6",V==-5M=-10
x=2"V=-145M =
x=4"V=06M=-22
x=2,V=15M=15
x=4"V=-125M=10
x=(5)'\v=-PM=PL

ANSWERS TO SELECTED PROBLEMS

7-71.

7-73.

7-74.

7-15.
7-7.

7-78.

7-79.
7-81.

7-82.
7-83.
7-85.

7-86.

7-87.

7-90.
7-91.
7-93.

7-94.

7-95.

x=(2%)v=-2p.M=(})PL
x=02*".V=97.M = -31
r=0V=176M=0
r=08.V=016.M = 0708
r=LV=-38M=0
x=1"V=-917.M=-117
x=3"V=1I5M=-750
¥=15,V=250.M=7125
x=1.V=115M = -200
xX=5,V=-225M=-300
x=8",V =1017. M = —1267
y=M4LV=0M=34
x=6V=-900.M = -3000
x=0V=3512M=0
x=9V =0625M =259
x=9.V=-1315M =259
x=18,V = —3625,M =0 _
x=L"V =2k M= bl
x=3V=-12M=12
Viax = 4w

w = 2 kip/ft

M,,,,,=-6w

w = S kip/ft

Ue v = 2 kip/it.
¥r=6"V=4wM=-120m
x=3"V=115.M=-2]
x=6V=25M=0

x=300,V=T72M=2T1
X =900,V = —487. M = 350
Entire cable

Tup = 78.21b

Joint A: Ty = 74.71b

Joint D: Tepy = 43.71b

L=1571t

P =7201b
Xz =39810
Y =353m
Tig = 6.05kN
The = 453kN
Tep = 4.60 kN
Towx = Tpep = 817kN
yp=243m
T = 157N
v = 86711
yp=T.0411

639



640 ANSWERS TO SELECTED PROBLEMS

X Bxy =15 Mg =1125N'm
797. Joint B: ——————— Ty = 200 E
Vg -3¢ +64 ¢ Segment CD
30 - Np = =-220N
Jolnt G — e = 10 V= 0N
Vixg - 37 + 64 b
xp =436t Mp=-549N:m
7-98. P=7141b 7-118. a = 0.366L
7-99.  w, = 0.846 kKN/m 7-119. T, =7671b
Wo 4 7-121. Fep = 6364 kN
AL Dt A, = LSOKN

Wo 5 0=x<3m
10=o—{25—2x)" V = 1.50kN

2Fy _ ;
W< M = [1.50x} kN-m
; Iim<x=6m
7-102. 4.42 kip V = —450 kN
7-103. I = 2681t M = [27.0 — 4.50x) kN -m
’;=13A‘”' 7-122. 0=x<2m
1_105' (f_“ = %.‘. V= I5.29 - 0‘ lgﬁ.'l'l kN
dx N M = [5.29x — 0.0981x°) kN -m
}.=“'Dx: 2m<x=5m
4Fy V={-019x — 271} kN
y=Tmatx = x, M = [16.0 — 2.71x — 0.0981x%| kN -m
y=150matx = —(1000 - x,) T-123. 0° = 0 = 180°
wy = T7.8kN/m V = 150sin 6 — 200 cos #
7-106. v = 46.0(10 *)x* + 0.176x N = 150 cos i + 200sin 0
Toax = 48.7 kip M = 150 cos 6 + 200sin # — 150
7-107. T, =536kN 0=v=21
L=513m V = 2001b
Fy [ (49.05 ) ] = —1501b
7-109. v=——lcosh| —x ] —1|m S
T 4905 Fu M = =300 — 200y
1y ] =
L =45 = 2{ H sinh(@(zu))} 7-125. Fop = 86610
49.05 Fy Vp=Mp=0
Fy = 115341 N Np = Fop = —86.61b
v = 23.5[cosh 0.0425x — 1] m Ng=10
Tousx = 1.60 KN Ve = 2891b
7-111L. L =155m My = 86.61b-ft
7-113. @ = sinh 7.3575(10 ) 7-126. s = 182t
y = 135.92[cosh 7.3575(10 *)x — 1] 7-127. 1 =238 1t
h=14Tm h=93751t
7-114. Total length = 55.6 ft
h= 106 ft Chapter 8
7-115. x=2".V =486,M =971 81 Pcos30” + 025N = 50(9.81) sin 30° = 0
x=5"V=-L14M=229 P =140N
7-117. Fye = 31058 N N = 49494 N
Segment CE 8-2. P=414N
Ng = 804N 83 =025
Ve=10 85 180(10 cos #) — 0.4(180)(10sin #) — 180(3) = 0

0 = 52.0°



&7
8-9.

8-10.
8-11.
8-13.

8-14.
8-15.
8-17.

8-18.
8-19.
8-21.

8-22.
8-23.
8-25.

8-26.
8-27.
§-29.
8-30.

8-31.
8-33.

8-34.

8-35.
8-37.

8-38.

= 0231
Yes, the pole will remain stationary,
30 (13 cos 8) — 9 (26sin@) = 0

d= 1341t
P=15Ib
P=1Ib

Fz = 280N

JVB = TJ00 N

P = 350N

u, = 0577

Fg = 200N

Np =95381b

Boy does not slip.
Fy = 3691b

A, = 468 |b

B, =3461b

B, = 228 1b

s = 0.595

o = 10.6° x= 01841
Ny = 200 cos 6

Ny = 150 cos @
= 163"

Fep =823 1b
n=12

P = 099%01b
Assume P = 100 1b
N = 160 1b
r=14410t <150
P = 1001b
P=4501b

= 0,300

The man is capable of moving the refrigerator.
The refrigerator slips.

P=295N

Ny = 129N Np =T724N

Tractor can move log.

W= 8361b

Fy=17321b

Ny =1301b

The bar will not slip.

]_.
,,=,m,.,(_mﬂ)

2y
P=01271b
N = wacost
b= 2asing
h=048m

ANSWERS TO SELECTED PROBLEMS 641

8-39,

$1f

§-50.
8-5L
8-53.

8-54,
§-55.
§-57.

§-58.
§-59.

8-70.
8-7L

= 334°
ps =03
Fy = 03714 Fey
Ny = 09285 Fry

py =04

He can move the crate.
pi = 0376

Ny =5518N
B, = 1104 N
B, = 1104 N
M=T77/3N'm
Fy=T714N

P =3589N
T=11772N
N = 9.81m

my = 1500 kg
my; = 800 kg
P=102kN
N=4861b

Slipping of board on saw horse 7 = 24.3 lb.
Slipping at ground £, = 19.08 1b.

Tipping £, = 21.21b.

The saw horse will start to slip.

The saw horse will start to slip.

= 0.304

P =0601b
N'=1501b

F = 601b

P =901b

# = 16.0°

Ne = 37731N
Np = 18865 N
M =9.6Nm
Ny = 15092N
Ny = 679.15N
Fp = 31.73N
P=451b
P=490N

Ng = 8257 b Ne = 275231b
P=90.71lb
P=198N

P =863N

Ny = 121218 N
Ne= 600N

P =129kN

All blocks slip at the same time: P = 625 1b
P =5M4N



642 ANSWERS TO SELECTED PROBLEMS

8-73. N, = 05240W (B)reqg = 03
Ng = 1.1435W M =216 N-m
Fy = 0.05240W 8-102. P=1711b
P = 0.0329W 8-103. Since F < F,,. = 541b. the man will not slip,
874 P =138W and he will successfully restrain the cow.
875. P = 180kN 8-105. T = 48655 N N =31482N
8-77. 0= 7.768° B = (2n + 0.9167)7 rad
&, = 11.310° Thus, the required number of full turns is
F= 620N n=2
8-78. M =5691b-in 8-106. The man can hold the crate in equilibrium.
8-79. M= 1451b-ft 8-107. 7, = 185N
8-8l. = 5455° = 159N
&, = 14.036° 8-109. For motion to occur, block A will have to slip.
F= 678N P=223N
8-82. F=714N Fg=T=36T9N
883 F=492IN 8-110. F = 249kN
8-85. Foo=Fyp 8-111. W=3951b
F=1387.34N 8-113. T=2019N
FH.D = 1387.34 N .F:.‘ = 162N
Fip = 1962N N, = 4784 N
i = 5.455° x = 0.0069Tm < 0,125 m
&, = 14.036° No tipping occurs,
F=T40N 8-114. M = 304 1b-in.
8-86. F=174N 8-115. p, = 0.0568
8-87. Ny= 123N 8-117. Apply Eq.8-7.
N, = 426N F, = 1.62kip
8-89. Ty = 13.6781b 8-118. M =270N-m
Fe=1371b u, PR
Ny = 6581b g Ol i
Fy=3851b 8121 N=25,
8-90. F=131kN A= H‘?‘_“(d% - dh
F=312N w P (di—di
891 F=460kN m=gtl a- ,;;)
F=162kN 8-122. p, = 0442 psi
893 N=181b F=5T31b
F=13691b 2u,PR

Yes. just barely. 8-123. M

894 7,=5771b
B95 f=242°

"~ 3cosh
8-125. tandy = py

897 F=475P sin by = ——
F' = 19,53P V14 g
P=423N o

898 M=I18TN-m M"(\/iTﬂi)"'
= &

Ty = 61667 N 8126. P =215N
T = 15000 N 8-127. P = 179N
8101 7, = 1767.77TN 8-129. 4, = 16.699°

T, = 688.83 my = 13.1kg



8-130.

8-131.

8-133.

8-134.
8-135.
8-137.

8-138.
§-139.
8-141.
8-142.
8-143.
8145,

8-146.

8-147.
§-149.

8-150.
8-151.
8-153.

Chapter 9

9-1.

(r)a = 02in.

(r)y = 0.075 in.

(r)y = 7.50 mm

(r)g = 3mm

= 2.967 mm

R = VP + (83385)

P = 814N (exact)

P = 814N (approx.)

P=4221b

B, = 0411

o =3574°

P=96TN

P=29N

P=266N

pP= llxmiﬁ.’%.}%‘.:.-‘.-_ﬂ.il =235N

P =401b

5= 0750m

a) Ny = 557386 N
W = 697 kN

b) N; = 63765 N
Ny = 5886.0N
T'=6131.25N
W = 153kN

a) W= 125kN

b) W = 6.89 kN

mg = 166 kg

N, = 1000 1b

Ng = 25001b

T'=12501b

M = 2350kip -ft

M = 221kip -t

=30

N = T787851b

F=138921b

T=278693 N

The wedges do not slip at contact surface AB.

N = 8000 Ib
Fo=0
The wedges are self-locking.

dL = {\/y: +4dy
dm = \/_;!2 +d dy

m =118 kg
¥=164m
¥ =229m

ANSWERS TO SELECTED PROBLEMS

9-2.

9-3.

9-5.

9-10.

9-1L

9-13.

9-14.

9-15.

9-17.

A, =0
A, =2661b
M, =3271b-ft
XI=0546m
0,=10
0, = 706N
M, =385N-m
dm =g (1 + }) dx
m= gmnf_
¥=3L
=0
¥= 1821t
x = s
dA = x 32 ix
X=x
o
e
A=04m
I=0714m
¥ =03125m
A=22510
x=24N
¥=0857h
A = {a'2p*?
x=1b
¥ =iVab
dA = x*dx
y=3x
v =133in
A=cin?
= bh—a
' lnE

Ji t"’(b - a)

2abIn*

A= lah
X = ;:a
¥=iph
dA = hfq v'2dy
e 3;:!‘-‘3 yi2 =y
A= §ml'l
X= ia
y= :;h

643



644 ANSWERS TO SELECTED PROBLEMS

9-18. Fyo = 264 kN 9-43. m =7
A, =0 e
A, = 198 KN :
= — 164010Y _
919, ¥= — 0833 i Das ™ 5o
921, dA = 2k(x - £) dx ¥ = {5 = 441 mm
¥=g 7= 1003003 — 154 mm
X=7 9-46. x = —-0.59% in.
9-22. X = LO8in. ¥=1.07in,
9-23, y=0.541in. z=214in.
925, dA = (x-9)dx 947. ¥ = 0.0740in.
Te=x . ¥y= 0.0370 in.
jﬁ=§(x+'§;) 7 =0.157in.
A=2251 949, x = -50mm
¥=161 y = 88.6 mm
y=1Ll4f 0=tan ' = 10.89°
3 4 sin 60° ~ REAM) A
9-26. ¥=045Sm & = 30° — 10.89° = 19.1°
9-27. v=045m 9-50. ¥ = 165m
9-29. dA = ydx V=924m
y=3 E, = 342N
§=stih A, = 132kN
9-30. ¥=120m A=0
5l 9-51. ¥ =264in.
Ny = 55.1 kN ¥=12in
A, = 246 kN 9-53. = Sillt‘i[‘]';l)l‘.l_;_?,i‘hﬁilllu';ﬂ_i‘!}ﬂlﬂj
A, = T39KN =5.125in.
9-31. ¥=0914m 9-54. ¥ =2.00in.
y= UJSTm: 9-55. y=257in
9-33. dA = (}-%)dy 957 ¥F=42-22m
=y v 0648 _
F=1h e 1'41‘“‘
9-34. !_ll =§p(mhf 058 = M
X=3a 3a(r,t = 1)
938 Fegmias e
937, dvV = yidy e
Ty 9-6L. I=10
y=32m 441.2(10Y
3 = = 544 mm
938, z=1n ¥ 07
9-39. § = 43611 W
e ;; 1( - Y 9-62. X = W‘b
. am = wpp\a” — y~ +ay — ;)ay = -
S : bW - W) VBT =2
v__ - 5_‘ o cW
Y=8 ﬁj 9-63. y = 293mm
942, y=7mh 9-65. EZm = 164 kg
y=1n __249m(107Y) 155
- *Tieamaey



9-70.

9-71.

9-73.

9-74.
9-75.

£ f
ELL g

23

PEERE1L

y= =15 mm
1.8221(107%)

Foo TN R gy
16.347(10 %)

X=5071

¥=380ft

f = L+ (n: 1yl

T= 8% _ 131 mm

% 3

0= 302°

I =456m

v=30Tm

B, = 4.66 kN

A, =599kN

¥=190ft

y=110f

! J03i3e

2= ghue = 111 mm

z=74mm

¥=219in.

y= 2.79in.

Z = 1.67in.
1.02010%r _

2 — 4 mm

172(10%) 7

h=8mm or h=48mm

= 122 mm

A = 2m(184) = 1156 {t*

V= 3485 1t
V=101

V = 2a{(B("P) + 0501.5)(1)

+ 1.667(*0Y)|

=77.0m’

A = 1365 m*

A= HWlin’

V = 2a|(112.5)(75)(375) + (187.5)(325)(75)]
= 00486 m*

A= 16’

V = 50.6in’

A= 1.06m’

V = 00376 m*

V, = 27[0.75(6) + 0.6333(0.780) + 0.1(0.240))
V. =205m’

R = 293 kip

2.26 gallons

V= 2a[(49) (4= @0) + Q®)4)]

= 536 m’

ANSWERS TO SELECTED PROBLEMS 645

9-98.
9-99.

9-101.
9-102.
9-103.
9-105.

9-106.
9-107.

9-109.

V=255m’
A =4318m?
14.4 liters

A = 2a[7.5(V241) + 15(30)] = 3.56(10%) ft*
V = 22.1(10°% it*

h = 106 mm

~176 580(2) + 73 575d(%d) = 0

d= 268m

d= 365m

Feper=7501b

Figpe = 1800 1b

h = 27071 = 0.7071y

dFyg = (265567V1 = \* ~ 69367y V1 — y¥) dy

9-110.
9-111.
9-113.

9-114.
9-115.
9-117.

9-118.
9-119.
9-121.

9-122. |

9-123.

9-125.

9-126. 1

9-127.
9-129.

Fp=4L7kN
Fr=2251b
Fp = 4501b
wg = 39.24 kN
we = 58.86 kN
Ne = 13.1kN
L=231m
m, = 5.89 Mg
F, = 3924 kN

F, = 17658 kN
(W), = 18835 kN
(W), = 282.53 kN

FS. = 266
x=151m

Fp = 170 kN

dA = X dx

¥=%

v = 133in

¥y = 87.5mm
¥=y=0
z=1%a

=23 = 2730n
V= 3es = 142in
=0

¥=163in

¥ = 02624

dFy = 6(— 2% + 340) dx
Fy = 762 kN
¥=274m
¥=300m
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ANSWERS TO SELECTED PROBLEMS

Chapter 10

10-1.

10-2.
10-3.
10-5,

10-6.
10-7.
10-9,

10-10.
10-11.
10-13.

10-14.
10-15.

10-17.

10-18,
10-19.
10-21.

10-22.
10-23,
10-25.

10-26.
10-27.

10-29.

10-30.
10-31.

10-33.

dA = [2 = (4y)") dy
I, = 053m'

[ =267m'

1, = 0,0606 m*

dA = (2 - %)dy

I/, =213m*

I, =457 m*

1, = 0205 m*

dA = [1 = (3)"]ay
I, = 02051 m*

dA = 2% dx

1, = 02857 m*

Jy = 0491 m*

I/, = 307in?

1, =107in'

dA = (2 = %) dx
I, = 0333 in*

I, = 19.5in’

I, = 107 in*

dA = (h - :JJ dx
f‘. - il'ihfl"

1, =i’
I, = &b’
dA = x"dx
I, = 307 in*
1, = 9.05 in*
1, = 309 in*
dA = (n:‘al dr
b=

wryt

7]

¥ = 220in.

I, = 579in*

L= 52)6) + 2/ L)1) + 14)(1.57]
=54.7in'

I, = 76,6(10") mm*

1, = 45.5(10) mm*

(K iiangie = | %(200)(300%)

+ 1(200)(300)(200*]

10-34.

10-35.
10-37.

10-38.

10-39.
1041

1042,
10-43.
1045,

1046,

10-47.
1049,

10-50.
10-51.
10-53.

10-54.
10-55
10-57.

10-58.

10-59,
1i-61.

10-62.
10-63.

10-65.

+ [{5(200)(300)" + 200(300)(450)*
+ [=305) + (~=(75)(450)*]
= 10.3(10° mm*

V=25mm

I, = 34.4(10°) mm*

I, = 122(10°) mm*

L= [52)6Y)] + 2[56)r) + 301)2.5)]

= 4in'

¥ = 170 mm

1, = 722(10)* mm*

L = 217010 %) m?

Consider a large rectangle and a hole.
I, = 52.7(10°) mm*

I, = 2.51(10") mm*

¥ =200/, = 640in
Consider three segments.

1, = 548(10°) mm*

I, = 548(10°) mm*

1, = 914(10°) mm*

Consider three segments.

I, = 124(10") mm*

I = 121(10") mm*

I, = 2.51(10°) mm*
¥="5%=4750n.

1. = 15896 + 36375 = 52.3in*

1, = 388 in'

I, = 229(10") mm*

Consider rectangular segments,
226 mm x 12 mm, 100 mm % 12 mm, and
150 mm x 12 mm

I = 115(10°) mm*

L = 153(10") mm*

I, = 302(10°) mm*
=1

y=y

dA = xdy

L, = 0.667 in*

L. = oy

ay .1

I,, = 48 in*

dA = Jx* + 2% + ) dx

X=x
y=1
1, =312m!



10-66.
10-67.
10-69.

10-70.

10-71.
10-73.

10-74.
10-75.

10-77.

10-78.

10-79.

10-81.

10-82.

10-83.

10-85.

10-86.

I, =0333m'
L, = &bt
dA = x"dr. ¥ = x, ¥ =}
I, =107in*
I, =357in*
I, = 36.0in*
Consider three segments.
, = 17.1(10°) mm*
I, = -110in*
T= 482 mm
1, = 112(10%) mm*
1, = 258(10°) mm*
1, = —126(10°) mm*
nsider three segments.
1, = —13.05(10°) mm*
I, = 439in*
I, =236in*
e = 17.51n*
8.25in.
109 in*
= 238in*
« = 111in*
= 107.83(10") mm*
= 9.907(10%) mm*
, = —22.4(10°) mm*
o = 113(10°) mm®, (6,); = 12.3°
in = 3.03(10°) mm?*, (8,), = ~77.7°
= 82.5mm
= 43.4(10°) mm*
1, = 47.0(10°) mm*
1,, = =3.08(10") mm*
X =482 mm
1, = 112(10") mm*
1, = 258(10°) mm*
1, = —126(10%) mm*

—

e _‘--. o
L

~ ‘-._;-.

‘;-. -

v =2825in.

L =17372in'
R=12872in'
L, = 109 in*
I, = 238in*

1, = 11lin*

X = 168in.

¥ = 168in

Lo = 31.7in¢

ANSWERS TO SELECTED PROBLEMS

Lin = 8.07 in

(8,), = 45°D

(0),); = 4570
10-87. [, = 113(10°) mm*

Lys = 5.03(10°) mm*

(0, = 12.3°Y

(8,); = 77.7°2

10-89. dmn = prr(rn - ;‘r—'z)- dz

il ="k ( _r_“-)‘f-
dl. = jpm|ry P dz
L= ﬂ‘, mri

10-90. I, = m mr?
10-91. I = m"”'
10-93. dm = pw(50x) dx
dl, = 55 (2500 x°) dx
k, = 57.7mm
10-94. [, = imb®
10-95. 1, = | mb*
1097, dl. = §5:2"dz
I. = 87.7(10%) kg - m?
10-98. [ = 632slug-ft’
10-99. /, = L71(10°) kg-m’

LS + 0651.3(2)] « OfL(2
10-101. 0.5 = 16 00l o A

L=639m

lo = 532kg-m*
10-102. [. = 0.150 kg - m?
10-103. /, = 0.144 kg -m*
10-105, ¥ = G358 = 178 m

I = 445 kg m?
10-106. I. = 225 kg-m?
10-107. [, = 325g-m’
10-109. I, = 84.94 slug - ft

Iy = 222 slug - it
10-110. I, = 0276 kg -m*
10-111 [, = 0.113 kg - m?

10-113. Consider four triangles and a rectangle.

1, = 0.187d"*
10-114. [, = j5a*
10-115. y = 0.875in.. [, = 227 in*
10-117. dA = 44 — ¥) dx
I, = 2131
10-118. 7, = 0610 fr*

647



648 ANSWERS TO SELECTED PROBLEMS

10-119. 7, = 914(10°) mm* x = 0424 ft
— B 4 2!
10-121. :;;1_:;%1&-) o ‘:;,V =-122 <0  unstable
df, =1 y—“"d_r 11-27. 0 = %0°
L, = 0.1875 m* r{% <16 S0 siikie
Chapter 11 3 = 369°
s w2t AT
V= 2(24sin0) + b it
Fip = 392kN 11-29. V = 5886 cos @ + 9810 sin 8 + 39 240
11-2. 6 =0"and @ = 73.1° f = 59.0°
11-3. n=412° 11-30. W, =2751b

11-31. h = 871in.

11-5. xz = 6cosh fyr
ye=3sing £2-70>0 stable
F, = 1001b d’ .
11-6. F = 151b 11-33. V = 625¢cos 6 + 7.3575sin0
11-7. 6= 249° + 24.525a + 4.905b
11-9. v, = 2(0.2 cos ) 0= 36.1°
dyy = 0550 11-34. x = 123m
Fe= 171N 11-35. 0 = 709°
11-10. F= 60N d'v
—=1777>0
111 P = 2k tan 0 (2l cosd — k) it
11-13. yo = lsiné & =1%1*
va = 3sing v
9 =139° P 1764 < 0 unstable
it = 90" 11-37. V = —4415mgsind
1-14. m; = m(%) +202.5 cos® 0 — 405 cos 0 — 9.81 mgh + 2025
11-15. 0 - (e mg = T.10kg
1. 0= cos”'(3;) 11-38. 6 = 64.8°
11-17. yg, = 025sin6 + b &2V
Yo, = 025sin0 + a T =135>0  stable
Xe = 025cos 8 4 -0
k = 166 N/m e
11-18. F = 200N £ = 72<0  unstable
11-19. 0 = 38§° AT
11-21. y; = 0.5¢cos 0 R % 2
ya = lcosd £X=170>0 stable
Xy =lsing de-
F. = 4961 Ib 1141 V = mg(r + acos )
& Pz 10.8 Ib/ft Thus, the cylinder is in unstable equilibrium at
11-22. W = 251b o =10 {QED)
Y s 1142 h=0
11-23. x = l6in, 1A% k= \/?i
11-25. 5% = y& + 3% — 2(yc) (3) cos (90° — B) o
F=5591b 1145, v = i(h + d)

V= -“—"“"-;—'W cos fl

P
d=1

11-26. x = 05901t

v
€Y =122 >0 stable
dx=



11-46.

11-47.
1149,

11-50.
11-51.
11-53.

11-54.

d*v

0=0,—7==-126<0 unstable
der

h=135in.

¥= =%

V= W52 5 coso

d = 0.586 h

F=3512N

0=90° and 0 =sin'(5])

V = 50sin’ 6 — 100sin # ~ 50 cos # + 50

6 =318

Vv

£ - =1257 >0  stable

de-

P (b 3 ") mg

ANSWERS TO SELECTED PROBLEMS

11-85. 0 = %W0°

11-57.

‘ﬁ‘f =1524>0 stable
do

= 947°

d*v
T =1775 <0 unstable
V = 25sin*# + 15cos @
=0

d*v

P 35>0 stable

0 =725

IV

'——,- =-455<0 unstable
der

11-58. h =%

649
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Conservative forces, 579-581, 5395

potential energy and, 580-581, 595
spring force, 579-580

virtual work and, 579-581, 595
weight, 579-580

Constraints, 243-251, 259

improper, 244-245
redundant, 243
statical determinacy and, 243-251, 259

Continuous cable, 86
Coordinate dircction angles, 44-47, 80-81

Coplanar forces, 32-42, 89-93, 113, 170171,

200-236, 258-259, 263-264, 266
Cartesian vector notation for, 33
center of gravity (). 204
equations ol equilibrium, 89, 214-223
equilibrium of, 89-93, 113, 200-236,
258-259

free-body diagrams, 86-88, 113,
201-210, 258-259

idealized models, 204-205

internal forees, 204

moments of force and couple sysiems,
170-171

particle systems, 89-93, 113

procedures for analysis of. 87, 90,
206,215

resultant forces, 33-34, 170-171

rigid bodies, 200-236, 258-259

sealar notation for, 32

support reactions, 201-203

three-force members, 224

truss analysis, 263-264, 266

two-force members, 224

vector addition of. 32-42

weight (W), 204

Disks, 429-430, 443, 545-546, 5348, 559
frictional forces on, 429430, 443
mass moments of inertia of, 545-546,

548,559
Displacement of virtual work, 564-566,
582,59
Distributed loads, 183-187, 195, 354-356,
368-369, 493, 507,511-512
beams subjected to, 354-356
cables subjected to, 368-369
distributed loads and, 493, 507
flat surfaces, 493, 507
force equilibrium, 355
internal forces and, 354-356, 368-369
line of action , 493, 507
location of, 184,493
magnitude, 183,493
momenis of inertia and, 511-512
reduction of. 183-187, 195
resultant forces, 184,493
shear force and, 354-355
single-axis, 183-187
uniform, 183, 354

Distributive law, 69

Dot (scalar) product, 69-73, 81

Dry friction, 387433, 441443
angles of, 389-390, 414-415
applied force and, 388
bearings, forces on, 429433, 443
characteristics of, 387-392, 441
coefficients of (u). 389390, 441
direction of force and, 394
equilibrium and, 388. 391, 394
impending motion and, 389, 392-393,

414415
kinetic foree, 390-391, 441

INDEX 651

equations of, 89, 103, 214-223, 242,
565-566

free-body dingrams, 86-88, 113,
201-210,237-241, 258-259

friction and, 388, 391, 394

frictionless systems and, 582

neutral, 583

one-degree of freedom systems,
584-588

particles, 84-115

potential-energy and, 582-588, 595

procedures for analysis of, 90, 103, 215,
246, 583

rigid-bodies, 198-261, 582

stable, 583

three-dimensional systems, 103-107,
113,237-257,259

three-force coplanar members, 224

tipping effect and, 388

two-force coplanar members, 224

unstable, 583

virtual work and, 565566,
582-588, 595

Equivalent, force and couple systems,

160-165, 170-177, 195
concurrent force, 170
coplanar force, 170-171
moments, 161
parallel force, 171
perpendicular lines of action, 170-177
procedure for analysis of, 162, 172
reduction of forces, 160-165
resultams of, 160-163, 170-177, 195
wrench (screw), force reduction to,
173,195

Coulomb friction, see Dry friction
Couple moments, 148-153, 194, 356, 564
beam segments, 356
equivalent, 149
parallel forces of, 148-153, 194
resultant, 149
rotation, 564
scalar formulation, 148
translation, 564
vector formulation, 148
virtual work of, 564
Cross product, 121-123
Curved plates, fluid pressure and, 496

Cylinders, rolling resistance of, 434-435, 443

D
Deformable-body mechanics, 3
Dimensional homogeneity, 10-11

motion and, 3%0-391
problems involving, 392-399
procedure for analysis of, 394
screws, forces on, 414-416, 442
slipping, and, 389-393

static force, 389, 391, 441
theory of, 388

Dynamics. 3

Elastic potential energy, 580
Equilibrium, 84-115, 198-261. 388, 391, 394,

565-566, 582-588, 595
conditions for, 85, 199-200
copl {two-di

89-93. 113, 200-236, 258-259
criterion for, 582

direction of force and. 394

ional)

F
Fixed supports, 201-203
Flat plates, fluid pressure and, 495, 497
Floor beams, trusses, 264
Fluid mechanics. 3
Fluid pressure, 494-500, 507
centroid (C) and, 494-500, 507
curved plate of constant width, 496
flat plate of constant width, 495
flar plate of variable width, 497
Pascal’s law, 494
Foot-pound, unit of, 564
Force, 4, 5,8, 16-83, 84-115, 116-197,
198-261, 328385, 564, 579-581,
594-595.
See also Friction; Weight
addition of, 20-42
beams subjected to, 329-364, 380
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Mechanics, 3-7
concentrated force, 5
deformable-body, 3
fluid, 3
Newton’s laws, 6-7
particles. 3
quantities of. 4
rigid-body. 3.5
weight, 7
Method of joints, 266-279, 323
Mecthod of sections, 280289, 324,
329-336, 380
beams, 329-336, 380
centroid for, 330
compressive foree bers, 280
internal forces and, 329-336. 380
procedures for analysis of, 282, 331
tensile force members, 280-281
trusses, 280-289, 324
Mohr’s circle, 537-539
Moments, 116-197, 330, 355-356, 380, 382
axis, about an, 139-143, 194
beams, 330, 355-356, 380, 382
bending, 330, 380
Cartesian vector formulation, 125
changes in (AM), 355-356
couple. 148153, 194, 356
direction of, 118,124
equivalent (force and couple) systems,
160165, 170~177, 195
force system resultants and, 116-197
internal forces and, 330, 355-356,
380,382
magnitude of, 118, 122,124
principle of, 128-130
resultant (M), 118,125, 149,
170-171, 184
scalar formulation, 117-120, 139,
148,193
shear and, relationship of, 355-356
torsional (twisting), 330, 380
transmissibility, principle of, 124
Varignon's theorem, 128-130
vector formulation, 124-127, 140,
148,193
Moments of inertia, 510-561
arca, 512-517, 522-524, 558
axis systems, 511-517, 530-536,
550, 558
composite shapes, 522-524. 550, 558
disk clements, 545-546, 548, 559
distributed loads and, 511-512
inclined axis, area about, 534-536
integrals, 511-512
mass, 545-552, 559

Mohr’s circle for, 537-539

parallel-axis theorem for, 512-513,522,
531,549, 558

polar, 512

principle, 535-536, 559

procedures for analysis of, 514,
522,538

product of inertia and, 530-533, 558

radius of gyration for, 513. 550

shell clements, 545-547. 559

Maotion, 6, 389-393, 414-415, 429433, 441,
449, 564-566, 582, 594

displacement of virtual work,
564-566, 582, 594

downward, 415, 563

dry friction and, 389-393, 414-415, 441

dynamic response, 449

impending, 389, 392-393, 414-415

Newton's laws ol 6

rotation of a couple moment, 564

screws and, 414-415

shaft rotation, 429-433

slipping, 389-393, 441

lipping, 388, 393, 441

translation of a couple moment, 564

upward, 414
virtual. 565
Multiplicative scalar law, 69
N
Neutral equilibrium, 583
Newton's laws, 6-7
gravitational attraction, 7
motion, 6

Normal force, 330, 380
Numerical calculations, 10-11, 18-83
li ional homogeneity, 10-11
rounding off numbers, 11
significant figures, 11
vector operations for, 15-83

o]
One (single) degree-of-freedom systems,
584-588

P
Pappus and Guldinus, theorems of,
454487, 506
Parallel-axis theorem, 512-513, 522, 531,
549,558
centroidal axis for, 512-513
composite shapes, 522
moments of inertia, 512-513, 522, 588
products of inertia, 531, 558
Parallel systems, resultant force of, 171

INDEX 653

Parallelogram law, 18-19.79
Particles, 5. 84-115
coplanar force systems, 89-93, 113
equations of equilibrium, 89, 103
equilibrium of, 84-197
force conditions, 84-115
free-body diagrams (FBD), 86-88, 113
idealization of. 5
procedures for analysis of, 87, 90, 103
resultant force, 85
three-dimensional force systems,
103-107, 113
Pascal’s law, 494
Pin supports, 201-203, 239-240, 264
coplanar force systems, 201-203
three-dimensional force systems,
239-240
truss load connections, 264
Pivot bearings, frictional forces on, 429430
Planar truss, 263-289
Plates, 494-500, 507
centroid of, 494-500, 507
curved of constant width, 496
flat of constant width, 495
flat of variable width. 497
fluid pressure and, 494-500, 507
Polar moments of inertia, 512
Position coordinate, 568, 551-582, 594-595
Pusition vectors, 56-58, 81
right-hand rule for, 56
X, ¥, 2 coordinates, 56-57, 81
Potential encrgy. 580-388, 595
conservative forces and. 578-581, 595
elastic, 580
equilibrium stability of , S83-588, 595
frictionless systems, 582
function of, 581
gravitational, 580
position coordinate (g), 581-582, 595
procedure for analysis of, 385
single degree-of-freedom systems,
581,584
stability of systems using, 583-588, 595
virtual work and, 380-582, 595
Pressure, see Fluid pressure
Principle moments of inertia, 535-536, 559
Product of inertia, 530-533, 558
arca minimum and maximum
moments, 530-533, 558
axis of symmetry, 530-531
parallel-axis theorem for, 531
Projection of components, 70, 81
Pulleys. equilibrium and. 86-88
Purlins, 263
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R
Radius of gyration, 513, 550
Reactive force, 160
Rectangular components, 43, 80
Resultant force, 20-26, 33-34, 47, 80-81, 85,
116-197. 330, 380, 493, 507
axis, moments about an, 139-143, 194
Cartesian vectors and, 47, 80-80
centroid for location of, 184,
195,330
components, 20-26
concurrent systems, 170
coplanar systems, 33-34, 170-171
couple moments, 148-153, 194
cross product, 121-123
distributed loads and, 183-187, 195,
493,507
equilibrium of a particle and. 85
cquivalent (force and couple) systems,
160-165, 170-177, 195
internal forces, 330, 380
line of action, 493, 507
magnitude of, 493
moments, 118, 125, 149,
170-171, 184
parallel systems, 171
procedures for analysis of. 162,172
scalar formulation, 117-120, 139,
148,193
system moments of, 116-197
transmissibility, principle of, 124, 160
vector formulation, 124-127, 140,
145,193
wrench (screw) systems, 173, 195
Right-hand rule. 43, 56, 80, 121-122
Cartesian vector coordinates, 43, 56
cross-product direction, 121-122
moment direction, 118
Rigid bodies, 3.5, 198-261, 567-572. 594
center of gravity, 204
connected, 567-572
constraints, 243-251, 259
coplanar force systems, 200-236,
258-259
equations of equilibrium, 89, 103,
214-223,242
equilibrium of, 198-261, 565-566,
582-588, 595
free-body diagrams (FBD), 201-210,
237-241,258-259
idealization of, 5
idealized models, 204-205
independent coordinates,
567-568, 594

internal forces, 204
mechanics, 3
position coordinates, 568, 594
procedures for analysis of, 206, 215,
246, 568
statically indeterminate, 243, 246, 259
support reactions, 201-203, 237-240
three-dimensional systems,
237-257,259
three-force coplanar members, 224
two-force coplanar members, 224
virtual work for, 567-572, 594
weight, 204
Roller supports, 201-202
Rolling resistance. 434435, 443
Roof loads, trusses, 263
Rotating shafts and friction, 429-433, 443
Rotation of a couple moment, 564
Rounding off numbers, 11

S
Scalar analysis, 117-120, 139, 148, 193, 242
axis, moments about an, 139
couple moments, 148
equations of equilibrium, 242
moments of a force, 117120, 193
Scalar notation, 32
Scalars and vectors, 17-18, 79
Screws, 414-416,442
J 1 impending motion, 415
friction forces on. 414416, 442
sell-locking, 415
thread angle. 414415
upward impending motion, 414
Shaft rotation, 429-433
Shear and moment diagrams, 345-348, 381
Shear force, 330, 354-356, 380, 382
beams subjected to, 330, 354-355,
380, 382
changes in. 355-356
distnbuted loads and, 354-355
momenis and, 355
Shell elements, mass moments of inertia of,
545547, 559
Significant figures, 11
Simple truss, 265
Simply supported beams, 345
Single-axis distributed loads, 183187
Sliding vector, 160
Slipping. 389-393, 441
dry friction and, 389-393, 441
impending motion of, 389, 392-393
maotion of, 390-391
Slug. 8

Space truss, 290-293
Specific weight, 470
Spring force, 579-580
conservative force, as a, 579
elastic potential energy. 580
Springs, 86-88
constant, 86
equilibrium and, B6-88
Stability of a system, see Equilibrium
Stable equilibrium. 583
Static friction force, 389, 391, 441
Statically indeterminate bodies, 243,
246,259
Statics, 2-15
development of, 4
mechanics and, 3-7
numenical calculations. 10-11
procedure for analysis, 12
quantitics ol 4
units of measurement, 7-10
Stiffness, 86
Stringers, 264
Structural analysis, 262-327
frames, 294-322, 325
free-body diagrams for, 294-299
machines, 294-322, 325
method of joints, 266-279, 323
method of sections, 280-289, 324
procedures for, 267, 282, 290, 301
trusses, 263-293, 323-325
zero-force members, 272-274
Structural members, see Beams
Support reactions, 201-203, 237-240
ball-and-socket joint, 237-238, 240
bearing, 237-240
coplanar rigid-body systems, 201-203
fixed, 201-203
hinge, 237,239
pin, 201-203, 237, 239-240
roller, 201-202
three-dimensional rigid-body
systems, 237-240
Surface arca of revolution, 4584

T
Tensile force members, trusses, 265-267,
280-281,323
Tension and belt friction, 421-422
Tetrahedral truss, 290
Three-di ional force
113,237-257,259
constraints, 243-251, 259
equations of equilibrium, 103, 242
free-body diagrams (FBD),
237-241,259

103-107,



particle equilibrium, 103-107. 113
procedure for analysis of, 90, 246
rigid-body equilibrium, 237-257, 259
statically indeterminate, 243, 246, 259
Three-force coplanar members, 224
Time, 4,8
Tipping effect, 388, 393, 441
Torque. 117
Torsional (twisting) moment. 330, 380
Translation of a couple moment, 564
Transmissibility, principle of, 124, 160
Triangular truss, 265
Trusses, 263-293, 323-325
compressive force members, 265-267,
280,323
coplanar loads on, 263-264, 266
design assumptions for, 264-264, 290
joint connections, 264-263
method of joints, 266-279, 323
method of sections, 280-289, 324
planar, 263-289
procedures for analysis of, 267,
282,290
simple, 265
space, 290-293
tensile force members, 265-267,
280-281,323
zero-force members, 272-274
Two-dimensional systems, see
Coplanar force
Two-force coplanar members, 224

U
LS. Customary (FPS) of units, 8
Uniform distribute loads, 183, 354
Unit vectors. 43, 59, 80
Units of measurement, 7-10
conversion of, 9
International System (51) of units,
810
U.S. Customary (FPS) of units, 8
Unstable equilibrium, 583

v

Varignon's theorem, 128-130

Vector analysis, 124-127, 140, 148, 193, 242
axis, moments about an, 140
Cartesian, 125
couple moments, 148
equations of equilibrium, 242
magnitude from, 124
moments of a force, 124-127, 193
resultant moment (M) from, 125
right-hand rule for, 124
transmissibility, principle of, 124

Vectors, 16-83, 121-123. 160
addition, 18-22,32-37. 46
angles formed between, 70, 81
Cartesian, 43-55, 80-81,122-123
collinear, 19,79
coplanar forces, 32-42
cross product, 121123
division, 18
dot (scalar) product, 69-73,81
forces and, 20-42, 59-62
free, 160
line of action, 59-62, 81
multiplication, 18
notation for, 32-33
parallelogram law, 18-19,79
position, 56-58, 81
procedure for analysis of, 22
projection of components, 70, 81
rectangular components, 43, 80
resultant force, 20-26, 33-34
right-hand rule for, 43, 56, 121-122
scalars and, 17-18,79
sliding, 160
subtraction, 19

Virtual work, 562-597
conservative forees and, 579-581
couple moment, of a, 564
displacement () and, 564-366,

582,594
equilibrium and, 565-566,
582-588, 595

INDEX 655

force, of a. 564

friction and. 580

frictionless systems, 567-382

independent coordinates for,
567-568, 594

joules (J) as unit of, 564

one degree-of-freedom system, 367,
581,584,594

position coordinate for, 568,
581-582. 595

potential energy and, 580-582, 595

principle of, 563-578, 594

procedures for analysis of, 568, 585

rigid-body systems and, 567-572

spring force and, 579

stability of a system. 583-588, 595

weight and, 579

Volume., 449, 485
centroid of a, 449
revolution of a plane arca, 485

w

Wedges. friction forces and, 412-413, 442

Weight, 7-8, 204, 372-375, 470, 579-580
cables subjected to own, 372-375
center of gravity and, 204
composite bodies, 470
conservative foree, as a, 579
free-body diagrams and, 204
gravitational force of, 7
gravitational potential energy, 580
units of measurement, 8
virtual work and, 579-580

Wark, see Virtual work

Wirench (screw) systems, force reduction

10, 173, 195
X
x, ¥, 2 coordinates, 56-57, 81
r4

Zero-force truss members, 272-274
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