Notes for Professionals

Chapter 12: Enumerations

Section

300+ pages

of professional hints and tricks

Disclaimer

Goo I KiCker.Com This is an unofficial free]c blook created for educational purposes and is

. not affiliated with official C g_roup(? or company(s).
Free Prog ramming Books All trademarks and registered trademarks are
the property of their respective owners

(c) ketabton.com: The Digital Library

Contents

ADOUL ...ttt bbb bbb A bbb A bbb bbb e bbbt b e et naee 1
Chapter 1: Getting started with C LANQUAQE ...ttt 2
SYeTenile]a I il 11 o TV o T [SRR 2
Section 1.2: Original "Hello, WOrld!" in KER € ..uiiiiiieeiiiiesiieesieeesiteessteessteeestteesssseeesseesssssessssesesssssssssesssssssssssessnsesans 4
Chapter 2: COMMIENTES ...t a b s e bbb bbbt s bt s s st sae s e 6
Section 2.1: Commenting USING the PrEprOCESSON iiiviiiiiiieeieereesteerteeseesteesteesaesseesteesssessesssessssesssesssesssesssessseesns 6
Section 2.2: /* */ deliMitEd COMMENTS ...ivviiriieeicieerecreetecre et et ettt eeeeteeeeebeeeesbeesseebeessesseessesseessesseessenseessenseensenseeses 6
Section 2.3: // delimited COMMENTS ...iiiiiiirieriiriiresreerer e ee et et ereereeteereereereereebessessessessessessessessessessessessesessessessessessensens 7
Section 2.4: Possible pitfall dUe tO trIGrADNS wiviiiciiiiieiieecieeree ettt sreete e re e st e e steesbaesteebeessaesssessseessnesnseenes 7
ChAPLEr 3: DALA TUPES ...ttt sttt bbb bbbt ae st ae bbb sttt en bbbt b bt es st ntens 9
Section 3.1: Interpreting DECIANTOTIONS .uviiiivieicreeeiieeeeieeeiteeeiteessteeesreeesseeessseersseesssssesssseesssesesssasesssesessesessssessssesssens 9
Section 3.2: Fixed Width Integer TUPES (SINCE CO9) uiiiiviiiiiiieiiiieeerieesiieeesreestreesraeesseessssesssssessnssesssssessssnsesssnssnnes 11
Section 3.3: Integer tUPeS AN CONSTANTS tiiviiiiiieirieiiieesterireesieestesrteesteessessteesseesssessseessaesssesssessssesssesssesssassssesssasssenns 11
Section 3.4: Floating POiNt CONSTANTS wiiiiieeeriieeeiieeeiteeeiieesiteeesiteeesteeesseeessseesssseesssseessssessssesessesssssesessasesssesesssssannes 12
SECHON 3.5: StHING LITEIAIS wutiiiiieiiiiieeeiieeisieeesteeesteessteessreeesstreesbaesssseeesssesssssassssessssssassssessssseessssesesssesesssasenssasesssesanns 13
ChApPter 4: OPEIALOIS ...t bbb bbbt bbbt bbb b e bbb b et bt b s aeas 14
Section 4.1: RelatioNAOl OPEIALOIS wiiviiiiiirieirreeseesteeiteeseesiteesreeseestessseessaessesssessssesssesssessssesssesssessssesssesssessssesssasssasans 14
Section 4.2: Conditional Operator/TernAry OREITLONicicicceeereereeereeeereereeeereereeresresressessessesessessessessessessesseseens 15
SecCtion 4.3: BitWiSE OPEIATONS wiiiiviiiiiiieeiiieeiireesireesieessiteeesseessseesssesssssessssssesssesssssesssssesssssesssssssssssessssesssssesssssassnsne 16
Section 4.4: Short circuit behavior of I0QICAl OPEITATONS ..viiiiiieierireeerree e erreeerrreeecreeerreeesireeertresesssesesssesssseeessaeens 18
Section 4.5: COMMA OPEIOTOL tiiiiieiiiiiitreeieiitreeeeiteeeeserteeeeesbteeesessstaeessasstaeessssssreessssssneesssssssnesssssssneessssssneessnsssneess 19
Section 4.6: ArithMETIC OPEIOTONS .viiiiieiieiierieeie et e steeeteesteestessteesteesbesteessaessseetaessaesstessaesssesssessseessessnsesssnssnsenns 19
SECHON 4.7 ACCESS OPEITATONS teivrureerireersrrterireeesiretesiseeesseessseessseesssseessssesssssessssssesssesssssessssseessssesssssaesssseessssaessssessne 22
NYelaile]a R R NS V4=T0) Ml @ o=T e 1 (o] SR 24
SECHION 4.9: CAST OPEIATON wuttiiiiiirteeiriiieeeesiitteeeesirteeeesireeesssssrreesssssseeessssseseesssssseesssssssesessssssssessssssseessssssasesssssseessns 24
Section 4.10: FUNCHION COll OPEIALON tiitiiiiiriiierieritesieestesreesieestessseesseesseesseesssesseessessssesssessssssssesssesssssssesssesssesssens 24
Section 4.11: InCrement / DECIEMIENT .uiiiiiiiiiiireeeiiiieeeeesiireesssstreeessstreeessssaeessssssseeessssssasesssssseessssssssesssssssseessssssaeessns 25
Section 4.12: ASSIGNMENT OPEIATONS uuvveeerriirreeersiireeeeessirreeesssirreeessssrseeesssssseesssssesesssssssessssssssessssssssessssssssesssssraseesns 25
NYclaile]a RN S elelelo] M@)o Tie o] USSR 26
Section 4.14: POINtEr AMTNMIETIC wiiiviiiicieeiiieeeiieecree e eteeese e sete s sstteesebt e e srbaessbaeesbaeesabaeesstaeesssassstesenstessstesssenesssseesnes 27
Yoo I 1o T A [o o) RSP 28
ChApPter 5: BOOIGAN ...ttt st bbb bbb bbbt bbb bbb s bbb s st b ae b s et enas 30
NYelaiile]aNo N REUIS [aTe ISy to] oYoTo] N o N USSPt 30
NYelarile]a e W LU i alo I o [=] il = RS 30
Section 5.3: Using the Intrinsic (built=in) TUPE _BOOI iiiiiiciieiieiiicieeriee e eteesieesreesveeseesteesteesraesseessaessseessasssaeans 31
Section 5.4: Integers and pointers in BOOIEAN EXPIrESSIONS .uiiivreeerireeerireesireeeseeesirreessreeesssseesssssesssesssssesssssssssssessnns 31
Section 5.5: Defining a bool type USING TUPEAET ..uviiiiiiiiiiiicee ettt sre e e ae s sate e s sba e s sbae s sabaesssaaeeas 32
ChAPLEE 6: SEFINGS ...ttt bbb bbbt bbbt bbbt bbb b s et s antesanans 33
Section 6.1: Tokenisation: strtok(), strtok () AN STITOK S() tiveeervrererireeerireeerireeerreeerreeestreesraeeeereeesraeesresessseeensne 33
YeTenile]a N e N A Al 1o T =T e | USRS 35
Section 6.3: Calculate the Length: STHEN() wiiiiiiieeiiieeciee et e sree s sre e sstreessbaeesbaeesbaessssaessssassnssasesssessnns 36
Section 6.4: BasiC iNtrodUCHION O SIHNGS icviiveereeiiiieieesiesiteeseeseessteesteeseeesteessessssessseesseesssesssesssessnsesssesssesssesssessnns 37
Section 6.5: COPUING SIINTS uvrererrerrreeeriitreeeeiiteeeseiitreessssteeeessssreessssssssesssssssssessssssssesssssssssssssssssessssssssesssssssesessssssees 37
Section 6.6: Iterating Over the Characters iN A StHNG civiiceecceeieecee et sre e e e e s re e teesaesateebeessaesnseenees 40
Section 6.7: Creating Arraus OFf STHNGS wiviiiciiiiiiiieieeste sttt sste e st e st e teestaesbe e beesaesse e saessseesseesssessseessassssesnsenn 41
Section 6.8: Convert Strings to Number: atoi(), atof() (dangerous, don't use them)ccovceeeveerieeniierneenieenieennne 41

Section 6.9: string formMAtted AOtA FEAA/WIITE .vvivveiviiieeiieeite ettt et et e st e stessaeesrtessessreesssessessseesssesssessseesssessnes 42

(c) ketabton.com: The Digital Library

Section 6.10: Find first/last occurrence of a specific character: strchr(), Strrchr() oueeeeeeeeeceeeeeeceeceeereceerene 43
Section 6.11: Copy and Concatenation: strecpy(), STFCAT)) wevvervveereervierieenierireerreeseesreesreestesteesreeseessseesseessessseenne 44
Section 6.12: Comparsion: strcmp(), strncmp(), strcasecmp(), STrNCASECMP() covvvreeeeerrrreeeeeiirreeeeseireeeeeeereeeeens 45
Section 6.13: Safely convert Strings to Number: strtoX fUNCHONS ..viiiiiiiicieiciee et 47
Section 6.14: STrSPN AN STICSPN tivvveeiiieeiiiieeiiieeeiteeesteeesreessreesrseeesteeesssasssssesssssessssseessseessssssssssesesssnessssesessseeesssassnns 48
Chapter 7: Literals for numbers, characters and Strings ..., 50
NYlerola i I =l [oleiuale I oToTIa) a1 (=T e | KOS PRRRPN 50
YeTenilo]a N Ay e T L C=Te | USSR 50
SY=le (oA VA N @ alo e Lo (Tl 1 (=Te | Ky U TSR UUSRRNt 50
SECHION 7.4: INTEGEL TIEEIAIS uiiiciiiiiiiieeciteste st et estte st e st e st te et e e steesabe e seesseessseesbeessseesseessaasssessseessessseesteessessseenseesssenn 51
Chapter 8: COMPOUNA LITEIAIS ...ttt ettt bbb bbb 53
Section 8.1: Definition/Initialisation of COMPOUNT LItEIAIS ...ccvevveeereeiereereereereeteereereereeresresreeessesseseeseeseereeseeresresreens 53
Chapter 9: Bit=-fIEIAS ...ttt bbbttt 55
SECHON 9.1 BIE-FIEIAS 1iutiiitiieiiieiie st ettt sttt te e e st e et e e te e sttesteesbaessbesateesbaessteentaessaesateenseesssesnsessseesssesnseessaesnsenns 55
Section 9.2: Using bit-fields as SMAIlINTEGEIS .uiiiiiiciiiiiiiie ettt ese e st esbe e e e ste e be e sreesseesbeesanessseenses 56
Section 9.3: Bit-field QlIGNMENT wiiiiiieiiiiieiieecee et eertte e srre e sstee e steessateeessteesssteesbeseessesesssaessssesssssesenssessnsenesnssessne 56
Section 9.4: DONS fOr DIT-TIEIAS wiiviiiiiiiieeiieiiesit et et e e e et e et e e be e s ae e be e baessse e be e saessseesbaessseenseassaesssesssesses 57
Section 9.5: When are DIt-fIEldS USETUI? ..iiiiiiiiiiccieeeciee ettt ettt sre e e e e esereeertbeesbseeebaeesnbaeesnsaeesasasernses 58
CRAPLEE T0: AFTQUS ...ttt bbbttt as bbb s bbb s bbb e bbb e bbb st st s et st s e bans 60
Nelaile]aMIONRIBI teileIslaleMelale Nialiilo11V4lale WeTa el e U SRS R 60
Section 10.2: Iterating through an array efficiently and row-mMajor OFAErccuiicieeceerieecieeneeereecreeseesreereeseee e 61
Yoo IO R N o TV =T a1 o OSSR 62
Section 10.4: Passing multidimensional arrays t0 a fUNCHION uiiicieiicieeicieecciee sttt sre e sstr e svne s sbe e e srae e 63
Section 10.5: MUlti-IMENSIONGI AITAUS wevveeereerieiieeiieestesiteeseesseesteesseessesseesseesssesssesssassssesssessssssssesssesssssssessasssenns 64
Section 10.6: Define array and acCess Array ElEMENT ...uiiiiiiiiiiieeriieecreeerreeerreeerreeesreesesaeesbeeeseseeesseeesssessssseeanns 67
Section 10.7: Clearing array CoONteNtS (ZErOING) wiicveerrvreeeriueesiieeeerireesieeessieesssseesssseesssessssessssesssssssssssasssssesssssessnssees 67
Section 10.8: SEttiNg VAIUES 1IN GITAUS wivceereerrieerieeseesiteeseeseesiteesseessaesssesssesssessssesssessssesssesssesssesssessssssssesssessssssssesses 68
Section 10.9: Allocate and zero-initialize an array with user defined SIiZ€ ...cvvevieeecveeeciieecceeecce e e, 68
Section 10.10: Iterating through an array USING POINTEIS icuviiiieeiiieeinieesireeeiaeesireeessseeesssnesssesssssnsesssessnssesesssessnns 69
Chapter T1: LINKEA LISES ...ttt bbb bbbt bbb bbbt s s 71
Section 111 A dOUDBIY TINKEA TISt wiiiciiiiiiiieiieesieeste sttt e ste e e e s e e te e s te e ste e sbeesbeesateebeesbaeesseebaesseessseessaesssesssensseesnes 71
Section 11.2: ReVErsing A HNKEA [IST .vuiiiiieeiiieieeieeerieesiteeesteescteeeesteeesteeesbeeessseesrsteesssssesseessnsesesnsesesnseeessesssssesannsens 73
Section 11.3: Inserting a node at the Nth POSITION wiiicieiiiieiiiiiciiee et rre s sree s sre e e sreessabeesnbraessneesnns 75
Section 11.4: Inserting a node at the beginning of a siNgIY lINKEd [IStcecerirvieririierieieneeieneeeese e 76
Chapter 12: ENUMEIALIONS ...ttt et bbb ae bt bbb as bbb bbb s e b benaebans 79
NY<teuile]a 173 M TaaT ol (S =/ a 18 a al=T e 111010 [PPSR 79
Section 12.2: enumeration constant WithoUt TUDENAMIE ..ccuuiiiieiiieiiieiieecee ettt st e be e e s te e ees 80
Section 12.3: Enumeration With dUPIICATE VAIUEiccuiiiiiiciiiiiesieccieesteste et e st eteesie e s aesve e s s e saseeseesssesabeessaesssesnsean 80
SecCtion 12.4: TUPEAET BNUM ciiiiiicieieciee et e ettt eerte e et e e stee e s te e e st te e e ssteessteesbeeesasaeesabasasssasesssaessseeeassessssessnsenesseeasnen 81
CRAPLEE 13: STIUCES ...ttt sttt bbb e bbbt as bbb s bt n s b nee 83
Section 13.1: FIEXIDIE ArrQU MEMIDEIS ...iiiiiiieecieeciiesteeiteeseesteesteesttesteesteessaestaessaesssessassssesssesssessssesssssssessssesssesssaeans 83
Section 13.2: TUPEAET STIUCES uiiiciiiiieiiieieiite st et st e st este e st e e steesbaesbeebeessaesabeesaessseessaesssessseensaassseesseessaesssesnseenseens 85
Section 13.3: POINTEIS 1O STIUCES tiiiiiiiiciieeiiee ettt eciteeesteeesteeseteesstteessbteessteesbaeesssasesssasesstesesssssasssessssssssnssessnsseessssesann 86
Section 13.4: PAssing StruCtS tO fUNCHIONS viivviiiiiieiiiiiieiiieeisieessieessireessiseesveeesssneessseessssesesssesssssesssssasssssesssssnsssssessnn 88
Section 13.5: Object-based programMminNg USING SEFUCES viivvuveeiieeerireeeiiieeerireeeiteeesireeesreeesseeesseeessseessssesssesesssaesnnns 89
Section 13.6: SIMPIE AATA STFUCTUIES wuiiiiieieiiieeiieecieeeesieeesteeseteeesteessateessbaeesbtessbaessssaeessbassassasesssessnstesenseessnssessnsees 91
Chapter 14: StANAArd MALR ...t bbb nes 93
Section 14.1: Power functions - pow(), POWT(), POWI() wirueiiieriiierieeieee et et re e e e e be e re e e e ra e sste e beesrnesanas 93

Section 14.2: Double precision floating-point remMainder: fMOA]) ..veevoieeeeeieiieeeeeeieeeeseereeesseseeeessssreeessssreeessas 94

(c) ketabton.com: The Digital Library

Section 14.3: Single precision and long double precision floating-point remainder: fmodf(), fmodI() 94
Chapter 15: Iteration Statements/Loops: for, while, do-while ..., 96
SY=Tenile]a o e Yol fo Yo o NSRS 96
Section 15.2: Loop Unrolling and DUFF'S DEVICE ..iiviiiciiiiiiiiecieeiieesiee et esteeseeesveesieeseesreesseessaessseessaesnsesssesssnesssesnnes 96
SYeTenilo]a T FAYAYA oY1 ST (o Yo o N PRSI 97
SeCtion 15.4: DO-WhIlE TOOD wuiiireriiiiiiiiiieeeiieeeireessteesireeesteessteesssteesssteesssaaesssasesssaesssseessssesessessnssesssseessssssssssesesssneens 97
Section 15.5: Structure and flow of controlin @ fOr IOOD iiiiiiiiiiieiiirieceert et be e e s ae e 98
SecCtion 15.6: INFINIEE LOODS .rriieiteeieieeiiieeiiieeeiteesitteesiteeesteeessseessssesesseeesseeassesesssesesssasassssssasssssssesssnsesessessssesesssnssnnes 99
Chapter 16: Selection StAtEMENTES ...ttt 100
Section T6.1: if () STATEMENTS uiiiiciiiiiiieiiee et ettt e ssre e s sae e sbe e e s bae s sabaessabaessataessbseessbaeesssaeessbaeesstnessssessnssassnssnesens 100
Section 16.2: Nested if()..else VS if().€lSE LAAAEL ..uiiviiiiiiriiicieesiesieesieeste st eseestessveesesesre e teesaaesbeessaesssesseensnens 100
Section 16.3: SWItCh () STATEMIENTS cicuiiiiciiecieeeciee e cee e e erre e etre e s tee e e treeebeeestaeessteessteesasseesseesssesesnsaeesseeesnseennne 102
Section 16.4:if () ... else StatemMeENtS AN SUNTAX ccviivieiiieeiieiieeireeseesreeiteeseeesteesreesaeebeessaessseesseesseesssessseesseesnsenses 104
Section 16.5: if()..else Ladder Chaining two or more if () ... else StAteMENTS cviviircreereeriieceerreseee e 104
Chapter 17: INIIANIZATION ...ttt bbb bbbt bbbt naes 105
Section 17.1: Initialization Of VArIADIES 1N C ..ueveecieeecieeecieeesiee et e ssteeesetteessbeeesteeesateesssteessstaesstesssseessnseesssessssesennes 105
Section 17.2: Using desSigNated iNITIANIZENS ..viiiiiicieeieeiieeteeieeseesiteesteeseessteesteesssesssessaesssessseesssesssesssesssssnseesssesnses 106
Section 17.3: Initializing structures and Arrdys Of SFTUCLUIES .uiiivuveeiiieeerreeerreeetreeerteeeereeesreeesereeesareeessreesssesensnes 108
Chapter 18: Declaration VS Definition ...t 110
Section 18.1: Understanding Declaration and DefINItION ...uiiiceeieciiiicieeeiieeeciee e scieesstre e sveeesiee e sveessaeesssseesnns 110
Chapter 19: CommaAnd-liNe ArgUMENTS ...ttt 111
Section 19.1: Print the arguments to a program and convert to integer VAIUESccveeceevieesieecieenee e eieesiee s 111
Section 19.2: Printing the command liN€ OrQUMENTS .iiicieeeeieeiiieecireeccieeeereeeereeesre e e ereeerareessreesbaeesseeessseeesaseees 111
Section 19.3: UsSINg GNU GETOPT TOOIS uuiiiiiieiiiiiriiiiieiiieeeiteesstteesstteesstteessveeestaesssaeesssesesssesssssasesssnssnssessssenesnseessnsens 112
Chapter 20: Files ANd I/O StrEAMS ...ttt ss s saesaens 115
Nleilela B ONRIO oI alel e MV a 1(=T (o XNl [RSP 115
SeCtiON 20.2: RUN [DFOCESS wieeiieerrreeeeiirrreeseiiteeeessisteeesessssesesssassssesssssssssssssssssessssssssesssssssssessssssesesssssssssssssssnsessssssnesss 116
Y=Tenile]a 001 TR oY) ST 116
Section 20.4: Get lines from a file USING GEHNE() civiiieirieeiiieieeste ettt r e e be e e e s ae e re e s rae e be e raesanas 116
SYeTenile]a oA O RSTil £ Y elo a1 120
Section 20.6: Read lIN€S frOM G fIlE wiiiiiiiiiiiiiiiiiiiie sttt e erre e sae e srtre e s be e e sbe e e sabaessateesbaeessseeessbaessssaessssessnssens 121
Section 20.7: Open and Write 10 A DINAIY fIl€ iiiiiiiciiiiiiiie ettt see e e sbe e s ee e sae e e e satesbeesraesanesnns 122
Chapter 21: Formatted INPUL/OULPUL ..o ssssssssssssssssssssssssesssssssssssssssssans 124
Section 21.1: Conversion Specifiers fOr PrINTING wiiviiieeeciee et srre s e e ssree e sreeesateeessbeesssseeessseesseessnsens 124
Section 21.2: The printf() FUNCHION .uiiiiiieiiiiieiireesieeesieessieessiieessireesstaessbeesssaeesvaeesssasssasasssssesssssessnssesssssnssnssessnsens 125
Section 21.3: Printing fOrM AT fIAGS wivviieiiieiieiieisiesieece et este et stesreesteesaesreesteesstessteessaessseessesssassnsesssessssesssesssensns 125
Section 21.4: Printing the Value of a Pointer t0 an OBJECT .uiiiiiiiiiiiicieeceeectee et ere e sree e eree e sbe e e sree e snree e 126
Section 21.5: Printing the Difference of the Values of two Pointers to an ObJECt ...uicceeceeeieeceeniecieeceecreeaenn 127
Section 21.6: LENGIN MOGITIEIS viiiiirciieiieeiieeieerte et et e st e ereesteesaeste e teesssesbeesssessseesaesssessseesssesssesssaesssessseenseesssenn 128
ChAPLEr 22: POINTEIS ...ttt st bbb s bbb bbb e bbb as bbb e bt n e b e 129
SY=Tenile]a 0222 Rk (@Yo (8]t 11T S 129
Section 22.2: COMMON EITOIS wuiiiivteeerreeesreessaeesiseeesssaeesssessssseesssessssssesssseesssssssssasesssssssssesssssassssessssssssssassssasssssees 131
Section 22.3: DereferenCing G POINTEL ...iiciiiiiiicieiciesiesiieeseeseesteesteesaesteesseesasessseessessssessseessessssesssesssessssesssassneans 134
Section 22.4: Dereferencing a POINTEN 10 O STIUCT uuiiiiiiiiiiieeiiieecciesccieesstteestee e ete e e e te e e sateessateeesraessseessnbasssnsneesnns 134
SeCtion 22.5: CONSE POINTEIS wuviiiiieeiirierireesiieeisiieeesseessiseesssessssessssaeessssessssasssssesssssessssssssssssssssessssssssssesssssasssssassssns 135
Section 22.6: FUNCLION POINTEIS .uviiiicieiriieeriieeriieeesiieeesieessteesssseessssessssssessssessssasssssesssssesssssesssssesssssesssssesssseessssesssnses 138
Section 22.7: Polymorphic behaviour with VOId DOINTEIS ..uuiiiiieiiiiieciieeccite e streesree e ste e esete e serae e s saae s sbaeesbeee s 139
Section 22.8: AAdress-0f OPEIrAIOr (&) iiiiiiiiiiieeiieiireeieeieesiteeseesressteeseesste e saessaessseessaesssessseesssesssesssesssesssesnses 140

Section 22.9: INHIANZING POINTEIS uvviiiiiiiiiieiiiiiiieececrtee e cesree e e eesrre e e esabeeeesesabeeeessesbeeeesessbasseessssseseesesssassesssssseeessssres 140

(c) ketabton.com: The Digital Library

Section 22.10: POINTEL 1O POINTEE wiiiiiiiieeeieeiiieeeeeiieeeeesireeeseectaeesseeateeeeesssseeessssssseesssssseaessassesessasssnsessssssnsesessssenesans 141
Section 22.11: void* pointers as arguments and return values to standard fUNCLiONSeeecevcvveeeeeicveeeeeenveeeeen. 141
Section 22.12: Same Asterisk, DIfferent MEANINGS civiiveerieriieeieerieeieeseesteeseesaesteesreesseeesseesseessessseessessssesssessses 142
Chapter 23: SEQUENCE POINTES ..ottt bbbt bbb bbb bbb as bt a s 144
Section 23.1: UNSEQUENCEA EXPIESSIONS weerireerereeerieeesireeesiseeesiseesissessssssesassessssesesssessssssssssessssssessssessssssesssssssssesssnses 144
Section 23.2: SEQUENCEA EXPIESSIONS tivvveeerreeerreerirreesisreesiseesrisesesssessssesssasssssssssssesssssesssssesssssesssssssssssessssasessssessns 144
Section 23.3: Indeterminately SeqUENCEd EXPIESSIONS iivvieiirererireeerireeerireeerveeiirreeesseeersseresssesesseserssesessseessssessssens 145
Chapter 24: FUNCHION POINTEIS ...ttt sttt bbbt bbb 146
YeTenilo]a 2 N Rl [a} (@Yo (6T o1 11T USRS 146
Section 24.2: Returning Function Pointers from a FUNCHION .iiiviiiiiiiiiiieciieecriee e sreessinessvresssinessveessvnesssvae s 146
SECHON 24.3: BESE PrOCHICES witiircieiiireiiiiieriieesiteessiteesiseessseessseessssessssseessssessssessssssessseesssessssssessssessssssesssasssssassssses 147
Section 24.4: AssignNing A FUNCHON POINTEL wiiiiiiiiieiiiiiiee s cciee e estree s ssttee e s ssivaee e s ssavaeeesssavaneesessssanessssssanessssassneessns 149
Section 24.5: Mnemonic for writing fUNCHION POINTEIS .iiiiiiiiiiiiiieeiiiecerre e esiee e sree e e ssrreessraeessbaessssneesarasenavans 149
SECHON 24.6: BASICS tuvveerveerrieernireesireessteesistesssseeesssesssseesssesssssesssssessssssesssesssssesssssessssseessssesssssesssseesssssssssseessssessssses 150
Chapter 25: FUNCLION PAFAMELEIS ...ttt bbbt 152
Section 25.1: Parameters are passed DY VAIUE ...iiicciieiciieiiiieccieeciieeestteessttessteeestsessaveessetaesesteessssesssssesssessssenean 152
Section 25.2: PAssing in Arrays 10 FUNCHIONS tivvuiiiiiriiiieeeiiiiieeessiieeeesssirreeesssrreeesssssssesesssssseessssssesesssssssesssssssseessns 152
Section 25.3: Order of function PArdmMeter EXECULION .uiiiviiicieiieerieecieeneesreesreeseesteesteesaeseeesseessnesseessessssesnsenses 153
Section 25.4: Using pointer parameters to return MUltiple VAIUESuvieiieeiiieeciee et siee e sveeseiveeeeneeeens 153
Section 25.5: Example of function returning struct containing values with error Codesvvveeenveeenreeennnen. 154
Chapter 26: Pass 2D-arrays t0 fUNCLIONS ...ttt ans 156
Section 26.1: Pass d 2D-Array t0 G fUNCHON uiivciiiciieiieiieerieestesieesieestessteesteesetessteestaessseesteesssessseessessssesssesssassnsenns 156
Section 26.2: Using flat Arrdys AS 2D QITAUS wivcvveeerieeeireeesiieeaiseessseeessseessssssesssssssssssesssssssssessssssssssesssssesssssssssssessns 162
Chapter 27: Error hANAIING ...ttt bbbt bbbt sanaee 163
SECHON 271 EITNO tviiiieeeriireesireessireeesseessseessseessseeesssseesssesesssesessssessssesssssessssseesssseesssseesssesesssasesssesssssesssssessssessssseesns 163
Y=Tet 1o a I (=Y 0 PR 163
YeTenilo]a I o 1=Ta o] ST 163
Chapter 28: Undefined DENAVION ...ttt st 165
Section 28.1: Dereferencing a pointer to variable beyond its lifetimecccveceeiieiciieceecie e ereens 165
Section 28.2: Copying OVErlaPDING MEMIOIU tiiiiveeeceeerireeesireeerireeesseesssseesssssesssseesssesesssssesssssssssessssssssssssssssssessssessnn 165
Section 28.3: SIgNed INTEGET OVEITIOW viiiiiiiiiieeiiieesiteeerie s seesssiee s sree e sbeeeseteessbteesbasessaaessbaeesssnessssassnssessnssessnns 166
Section 28.4: Use of an uninitialized VAMADIE ...uiiciieiieiieecieecie ettt esteesreesreesteesereesteesraesssessseessaesssesssessnnenns 167
SECHON 28.5: DTG FOCE cutiiietreeeiieeeiteeeittee sttt esiteeesteeessteeessesesastesssesessaessssasessesesssesssssesssssessnssessssssesnseeesssesesnseesnnns 168
Section 28.6: Read value of pointer that WAS freed it ssee e s srae s sbae e stae s 169
Section 28.7: Using incorrect format specifier in PriNtE ..viicvee e cee et sreeesreeesereesnsreeeenas 170
NYelaile]a W2 e e N4 o Yo LUy daaTe T L C=Tuo | R 170
Section 28.9: Passing a null pointer to printf %S CONVEISION ...uiiciciieciecieecieeieestee e esre e ere e ae e e e e saeeaeas 170
Section 28.10: Modifying any object more than once between two sequeNCe POINTS ...ecccveerreereeenreeneeeveenreenns 171
Section 2811 Freeing MEMOIU TWICE ciiiiiiiieiiiiiieeeesiiteeeeesitreesesitteeesssateeeeesssseaeesssssaseesessssesessssssseessssssassssnssenesannns 172
Section 28.12: Bit shifting using negative counts or beyond the width of the tUpeccecveveevieecieesiecieeeeeen, 172
Section 28.13: Returning from a function that's declared with *~_Noreturn® or ‘noreturn” function specifier
... 173
Section 28.14: Accessing memory beyond allocated ChUNK uviiiicrieiieiiicrecctee et ereesaeesreeseesane s 174
Section 28.15: Modifying a const variable USING O POINTEE .iiiiiieiiiieeiieeeiieeeieeecieeeeieeesreesssreeesreessseesssesssseeesnns 174
Section 28.16: Reading an uninitialized object that is not backed by MeMOIY ..uecveecieecieccieeieecie e 175
Section 28.17: Addition or subtraction of pointer not properly boundedccceevieeieenieecieeneenie e 175
Section 28.18: Dereferencing A NUIL POINTEE civiiiiiiieeiiiieicieeccieeerte e estte e svre e srae e sbaeesbee e sabaeesnteeesstaesnsteeessenesseassnsens 175
Section 28.19: Using fflush 0N an iNPUT STFEAM .uuieiiiiiiiciieieesie ettt eveesre e s reesbe e ae s ae e beesaneesbeesraesaneenss 176
Section 28.20: Inconsistent liNkage Of IdENTIfIErS ..iiiviiicieiiiiiiricree et see e e sbe e sraesreesbaesaneens 176

Section 28.21: Missing return statement in value returNing fFUNCHION wuueee e 177

(c) ketabton.com: The Digital Library

NYelauile]a N2 N A A D1V IS (o) al oYU 14 =Y o o NS 177
Section 28.23: Conversion between pointer types produces incorrectly aligned resultccceeevieeviieecnneennns 178
Section 28.24: Modifying the string returned by getenv, strerror, and setlocale functionscceeevveeevnveennnen. 179
Chapter 29: Random NUmMber GeNEration ...ttt 180
Section 29.1: Basic Random NUMDBbEr GENEIATION .iiiuiiiicieiiiieeecieeesteecrtie e ettt e estre e e sbeeeetaeesbeeesteeessteessssesesssaessses 180
Section 29.2: Permuted Congruential GENEIOTOr ...uiiiiiiiiiriiiieeiiieeeireeesreessieeessseeesseesssseessssesssssessssnsessssessssassssnns 180
Section 29.3: XOrshift GENEITTION viiivieeerirererieeerreeeieeesireesireeerireeesiseeersesessseesssseesssssesssssesssssssssesesssesssssessssssssssessnns 181
Section 29.4: Restrict generation 10 O QIVEN FONGE ciicveeeiiicirreeeeiiireeseeiireeeesisreeeessseeesssssseeesssssssseesssssssesssssssneses 182
Chapter 30: Preprocessor ANA MACKOScccceiiieieiiinse st sssssssessssessssssssssssssessssesens 183
Section 30.1: Header INCIUAE GUUAIAS ..iiiiiciieiieiieeiieeceeeteesteestesteestaesssessseessaesasesseesssesssesssessssssssesssessssesssesssesssenns 183
Section 30.2: #if O 10 DIOCK OUt COUE SECTIONS .vviiiireeeeireeeririeerireeerireeesreeertreeestreesbeeessseeessaeessesesssesssssesessssesssseesans 186
Section 30.3: FUNCHION-IIKE MOCIOS ..uviiiiieeiiieieiieesiteesiteeesteeesteessteeessteesssaeessseeessbaseesseeesssaeasstesesssesenssessnsensenseeesnes 187
Section 30.4: SOUICE fil€ INCIUSION .uiiiieeiieeiieereeiieesteeiteesteesseesseesseessseeseesssesssessseesssessseesssessssesssssssesssesssessssesssesssasns 188
Section 30.5: Conditional inclusion and conditional function signature Modificationeecceeevceeerireeeniveeennne. 188
Section 30.6: __cplusplus for using C externals in C++ code compiled with C++ - name manglingccee... 190
Section 30.7: TOKEN DASTING wiviiierieiteeiresiieeieesteeiteeseesteesteessaesseesseessseesseessaessseessaessssassesssassssesssessseesssessseesseessennses 191
Section 30.8: PredefiNEd MOCIOS .iiiiiiiiiieiriieiieesieesiessreestestessieessse s seessaessseessaesseesssesssessssesssessseesssesssessseesssesssessses 192
Section 30.9: VariadiC ArguUMENTS MIGCIO wiiiiueeerreeeesieeesireeesteeesteessteeessseesssesssssesesssssesssesesssssesssesssssssssssssssssssssenes 193
Section 30.10: MACIO REPIACEMENT iuiiiiieiieiiieeieerteete et eseeeteesteestaeeseebeesssessbeesaessseesseesssessseessaesssessseesssesssennseen 194
Section 30.11: ErTOr AIFECHIVE wiiiiiieeiieeeeieeesiree ettt e esteeeseteeesbeeesteeestsee s ssesesaeessaeasasasessasesssesesssasassseessseeesasessesesnrens 195
NYelaile]aNCION R H O] {=VAX@! = HinaTol[<Ta al=Tnl (o] 1le]a N 196
Chapter 31: SignNAl hANAIING ...t s s st eee 199
Section 31.1: Signal Handling With “SIGNAI0)” ciceeiieeieeieeeieeieesee st e esre et e eseesressbeessaessbesssaesssessseessaesssesseesssesssean 199
Chapter 32: Variable ArguUMENTES ...ttt bbb naee 201
Section 32.1: Using an explicit count argument to determine the length of the va_list ...ccceeveeievieeeccieeccienens 201
Section 32.2: Using terminator values to determine the end of VA _[ISt .uueiievciveiiieiiieeecereec e 202
Section 32.3: Implementing functions with a printf()’-like INtErfaCecvvviiriiiriieiieciececece e 202
NYelaile]alc YR N6 S Tale Mol (o TanaTe i uiy 11110 U 205
ChAPter 33: ASSEITIONocoooiieicee ettt sttt b bbb bbb bt a bt ae bt n et naebas 207
SeCtion 33.1: SIMPIE ASSEITION wieiivieiiiieeiiieeeiiteeeiteeeiteesireesbeeesstaeesbeeesstaeessseessstesssssesssseessssnsessssessssesssssessssesesssesans 207
SECHON 33.2: STATIC ASSEITION wiiiiiieierieeiiteenitee sttt esireeessreeesreesssteesssseessseeesssseessseessssesssssesssssessssseessssessseessssaeesssasenss 207
Section 33.3: ASSErt ErTOr MESSUUES wiiiiicrrirerieiirieeeeeiiteeeeeeirtreesesasaeessessseeeessasseesssssssssesssssssssessssssssesssssssessssassnesssnns 208
Section 33.4: Assertion of Unredchable COOE iiiiiimiiiiiiiiiiiie e ccire e sreessieessteeesrte e sbreessaaessbaesssnessasesssssesssssaeen 209
Section 33.5: Precondition adnNd POSTCONAITION tiivvveeeiieeiiirererireeerireeerireeesreeessreeeseeesssaeessesesssesessesersesesssesssssesssssees 209
Chapter 34: GENEriC SEIECLION ...ttt bbb bbb bbb e 211
Section 34.1: Check whether a variable is of a certain qUAlIfied tUDPE .iiivveeecieeicieeeeee e 211
Section 34.2: Generic selection based on MUIIPIE ArQUMENTS ..uiiiiieeieeiiienieereesieeereecteesieesreereesresveesraeseaeenseas 211
Section 34.3: Type-generic Printing MIACIO ..uviicveerreeerieeenireeenireeesreesssseeesiseessseesssseessssessssassssssessssesssssesssssesssssessss 213
ChAPLEr 35: XoMOCKIOS ..ottt sttt st ae st bbb ae bbbt bbb e bt es s bbb st en et nanbans 214
Section 35.1: Trivial use of X-mMACros fOr PrINTES .iiiiiiiiiiieiiee ettt ece e e st e este e e te e e srte e sbreessbeeesataessnteesensesannes 214
Section 35.2: Extension: Give the X mMAcro as AN OrQUMENT .uiiieecieecieeiieereeiteeseesseesseesssessseesssesssesssessssesssesssees 214
Section 35.3: ENUM VaIUE AN IAENTIHIEE wuiiiiieeiirieeiireeerireeerreeerreeertreeseteeesrteeesbeeessesessresesssesessssessssessssssssssasessesenes 215
NYelaile]aleIoR: Rl @leTe [SWe=TaT=Txe L] a NS 215
Chapter 36: Aliasing adnd effeCtiVe tUPE ...t nans 217
SECHON 36.1: EFfECHIVE TUDE wrviiiviiiiiiiiiiiiiteisieessieeestee sttt e sstreestaesssbaeessbaeessbasesssaessasesesssasesssessnsseesssenssnsneesssenesssesesssens 217
Section 36.2: restriCt QUANITICATION uiiivieeiieiiirieeseesiteesteesee st eseestessteesseessseeseesssessseesseesssessseesseesssessseesseessseesseessnens 217
NYelarife]aleToN @ aleTaTe [aTe I o101 (= SRR 218
Section 36.4: Character types cannot be accessed through non-character tYpescocvvvveevieevvesieeceesvennnens 219

Section 36.5: Violating the Strict AliASING FUIES iviveeiiiiiiieiec ettt erbre e seabree e e s eabbe e e s essbaeeesesraeees 220

(c) ketabton.com: The Digital Library

Chapter 37: COMPIIATION ...ttt ettt bbbt bbb bbbt b st ae s bens 221
SY=Tenile]a 6 YA R I o TN @] a a] o1 1 1Y SRR 221
SECHON 37.2: FIlE TUDES uveeeiteieireeiiireesieeesiteeesieessteeessteesssesssssesssesssssesssssesssssessnssessssssssssesesssesssssesssssesesssessnsenssnsens 222
SECHON 37.3. THE LINKEE utiicieiiiiiieeiteeste st et e stesteesteestesteesbeeseteebeesbeesaseesbeesseessseessaesseesnsaassassseeanseesseessseensenssaennees 222
SECHON 37.4: TE PreDIOCESSOI wuiiiitieeeireeeeirteesiteeeeteeesteesisseeeasseesaseeesssesesssesassessssssssssssssssesssssesesssesssssessssesssssessnsees 224
Section 37.5: The TransIatioN PROSES .iiciiiiiiiiiiiiiieeiiieeesiessrireesseessvnessstessssaeessbesssssesssssessssesssssesssseessssasssssessnnns 225

Chapter 38: INlING ASSEMIDIY ...t bbb 227
Section 38.1: gcc Inline aSSEMDIY IN MIACIOS uviiiiieiiieiieesiesieesteessessseesteesseesseesseessessseesssessessssssssessseessasssesssesssaens 227
Section 38.2: gCC BASIC ASM SUDPOIT tiiiuiiieeiiiiireeeeiiteeeseiiteeessesutneeesssseeessssssesessessssseessssssssesssssssesesssssnsesssssssneessnnns 227
Section 38.3: gCC EXteNded ASM SUDDOI cviiiiiiiieeiieeiieeiteesteesteesteesteesseesseessaesseessessssessseessessssesssesssesssesssesssessssenns 228

Chapter 39: IdeNtifi@r SCOPE ...ttt bbbt ettt aee 229
Section 39.1: FUNCHION ProtOtUDPE SCOPE tivvuiiirriiieriiieeniiteniteesieessieessireessnteesssseesaseeesssseessessssssesssesssssesssseessssessssees 229
SeCtion 39.2: BIOCK SCOPDE wiiiiiiiiiiieiiiieeitieesitteeeiteeesiteeesiteeesstaessstessasesessseessesesasesesssesasssesesssssasstessssssssnssessnsesssssesssnes 230
SECHON 39.3: FIlE SCOPE vviiiirierireeiiieeiiiteeisieessteessisessisaeesseeessesssssesssssssssssessssesessssessssesssssesssssssssssesssseeessseessssasessses 230
SECHON 39.4: FUNCHION SCOPDE witiirureirririeririeeriteeniieeesreessiseesssseessssessssssessssessssasssssssssssesssssesssssesssssesssssessssasssssesssssassssne 231

Chapter 40: Implicit and EXpliCit CONVEISIONS ..ottt sesse st sassnaens 232
Section 40.1: Integer Conversions in FUNCHION CAlIS iivuiiiiieiiiiieiiieeciteeeetreecieeseteeestteeseveeesssaeesvaeesseeesnsassnnsessnsens 232
Section 40.2: Pointer Conversions in FUNCHON CAIlS .iiiviiiviiiiieiieiieeieeseecieesieeseesrteesveeseaeeteesseesnesseessnessnesnsesnses 233

Chapter 41: TYPE QUAIITIEIS ...ttt bbb bbbt st 235
Section 41.1: VOIGLIE VAMGDIES ..uiiiieiiiicieeseesieeceeste et et e seessteesieesteesteesseesstessseesseessseesseesssessseesssessseensessssessesssaens 235
Section 41.2: Unmodifiable (CONS) VANADBIES ..uuiiiiiiiciiecce ettt et srte s s sbre e s vre s s sba e e s ta e s e beessntaessssaesans 236

Chapter 42: TUPEAET ...ttt bbbt 237
Section 42.1: Typedef for Structures anNd UNIONS ...icceecieecieeieenieeieesieesteesreesteessessseessnessesssessssessesssessssssssesssassns 237
Section 42.2: Typedef for FUNCHION POINTEIS uiiiiiiiiiiiiniirieesteesie et esie e esieesveesreesieesbeesbeesseessbeesaeessseesseesanesnses 238
Section 42.3: SIMPle USES Of TUDEAET ..iiiiiiiiciiiccteecte ettt ettt e s te e e st e e s s e e sebte e ebae e sabaeeeabaeesnbaesnnsens 239

Chapter 43: STOrage CIASSES ...ttt sss st s e b ss s b essesss s ssessnsnes 241
SECHON 431 AULO uttiririiiiieeiiiieeesitee sttt ssteessreeesbaeesteesssseesssseesssseessseessssesesssesssssesssssesssseesssseessssessssesesssesessseessseesssens 241
Y=Tot 1o 0 T T =T |1 (=Y U PSRN 241
SECHON 43.3: STATIC wrieivueeiiiieeiiieeeiteeeiteeseteessteessteeesbaeestaeesstaessteesabaeessseessbasesssaeeassesanstesesstaesnstesenssessnssessnsesensseeesnen 242
Yoo I R R (U] oY To [AU UR 243
Y eTeni o] T T =4 £ 0 NS 243
NY<lerile]a RS XN N aln=Ye Lo i [o Yot | RO URPUR 244

Chapter 44: DeCIArQLIONS ...t ettt bbbt s as b ae bbb e bnans 246
Section 44.1: Calling a function from another C file ...t ebeeaee s 246
NYelaile]a Rz U S ale e €] le] ole] IVAe oo] 1= U 247
NY<Terile]a 2 el a1 (e Te (8 ox 1o 10 IR TR 247
Yoo I o S I U] o Y=Te [OO RO 250
Section 44.5: UsSiNg GlODAI CONSTANTS uuviiiiiieiiieeeiiieecitteeeieeeeteeesteesetreesetteesbeeesteeesabaeessteesssssesnsseessesesnseessnsesannses 250
Section 44.6: Using the right-left or spiral rule to decipher C declarationcecceecceeceeceeccieesee s e esee e 252

Chapter 45: Structure Padding and PACKINGccovniininineiniininineineneiseiseiseeseeseeseesessessessessessessessessees 256
Section 45.1: PACKING STITUCTUIES .uiiiciiiciieiiescieesiee st esteeseesteesteestaestessbeesstessteessaessseassassssssssesssessssesssesssessssesssessseenns 256
NYelaile]a RN AN IgUle (05 =3 oTo o o |1aTe RS 257

Chapter 46: MemMOry MANAGEMIENTc.oouieieieiieeieeeteteese sttt e e e esssssssss st sstssssesssssssssesens 258
Section 46.1: AIOCATING MEMIOIY uiiiciieiiieiteeieereeste et esteesteesteesteesteesseessaessteesseessaessseessessssesssessssssssessessseesssessennses 258
SECHON 46.2: FIrEEING MEMOIY tiivvirierireeerieeeriieeenreeesteeesseesssteesssseesssesesssseessseessssessssaessssesssssessssessssasessssessssasssssaeens 259
NYelaile]a Rzl Y HIat=to]|loYelo il ale TNAI=Ta aTo) oy H USSR 261
Section 46.4: realloc(ptr, 0) is Not equivalent O fFrEEDIN) wiviivieririiiririerertere sttt sttt e sbeseesresasesbesaneneesns 262
Section 46.5: Multidimensional arrays of VAriabIE SIZE ...ccuviicvieiieiecree ettt e e e e e esree e areeenns 262

Section 46.6: alloca: alloCate MEMOIU ON STACK wuuuiiiiiiiiiiiiiiecctitee et e e e e e e e e s s sesbbabseeeeeeeeseessssssssserenees 263

(c) ketabton.com: The Digital Library

Section 46.7: User-defined memory MANAGEMENT ..ivcviviieriirieeiienienieeseeesreeseeseessseesseesssessseessessssesssessssesssessses 264
Chapter 47: Implementation-defined behQVIOUF ..., 266
Section 47.1: Right shift Of @ NEQALIVE INTEGET ..ivviiiiiiiiieeeeeeeee ettt e be e s e sbeenaas 266
Section 47.2: Assigning an out-of-range value t0 AN INTEGELN .iiiiiiviieiieiieeieeieeste e sre e e e reesbeesreebeesaneas 266
Section 47.3: AllOCOTING ZEIO DULES .ivviiiiiiriiiiieiiiisieesieeste st st e stessteesteessessbeesbsesabeesaesssessseesseesssessseesseesseesseesseess 266
Section 47.4: Representation Of SIGNEA INTEGEIS .uiirieriiriierierirteieerte sttt st sreeseesteesbeesssesabeesbeesasesbeesseesasens 266
ChAPLEr 48: ATOMUCSccccovieiriieeieiee ettt sse sttt se b se st s s s s s es s b st ense st nnsesans 267
Section 48.1: tOMICS AN OPEIALOIS .ivververeerrerterterieerieseestestessesseesseseesseseessessesssesseessessasssessesssessesssessesssessesssesses 267
Chapter 49: JUMP STALEMENTS ... s s s s s s s s s s ssenes 268
SECHON 491 USING FETUIMN etiiiiieieiiee ettt ettt e sttt et e st e sttt e s bt e e sbte e sabeeesbeeesaseesanbeessasaesnbeessteesneeesaseeesasaeesnseeesaseeans 268
Section 49.2: Using goto to Jump 0uUt Of NESTEA [OOPS uerviriiriirerrierieenieneesieseesieseesseseessesseessesseessesseessesssensesses 268
Section 49.3: Using break anNd CONTINUE .iuivieriinierireerieneesieseeste st sieesie st estesseesbesaeessesasessesnsessessesnsesssensesseesenns 269
Chapter 50: Create and include header fil@s ... 271
Section S50.T INTFOTUCTION wiivciiiiieiriiriteeree st st et e st st eseestessbeestaesteesbeessaesateesbaesssessseesseesssesnseessaesssesssessssesnsesssaesss 271
Section 50.2: SElf-CONTAINMENT .iiciirierrieerierie ettt e ste st esteestesteesbeesatesteesseesatesaseessaesasesseesssesnsessseesssesasesnn 271
SeCtion 50.3: MINIMIAITU +eeveerrerreerrerieerrerieeseseesteseesteseessesseessesseessessessessesssessesssessesssessessessesssessesssessesssessesssessesnsessens 273
Section 50.4: Notation aNd MISCEIIANY ..ievierrierreerieriieirieeste st eseeste et eseesteesteesseestesssaesssesssessseessesssesssaessesssessss 273
SecCtion 50.5: IHEMPOLENCE ...vivciieriierieriieente st et et e st estteste s teesbeesatesbeesseesabesbeesseesaseessaesstesasessseesusessessseessessseenne 275
Section 50.6: Include What YOU USE (IWYU) weeciirieriirienieniesieetesieseesieste st seestesssesseeseessesssessesnsessesmsessesnsessesnsessenns 275
Chapter 51: <ctype.h> — character classification & conversioncenieceneenn. 277
SeCtioN S1.1: INTFOTUCTION uvivieiiiiiiiieieesiee sttt et e sttt e st e ste e beesaaesteesbaesatessbeesbaesasessbeesssesaseeseesssesasessseesssesnsesnsaenas 277
Section 51.2: Classifying characters read from A STFEAM ..iviivieieniriienenienestene st stesresresrestesiessesreessessesanes 278
Section 51.3: Classifying characters from G STING wivuieceenieicieiiierie et see e eseeseessreeseeseessseessaessesssesssnsssesnne 279
Chapter 52: Sid@ EffECES ... s s s s s nies 280
Section 52.1: Pre/Post Increment/Decrement OPEIATOIS uiiviiveeerreerreesreresreeetessesessesessessssessesessesessessssessssessssenes 280
Chapter 53: Multi-Character Character SEQUENCE ...t ssessssnes 282
SECHON 531 TIIOIADNS tvteriereeriereetereestesieesteseesseseestesseessestesssessesssessesssessessessesssessessensesssessesssessesssensesssessesssensessaen 282
SECHION 53.2: DIGIAINS tivuttecieertiritieiteestesiteesaeesessseesssesseesseesssessseesssesssesssessssesssesssessssesssesssessssesssesssesssessseesssesssessses 282
Chapter 54: CONSLIAINTSccooeieieeieeee ettt s s st s s st st s s s s st st enssnsessesens 284
Section 54.1: Duplicate variable NamMes in the SOME SCOPE ..ivvirriiiriiriierrieenienieesee e ere et e seessreeseestessbeesaaesaees 284
Section 54.2: Unary arithmetiC OPEIATOIS .iuivciireriiererierienienieetesiestesiestestesstessessessessessesssessesssessessaessesssessesseenss 284
CRAPLEN 55: INNNING ...ttt s b es e st ees 285
Section 55.1: Inlining functions used in More than 0NE SOUICE file ...civiiivieiiiiiiiiiiicreccie et 285
CRAPLEE 56: UNUONS ...ttt ss st s sttt s s s st s st sses st ssensensensesens 287
Section 56.1: Using unions tO reinterpret VAIUEScocvevvierceerieniieesieentesieesieestesseesseessessseesseesssesssessssesssesssaesnesas 287
Section 56.2: Writing to one union member and reading from ANOhEr ...c.ccvvciereevienierieneeieneeeeseee e 287
Section 56.3: Difference between StruCt AN UNION ..iicceevieicieineenieiieinee e sseeseeseessieesieeseessseessesssessseesseesssesnnes 288
Chapter 57: Threads (NALIVE) ...ttt ssse sttt sssssssssssssssssssssssssssssssssssans 289
Section 57.1: Inititialization DY ONE TArEAA ...iviiiiiiriiriieiierieeeere sttt et e e e st s beesbee s beebeesssesaseesnens 289
Section 57.2: StArt SEVEral thrEATAS .iiiiiiiiiiiiieeste ettt sr st e e s s e s e e ste e s be e baessaesaseessaesssesssaensaesnseenseassnens 289
Chapter 58: MUILItRreQdiNg ...t bbb bbb ans 291
Section 58.1: C11 Threads SiMPIle EXAMIPIE ...ivciiiriiriiiiieerierieerteste et esee st sseesee s e esseesssessbaesseesssesssessssesssessseesnses 291
Chapter 59: Interprocess CommuNIiCAtion (IPC)ccccooeiireieneeesss et ssssssssessessesns 292
SeCtioN 59.1: SEMUPNOIES uvivuiiriireeriirienitrtese st esiesteste st estesttestesssebestaessesssesesssessesssessesssensesssensesssensesssensesssensessaenss 292
Chapter 60: Testing framMEWOIKS ...ttt sasss 297
Section 60.1: UNity TEST FrOMEWOIK ..ivceerereeriereesiereesieseesieseestessestesseessessessessesssessessessesssessessessesssessesssessesssessens 297
SECHION 60.2: CMOCKQO tiivuierieirieerieriieesitesitessseessessseesseesssesseesseesssesssessssesssessseesssesseesseesssesssessssessesssessssesssesssaessesssees 297

SECHION 60.3: CIPPUTEST wrrriiiiiiiiiiiiiiiirteeeee e ieesibrbeeereeeeeeeessssssbarararrreeeeesesssssssssssssssseeessessasssssssassssseeeessensssssrrrsnneees 298

(c) ketabton.com: The Digital Library

Chapter 61: VAIGEING ...ttt sttt sttt s sttt sttt st sss st st ssssssssnens 300
Section 61.1: Bytes [0St -- FOrgetting 10 frEE cuiiiviiiiiiie ettt et e e tee s eerare e e s rre e sateeesbaeesanaeesnseas 300
Section 61.2: Most common errors encountered while USING VAIGrNG ..eccvceveeeeiiiieeeeeieeee e eeeireeeeeevneeeeenes 300
Section 61.3: RUNNING VAIGMNGA uiiiciieiieeiieiieeieesiteesteeseestessteesseessessseesssessesssessssssssesssessssesssesssessssesssesssassssesssesssassns 301
SYeTenile]a oY K25 Ne o [TaTe I [0 T S U 301

Chapter 62: Common C programming idioms and developer practices ..., 302
Section 62.1: Comparing literal anNd VAMADIE ..uiiiiieiiiiieiiieeeireeseessieeesreesrteesseeessvseessbaesssaessssesssssessssensssseessnsens 302
Section 62.2: Do not leave the parameter list of a function blank — USE VOId ...cccveeeciveeeiieecieeenreeerree e 302

Chapter 63: COMMON PItFAIIS ...ttt bbb 305
Section 63.1: Mixing signed and unsigned integers in arithmetic OpPerationscccceeecveeeeceeecceeeccreeesreeeeeee s 305
Section 63.2: Macros are simple String replACEMENTS .iiviiiiiiiiiieeiiieeeiree e e e ssrreesrreeesteeesrbaesssseessssessseessssees 305
Section 63.3: Forgetting to copy the return value of realloc iNt0 A tEMPOrAIrY ..uiiccveeecveeeireeeeireeenreeesireeerreeenns 307
Section 63.4: Forgetting to allocate one extra DULE TOr N ...c..cveieiieieiiicecececrecreeteee et ere v v ere e 308
Section 63.5: Misunderstanding ArfOY ECAY .iiueieeecreereeeiieeiieesresteesieessessseesseessesssesssasssesssesssassssesssesssssssssssessns 308
Section 63.6: Forgetting to free memory (MEemMOryU IEAKS) oviiiiiireeirieieeereerreecee e eereeereereesreeereereesaeesaneenseensns 310
Section 63.7: COPUING tOO MIUCK ..uiiiiiieeiieeeiieeeitieeecteesitteesebeeessteeesbeeesteeesstaessteeessesesssessssasssssessnsesessesesssesenseeans 311
Section 63.8: Mistakenly writing = instead of == When COMPANNG .iiceiiieceeneeiieceesee e sreeseee e 312
Section 63.9: Newline character is not consumed in typical scanf() Call .iiviiiviieriieriinieerierreeee e 313
Section 63.10: Adding a semMicolon t0 A HAEFINE iouiiiiiiiice et ate e s eree e e raeeeans 314
Section 63.11: INCAUIOUS USE Of SEMICOIONS .uiiiiieciieiieiieeieesee e eteeseesteesteeseesreesbeesreesstaesbeesaseestesssaesasesnsessseeanes 314
Section 63.12: Undefined reference errors When INKING veecceecceeeeciieeenieeciieeeeeeeesreesseeesssneesseeessesssssesssssesssssees 315
Section 63.13: Checking logical expression AgainSt TrUE' ..iiiiieicieiiiiee ettt esteecsee e e ssrre e ssrre e ssbae e srae s s veesenes 317
Section 63.14: Doing extra scaling in POINter ArithMETIC uviiiieiiiieeeiieeerree e ereeesreeesreeersreeersreesnsveeensees 318
Section 63.15: Multi-line comments CANNOt D& NESIEA ..uiiiciiiiiiiiicie e eree e ere e e re e esbe e e sareeessreeeans 319
Section 63.16: Ignoring return values of library fUNCHIONS .iiiiiiiiiiiiieiciec sttt ve e s 321
Section 63.17: Comparing floating POINT NUMDEISiiceeiiieieeiesie ettt ereeseesteeste e sbe e e teesve e s e e saeebeesraesaneenss 321
Section 63.18: Floating point literals are of type double by defaultcciiivieciieiiecieccreeeeceeere e 323
Section 63.19: Using character constants instead of string literals, and VICE VEIrSA ...uueievvcveeeeercreeeeeenreeeeeeinnns 323
Section 63.20: Recursive function — missing out the base CONAItION ..uiicviiceeiieiciecreese e 324
Section 63.21: Overstepping Array DOUNAAIES ..uiiicieeiiieeeiieeeiieesiteeesiteeesiseeesseeesseeessseesssssessssessssssesssesssssesessseeens 325
Section 63.22: Passing unadjacent arrays to functions expecting "real” multidimensional arrays 326

CPEAILS ...ttt et b bbb b A bbb A bbb bt bbbt et b et s e tns 328

YOU MAUY QISO LIKE ...ttt et e e et et et et e e e e e e et e e et esesseseseeaeeseaseseasssesseseaseseassaseseasesesseseaseneaseseesenes 333

(c) ketabton.com: The Digital Library

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:
https://goalkicker.com/CBook

This C Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end
of this book whom contributed to the various chapters. Images may be copyright

of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official C group(s) or company(s) nor Stack Overflow. All
trademarks and registered trademarks are the property of their respective
company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

GoalKicker.com - C Notes for Professionals

(c) ketabton.com: The Digital Library

Chapter 1. Getting started with C
Language

Version Standard Publication Date
K&R n/a 1978-02-22
C89 ANSI X3.159-1989 1989-12-14
C90 ISO/IEC 9899:1990 1990-12-20
C95 ISO/IEC 9899/AMD1:1995 1995-03-30
C99 ISO/IEC 9899:1999 1999-12-16
C11 ISO/IEC 9899:2011 2011-12-15

Section 1.1: Hello World

To create a simple C program which prints "Hello, World" on the screen, use a text editor to create a new file (e.g.
hello.c — the file extension must be .c) containing the following source code:

hello.c

#include <stdio.h>

int main(void)
{
puts("Hello, World");

return 0;

Live demo on Coliru

Let's look at this simple program line by line

#include <stdio.h>

This line tells the compiler to include the contents of the standard library header file stdio.h in the program.
Headers are usually files containing function declarations, macros and data types, and you must include the header
file before you use them. This line includes stdio.h so it can call the function puts().

See more about headers.
int main(void)

This line starts the definition of a function. It states the name of the function (main), the type and number of
arguments it expects (void, meaning none), and the type of value that this function returns (int). Program
execution starts in the main() function.

The curly braces are used in pairs to indicate where a block of code begins and ends. They can be used in a lot of
ways, but in this case they indicate where the function begins and ends.

puts("Hello, World");

This line calls the puts() function to output text to standard output (the screen, by default), followed by a newline.

GoalKicker.com - C Notes for Professionals 2

(c) ketabton.com: The Digital Library

The string to be output is included within the parentheses.

"Hello, World" is the string that will be written to the screen. In C, every string literal value must be inside the
double quotes "...".

See more about strings.
In C programs, every statement needs to be terminated by a semi-colon (i.e. ;).

return 0;

When we defined main(), we declared it as a function returning an int, meaning it needs to return an integer. In
this example, we are returning the integer value 0, which is used to indicate that the program exited successfully.
After the return 8; statement, the execution process will terminate.

Editing the program

Simple text editors include vim or gedit on Linux, or Notepad on Windows. Cross-platform editors also include
Visual Studio Code or Sublime Text.

The editor must create plain text files, not RTF or other any other format.
Compiling and running the program

To run the program, this source file (hello.c) first needs to be compiled into an executable file (e.g. hello on
Unix/Linux system or hello.exe on Windows). This is done using a compiler for the C language.

See more about compiling
Compile using GCC

GCC (GNU Compiler Collection) is a widely used C compiler. To use it, open a terminal, use the command line to
navigate to the source file's location and then run:

gcc hello.c -o hello

If no errors are found in the the source code (hello.c), the compiler will create a binary file, the name of which is
given by the argument to the -o command line option (hello). This is the final executable file.

We can also use the warning options -Wall -Wextra -Werror, that help to identify problems that can cause the
program to fail or produce unexpected results. They are not necessary for this simple program but this is way of
adding them:

gcc -Wall -Wextra -Werror -o hello hello.c

Using the clang compiler
To compile the program using clang you can use:
clang -Wall -Wextra -Werror -o hello hello.c

By design, the clang command line options are similar to those of GCC.

Using the Microsoft C compiler from the command line

GoalKicker.com - C Notes for Professionals

(c) ketabton.com: The Digital Library

If using the Microsoft c1.exe compiler on a Windows system which supports Visual Studio and if all environment
variables are set, this C example may be compiled using the following command which will produce an executable
hello.exe within the directory the command is executed in (There are warning options such as /W3 for c1, roughly
analogous to -Wall etc for GCC or clang).

cl hello.c

Executing the program

Once compiled, the binary file may then be executed by typing . /hello in the terminal. Upon execution, the
compiled program will print Hello, World, followed by a newline, to the command prompt.

Section 1.2: Original "Hello, World!" in K&R C

The following is the original "Hello, World!" program from the book The C Programming Language by Brian
Kernighan and Dennis Ritchie (Ritchie was the original developer of the C programming language at Bell Labs),
referred to as "K&R":

Version = K&R

#include <stdio.h>

main()

{
printf("hello, world\n");

}

Notice that the C programming language was not standardized at the time of writing the first edition of this book
(1978), and that this program will probably not compile on most modern compilers unless they are instructed to
accept C90 code.

This very first example in the K&R book is now considered poor quality, in part because it lacks an explicit return
type for main() and in part because it lacks a return statement. The 2nd edition of the book was written for the old
(89 standard. In C89, the type of main would default to int, but the K&R example does not return a defined value
to the environment. In C99 and later standards, the return type is required, but it is safe to leave out the return
statement of main (and only main), because of a special case introduced with C99 5.1.2.2.3 — it is equivalent to
returning 0, which indicates success.

The recommended and most portable form of main for hosted systems is int main (void) when the program does
not use any command line arguments, or int main(int argc, char #*xargv) when the program does use the
command line arguments.

C90 §5.1.2.2.3 Program termination

A return from the initial call to the main function is equivalent to calling the exit function with the value
returned by the main function as its argument. If the main function executes a return that specifies no
value, the termination status returned to the host environment is undefined.

C90 §6.6.6.4 The return statement

If a return statement without an expression is executed, and the value of the function call is used by the

GoalKicker.com - C Notes for Professionals 4

(c) ketabton.com: The Digital Library

caller, the behavior is undefined. Reaching the } that terminates a function is equivalent to executing a
return statement without an expression.

C99 §5.1.2.2.3 Program termination

If the return type of the main function is a type compatible with int, a return from the initial call to the
main function is equivalent to calling the exit function with the value returned by the main function as its
argument; reaching the } that terminates the main function returns a value of 0. If the return type is not
compatible with int, the termination status returned to the host environment is unspecified.

GoalKicker.com - C Notes for Professionals

(c) ketabton.com: The Digital Library

Chapter 2: Comments

Comments are used to indicate something to the person reading the code. Comments are treated like a blank by
the compiler and do not change anything in the code's actual meaning. There are two syntaxes used for comments
in C, the original /* #/ and the slightly newer //. Some documentation systems use specially formatted comments
to help produce the documentation for code.

Section 2.1: Commenting using the preprocessor

Large chunks of code can also be "commented out" using the preprocessor directives #if 0 and #endif. This is
useful when the code contains multi-line comments that otherwise would not nest.

#if @ /* Starts the "comment", anything from here on is removed by preprocessor */

/* A large amount of code with multi-Iine comments */
int foo()

{
/* lots of code */

/* ... some comment describing the if statement ... */
if (someTest) {

/* some more comments */

return 1;

}

return 0;

}
#endif /x @ */

/* code from here on is "uncommented" (included in compiled executable) */

Section 2.2: /* */ delimited comments

A comment starts with a forward slash followed immediately by an asterisk (/*), and ends as soon as an asterisk
immediately followed by a forward slash (x/) is encountered. Everything in between these character combinations
is a comment and is treated as a blank (basically ignored) by the compiler.

/* this is a comment */

The comment above is a single line comment. Comments of this /* type can span multiple lines, like so:

/* this is a
multi-Iline
comment */

Though it is not strictly necessary, a common style convention with multi-line comments is to put leading spaces
and asterisks on the lines subsequent to the first, and the /* and */ on new lines, such that they all line up:

/*
* this is a
* multi-line
* comment

GoalKicker.com - C Notes for Professionals 6

(c) ketabton.com: The Digital Library
*/

The extra asterisks do not have any functional effect on the comment as none of them have a related forward
slash.

These /* type of comments can be used on their own line, at the end of a code line, or even within lines of code:

/* this comment is on its own line #*/
if (x & y) { /*this comment is at the end of a line */
if ((complexCondition1) /* this comment is within a line of code */
&& (complexCondition2)) {
/* this comment is within an if, on its own line */

Comments cannot be nested. This is because any subsequent / will be ignored (as part of the comment) and the
first #/ reached will be treated as ending the comment. The comment in the following example will not work:

/* outer comment, means this is ignored => /* attempted inner comment */ <= ends the comment, not
this one => %/

To comment blocks of code that contain comments of this type, that would otherwise be nested, see the
Commenting using the preprocessor example below

Section 2.3: // delimited comments

Version = (99

C99 introduced the use of C++-style single-line comments. This type of comment starts with two forward slashes
and runs to the end of a line:

// this is a comment

This type of comment does not allow multi-line comments, though it is possible to make a comment block by
adding several single line comments one after the other:

// each of these lines are a single-line comment
// note how each must start with
// the double forward-slash

This type of comment may be used on its own line or at the end of a code line. However, because they run to the
end of the line, they may not be used within a code line

// this comment is on its own line
if (x && y) { // this comment is at the end of a line
// this comment is within an if, on its own line

}

Section 2.4: Possible pitfall due to trigraphs

Version = C99

While writing // delimited comments, it is possible to make a typographical error that affects their expected
operation. If one types:

GoalKicker.com - C Notes for Professionals

(c) ketabton.com: The Digital Library

int x = 20; // Why did I do this??/

The / at the end was a typo but now will get interpreted into \. This is because the ??/ forms a trigraph.

The 2?2/ trigraph is actually a longhand notation for \, which is the line continuation symbol. This means that the
compiler thinks the next line is a continuation of the current line, that is, a continuation of the comment, which may
not be what is intended.

int foo = 20; // Start at 20 ??/
int bar 0,

// The following will cause a compilation error (undeclared variable 'bar')
// because 'int bar = 0;' is part of the comment on the preceding line
bar += foo;

GoalKicker.com - C Notes for Professionals 8

(c) ketabton.com: The Digital Library

Chapter 3: Data Types

Section 3.1: Interpreting Declarations

A distinctive syntactic peculiarity of C is that declarations mirror the use of the declared object as it would be in a
normal expression.

The following set of operators with identical precedence and associativity are reused in declarators, namely:

the unary x "dereference" operator which denotes a pointer;

the binary [] "array subscription" operator which denotes an array;

the (1+n)-ary () "function call" operator which denotes a function;

the () grouping parentheses which override the precedence and associativity of the rest of the listed
operators.

The above three operators have the following precedence and associativity:

Operator Relative Precedence Associativity
[1 (array subscription) 1 Left-to-right
() (function call) 1 Left-to-right
* (dereference) 2 Right-to-left

When interpreting declarations, one has to start from the identifier outwards and apply the adjacent operators in
the correct order as per the above table. Each application of an operator can be substituted with the following
English words:

Expression Interpretation
thing[X] an array of size X of...

thing(t1, t2, t3) afunction taking t1, t2, t3 and returning...
*thing a pointer to...

It follows that the beginning of the English interpretation will always start with the identifier and will end with the
type that stands on the left-hand side of the declaration.

Examples

char *names[20];
[] takes precedence over %, so the interpretation is: names is an array of size 20 of a pointer to char.
char (*place)[10];

In case of using parentheses to override the precedence, the x is applied first: place is a pointer to an array of size
10 of char.

int fn(long, short);
There is no precedence to worry about here: fn is a function taking long, short and returning int.
int *fn(void);

The () is applied first: fn is a function taking void and returning a pointer to int.

GoalKicker.com - C Notes for Professionals

(c) ketabton.com: The Digital Library

int (*fp)(void);
Overriding the precedence of (): fp is a pointer to a function taking void and returning int.
int arr[5][8];

Multidimensional arrays are not an exception to the rule; the [] operators are applied in left-to-right order
according to the associativity in the table: arr is an array of size 5 of an array of size 8 of int.

int **ptr;

The two dereference operators have equal precedence, so the associativity takes effect. The operators are applied
in right-to-left order: ptr is a pointer to a pointer to an int.

Multiple Declarations
The comma can be used as a separator (*not* acting like the comma operator) in order to delimit multiple
declarations within a single statement. The following statement contains five declarations:

int fn(void), #*ptr, (*fp)(int), arr[10][20], num;

The declared objects in the above example are:

fn: a function taking void and returning int;

e ptr:a pointer to an int;

fp: a pointer to a function taking int and returning int;
e arr:an array of size 10 of an array of size 20 of int;

® num: int.

Alternative Interpretation

Because declarations mirror use, a declaration can also be interpreted in terms of the operators that could be
applied over the object and the final resulting type of that expression. The type that stands on the left-hand side is
the final result that is yielded after applying all operators.

/*
* Subscripting "arr" and dereferencing it yields a "char" result.
* Particularly: *arr[5] is of type "char".
*/

char *arr[20];

/*
* Calling "fn" yields an "int" result.
* Particularly: fn('b') is of type "
*/

int fn(char);

n

int".

/%

* Dereferencing "fp" and then calling it yields an "int" result.
* Particularly: (*fp)() is of type "
*/
int (*fp)(void);

"

int".

/%
* Subscripting "strings" twice and dereferencing it yields a "char" result.
* Particularly: *strings[5][15] is of type "char”

*/

char *strings[10][20];

GoalKicker.com - C Notes for Professionals 10

(c) ketabton.com: The Digital Library

Section 3.2: Fixed Width Integer Types (since C99)

Version = (99

The header <stdint.h> provides several fixed-width integer type definitions. These types are optional and only
provided if the platform has an integer type of the corresponding width, and if the corresponding signed type has a
two's complement representation of negative values.

See the remarks section for usage hints of fixed width types.

/* commonly used types include */
uint32_t u32 = 32; /* exactly 32-bits wide */

uint8_t u8 = 255; /# exactly 8-bits wide */

int64_t i64 = -65 /* exactly 64 bit in two's complement representation */

Section 3.3: Integer types and constants

Signed integers can be of these types (the int after short, or long is optional):

signed char ¢ = 127; /* required to be 1 byte, see remarks for further information. */
signed short int si = 32767; /#* required to be at least 16 bits. #*/

signed int i = 32767; /#* required to be at least 16 bits #*/

signed long int 1li = 2147483647; /* required to be at least 32 bits. #*/

Version = C99

signed long long int 1i = 2147483647; /+* required to be at least 64 bits #*/

Each of these signed integer types has an unsigned version.

unsigned int i = 65535;
unsigned short = 2767;
unsigned char = 255;

For all types but char the signed version is assumed if the signed or unsigned part is omitted. The type char
constitutes a third character type, different from signed char and unsigned char and the signedness (or not)
depends on the platform.

Different types of integer constants (called literals in C jargon) can be written in different bases, and different width,
based on their prefix or suffix.

/* the following variables are initialized to the same value: #*/

int d = 42; /* decimal constant (basel18) */

int o = @52; /* octal constant (base8) */

int x = @xaf; /* hexadecimal constants (basel6) */

int X = OXAf; /* (letters 'a’' through 'f' (case insensitive) represent 18 through 15) */

Decimal constants are always signed. Hexadecimal constants start with 8x or X and octal constants start just with
a 0. The latter two are signed or unsigned depending on whether the value fits into the signed type or not.

/* suffixes to describe width and signedness : */

long int i = @x32; /#* no suffix represent int, or long int */

unsigned int ui = 65535u; /# u or U represent unsigned int, or long int */
long int 1i = 655361; /* 1 or L represent long int */

Without a suffix the constant has the first type that fits its value, that is a decimal constant that is larger than

GoalKicker.com - C Notes for Professionals 1

(c) ketabton.com: The Digital Library

INT_MAX is of type long if possible, or long long otherwise.

The header file <limits.h> describes the limits of integers as follows. Their implementation-defined values shall be
equal or greater in magnitude (absolute value) to those shown below, with the same sign.

Macro Type Value
CHAR_BIT smallest object that is not a bit-field (byte) 8
SCHAR_MIN signed char -1277-(27 - 1)
SCHAR_MAX signed char +127 /27 -1
UCHAR_MAX unsigned char 255/28-1
CHAR_MIN char see below
CHAR_MAX char see below
SHRT_MIN short int -32767 /-(215-1)
SHRT_MAX short int +32767/215-1
USHRT_MAX unsigned short int 65535/216-1
INT_MIN int -32767 /-(215-1)
INT_MAX int +32767/215-1
UINT_MAX unsigned int 65535/216-1
LONG_MIN 1long int -2147483647 / (231 - 1)
LONG_MAX 1long int +2147483647 / 231 - 1
ULONG_MAX unsigned long int 4294967295/ 232 -1
Version = C99

Macro Type Value
LLONG_MIN 1long long int -9223372036854775807 / -(263 - 1)
LLONG_MAX 1long long int +9223372036854775807 / 263 - 1

ULLONG_MAX unsigned long long int 18446744073709551615 /264 - 1

If the value of an object of type char sign-extends when used in an expression, the value of CHAR_MIN shall be the
same as that of SCHAR_MIN and the value of CHAR_MAX shall be the same as that of SCHAR_MAX . If the value of an
object of type char does not sign-extend when used in an expression, the value of CHAR_MIN shall be 0 and the
value of CHAR_MAX shall be the same as that of UCHAR_MAX.

Version = C99

The C99 standard added a new header, <stdint.h>, which contains definitions for fixed width integers. See the
fixed width integer example for a more in-depth explanation.

Section 3.4: Floating Point Constants

The C language has three mandatory real floating point types, float, double, and long double.

float f = 0.314f; /* suffix f or F denotes type float #*/
double d = 0.314; /* no suffix denotes double */
long double 1d = 0.3141; /* suffix 1 or L denotes long double */

/* the different parts of a floating point definition are optional */
double x = 1.; /* valid, fractional part is optional */
double y = .1; /# valid, whole-number part is optional */

/* they can also defined in scientific notation */
double sd = 1.2e3; /* decimal fraction 1.2 is scaled by 1043, that is 1200.0 */

GoalKicker.com - C Notes for Professionals 12

(c) ketabton.com: The Digital Library

The header <float.h> defines various limits for floating point operations.

Floating point arithmetic is implementation defined. However, most modern platforms (arm, x86, x86_64, MIPS) use
IEEE 754 floating point operations.

C also has three optional complex floating point types that are derived from the above.

Section 3.5: String Literals
A string literal in C is a sequence of chars, terminated by a literal zero.

char* str = "hello, world"; /* string literal #*/

/* string literals can be used to initialize arrays */

char a1[] = "abc"; /* al is char[4] holding {'a', 'b', 'c', "\@'} */

char a2[4] = "abc"; /* same as al */

char a3[3] = "abc"; /* al is char[3] holding {'a', 'b', 'c'}, missing the '\8' =/

String literals are not modifiable (and in fact may be placed in read-only memory such as .rodata). Attempting to
alter their values results in undefined behaviour.

char* s = "foobar";
s[@] = 'F'; /* undefined behaviour */

/* it's good practice to denote string literals as such, by using ‘const’ */
char const* s1 = "foobar";
s1[@] = 'F'; /% compiler error! */

Multiple string literals are concatenated at compile time, which means you can write construct like these.

Version < C99

/* only two narrow or two wide string literals may be concatenated #*/
charx s = "Hello, " "World";

Version = C99

/* since C99, more than two can be concatenated */
/* concatenation is implementation defined */
char* s1 = "Hello" ", " "World";

/* common usages are concatenations of format strings */
char*x fmt = "%" PRId16; /* PRId16 macro since C99 */

String literals, same as character constants, support different character sets.

/* normal string literal, of type char[] */
char* s1 = "abc";

/* wide character string literal, of type wchar_t[] */
wchar_t* s2 = L"abc";

Version = Cl1

/* UTF-8 string literal, of type char[] */
char* s3 = u8"abc";

/* 16-bit wide string literal, of type char16_t[] */
char16_t* s4 = u"abc";

/* 32-bit wide string literal, of type char32_t[] */
char32_t* s5 = U"abc";

GoalKicker.com - C Notes for Professionals 13

(c) ketabton.com: The Digital Library

Chapter 4: Operators

An operator in a programming language is a symbol that tells the compiler or interpreter to perform a specific
mathematical, relational or logical operation and produce a final result.

C has many powerful operators. Many C operators are binary operators, which means they have two operands. For
example,ina / b, /is a binary operator that accepts two operands (a, b). There are some unary operators which
take one operand (for example: ~, ++), and only one ternary operator ?

Section 4.1: Relational Operators

Relational operators check if a specific relation between two operands is true. The result is evaluated to 1 (which
means true) or 0 (which means false). This result is often used to affect control flow (via if, while, for), but can also
be stored in variables.

Equals "=="

Checks whether the supplied operands are equal.

1 ==20; /* evaluates to 0. */

1 ==1; /* evaluates to 1. */

int x = 5;

inty =5;

int #xptr = &x, *yptr = &y;

xptr == yptr; /* evaluates to 0, the operands hold different location addresses. #*/

*Xptr == *yptr; /# evaluates to 1, the operands point at locations that hold the same value. */

Attention: This operator should not be confused with the assignment operator (=)!
Not equals "!="

Checks whether the supplied operands are not equal.

1 1= 0; /* evaluates to 1. */

1 1=1; /* evaluates to 0. #*/

int x = 5;

inty =5;

int #xptr = &x, *yptr = &y;

xptr != yptr; /* evaluates to 1, the operands hold different location addresses. #*/

*xptr != *yptr; /# evaluates to 0, the operands point at locations that hold the same value. */

This operator effectively returns the opposite result to that of the equals (==) operator.
Not "!"

Check whether an object is equal to 6.

The ! can also be used directly with a variable as follows:

IsomeVal

This has the same effect as:

GoalKicker.com - C Notes for Professionals 14

(c) ketabton.com: The Digital Library

someVal == 0

Greater than ">"

Checks whether the left hand operand has a greater value than the right hand operand

5> 4 /* evaluates to 1. */
4 > 5 /* evaluates to 6. */
4 > 4 /* evaluates to 0. */
Less than "<"

Checks whether the left hand operand has a smaller value than the right hand operand

5) 4 /* evaluates to 0. */
4 < 5 /* evaluates to 1. */
4 4 /* evaluates to 6. */

Greater than or equal ">="

Checks whether the left hand operand has a greater or equal value to the right operand.

A
1

/* evaluates to 1. */
/* evaluates to 0. */
/* evaluates to 1. */

\
]

H B O
A%
I}
~ o b

Less than or equal "<="

Checks whether the left hand operand has a smaller or equal value to the right operand.

/* evaluates to 0. */
/* evaluates to 1. */
/* evaluates to 1. */

~ b~ O
A A A
1]
~ o b

Section 4.2: Conditional Operator/Ternary Operator

Evaluates its first operand, and, if the resulting value is not equal to zero, evaluates its second operand. Otherwise,
it evaluates its third operand, as shown in the following example:

a=b?2c:d;

is equivalent to:

if (b)
a=c;

else
a=d;

This pseudo-code represents it : condition ? value_if_true : value_if_false. Each value can be the result of

an evaluated expression.

int x = 5;
int y = 42;
printf("%i, %i\n", 1 ? x :vy, 0 ? x

2 y); /% Outputs "5, 42" */

GoalKicker.com - C Notes for Professionals

15

(c) ketabton.com: The Digital Library

The conditional operator can be nested. For example, the following code determines the bigger of three numbers:

big=a>b ? (a>c ?a : c)
(b>c?b:c);

The following example writes even integers to one file and odd integers to another file:

#include<stdio.h>

int main()

{
FILE *even, *odds;
int n = 10;
size_t k = 9;
even = fopen("even.txt", "w");
odds = fopen("odds.txt", "w");
for(k = 1; k < n + 1; k++)
{
k%2==0 ? fprintf(even, "\t%5d\n", k)
: fprintf(odds, "\t%5d\n", k);
}
fclose(even);
fclose(odds);
return 0;
}

The conditional operator associates from right to left. Consider the following:
expl ? exp2 : exp3 ? expd : expd
As the association is from right to left, the above expression is evaluated as

expl ? exp2 : (exp3 ? exp4 : exp5)

Section 4.3: Bitwise Operators

Bitwise operators can be used to perform bit level operation on variables.
Below is a list of all six bitwise operators supported in C:

Symbol Operator

& bitwise AND

| bitwise inclusive OR

A bitwise exclusive OR (XOR)

~ bitwise not (one's complement)
<< logical left shift

>> logical right shift

Following program illustrates the use of all bitwise operators:

#include <stdio.h>

int main(void)

{

GoalKicker.com - C Notes for Professionals 16

(c) ketabton.com: The Digital Library

unsigned int a = 29; /* 29 = 0001 1101 */
unsigned int b = 48; /* 48 = 0011 0000 */
int ¢ = 9;

c=ag&b; /* 32 = 0001 0000 */

printf("%d & %d

%d\n", a, b, ¢);

c=a|b; /* 61 = 0011 1101 */
printf("%d | %d = %d\n", a, b, ¢);

*

c =a?™’b; /* 45 = 0010 1101 */

printf("%d * %d = %d\n", a, b, ¢);

c = ~a; /* -30
printf("~%d = %d\n", a, c);

1110 0016 */

C =a << 2; /* 116
printf("%d << 2 = %d\n", a, c);

0111 0100 */

c =a > 2; /* 7 = 0000 0111 */
printf("%d >> 2 = %d\n", a, c);

return 0;

Bitwise operations with signed types should be avoided because the sign bit of such a bit representation has a
particular meaning. Particular restrictions apply to the shift operators:

o Left shifting a 1 bit into the signed bit is erroneous and leads to undefined behavior.
¢ Right shifting a negative value (with sign bit 1) is implementation defined and therefore not portable.

¢ If the value of the right operand of a shift operator is negative or is greater than or equal to the width of the
promoted left operand, the behavior is undefined.

Masking:

Masking refers to the process of extracting the desired bits from (or transforming the desired bits in) a variable by
using logical bitwise operations. The operand (a constant or variable) that is used to perform masking is called a
mask.

Masking is used in many different ways:

¢ To decide the bit pattern of an integer variable.

e To copy a portion of a given bit pattern to a new variable, while the remainder of the new variable is filled
with Os (using bitwise AND)

¢ To copy a portion of a given bit pattern to a new variable, while the remainder of the new variable is filled
with 1s (using bitwise OR).

e To copy a portion of a given bit pattern to a new variable, while the remainder of the original bit pattern is
inverted within the new variable (using bitwise exclusive OR).

The following function uses a mask to display the bit pattern of a variable:

#include <limits.h>
void bit_pattern(int u)
{
int i, x, word;
unsigned mask = 1;

GoalKicker.com - C Notes for Professionals 17

(c) ketabton.com: The Digital Library

word = CHAR_BIT * sizeof(int);
mask = mask << (word - 1); /* shift 1 to the leftmost position */
for(i = 1; i <= word; i++)
{
x = (u & mask) ? 1 : @; /* identify the bit */
printf("%d", x); /* print bit value */
mask >>= 1; /* shift mask to the right by 1 bit */

Section 4.4: Short circuit behavior of logical operators

Short circuiting is a functionality that skips evaluating parts of a (if/while/...) condition when able. In case of a logical
operation on two operands, the first operand is evaluated (to true or false) and if there is a verdict (i.e first operand
is false when using &&, first operand is true when using | |) the second operand is not evaluated.

Example:

#include <stdio.h>

int main(void) {

int a = 20;

int b = -5;

/* here 'b == -5' is not evaluated,
since a 'a != 20' is false. */

if (a != 20 && b == -5) {
printf("I won't be printed!\n");

}

return 0;

}
Check it out yourself;

#include <stdio.h>

int print(int i) {
printf("print function %d\n", 1i);
return i;

¥

int main(void) {
int a = 20;

/* here 'print(a)' is not called,
since a 'a != 20' is false. */
if (a != 20 && print(a)) {
printf("I won't be printed!\n");
}

/* here 'print(a)' is called,
since a 'a == 20' is true. */
if (a == 20 && print(a)) {
printf("I will be printed!\n");
}

return 0;

GoalKicker.com - C Notes for Professionals 18

(c) ketabton.com: The Digital Library

Output:

$./a.out
print function 20
I will be printed!

Short circuiting is important, when you want to avoid evaluating terms that are (computationally) costly. Moreover,
it can heavily affect the flow of your program like in this case: Why does this program print "forked!" 4 times?

Section 4.5: Comma Operator

Evaluates its left operand, discards the resulting value, and then evaluates its rights operand and result yields the
value of its rightmost operand.

int x = 42, y = 42;
printf("%i\n", (x *= 2, y)); /* Outputs "42". */

The comma operator introduces a sequence point between its operands.

Note that the comma used in functions calls that separate arguments is NOT the comma operator, rather it's called a
separator which is different from the comma operator. Hence, it doesn't have the properties of the comma operator.

The above printf() call contains both the comma operator and the separator.

printf("%i\n", (x *= 2, y)); /* Outputs "42". */
/* A A this is a comma operator */
/* this is a separator */

The comma operator is often used in the initialization section as well as in the updating section of a for loop. For
example:

for(k = 1; k < 10; printf("\%d\\n", k), k += 2); /*outputs the odd numbers below 9/*
/* outputs sum to first 9 natural numbers */

for(sumk = 1, k = 1; k < 10; k++, sumk += k)
printf("\%5d\%5d\\n", k, sumk);

Section 4.6: Arithmetic Operators

Basic Arithmetic

Return a value that is the result of applying the left hand operand to the right hand operand, using the associated
mathematical operation. Normal mathematical rules of commutation apply (i.e. addition and multiplication are
commutative, subtraction, division and modulus are not).

Addition Operator
The addition operator (+) is used to add two operands together. Example:

#include <stdio.h>

int main(void)

{

5;
7,

int a
int b

GoalKicker.com - C Notes for Professionals 19

(c) ketabton.com: The Digital Library

int ¢ = a + b; /* ¢ now holds the value 12 */
printf("%d + %d = %d",a,b,c); /* will output "5 + 7 = 12" %/

return 0;

Subtraction Operator
The subtraction operator (-) is used to subtract the second operand from the first. Example:

#include <stdio.h>

int main(void)

{
int a = 10;
int b = 7;
int ¢ = a - b; /* ¢ now holds the value 3 */
printf("%d - %d = %d",a,b,c); /* will output "10 - 7 = 3" */
return 0;
}

Multiplication Operator
The multiplication operator (*) is used to multiply both operands. Example:

#include <stdio.h>

int main(void)

{
int a = 5;
int b = 7;
int ¢ = a * b; /* ¢ now holds the value 35 */
printf("%d * %d = %d",a,b,c); /* will output "5 * 7 = 35" %/
return 0;
}

Not to be confused with the * dereference operator.
Division Operator

The division operator (/) divides the first operand by the second. If both operands of the division are integers, it will
return an integer value and discard the remainder (use the modulo operator % for calculating and acquiring the
remainder).

If one of the operands is a floating point value, the result is an approximation of the fraction.
Example:

#include <stdio.h>

int main (void)

GoalKicker.com - C Notes for Professionals 20

(c) ketabton.com: The Digital Library

{
int a =19 / 2 ; /* a holds value 9 */
int b =18 / 2 ; /* b holds value 9 */
int ¢ = 255 / 2; /* ¢ holds value 127 */
int d =44 / 4 ; /* d holds value 11 */
double e = 19 / 2.0 ; /* e holds value 9.5 */
double f = 18.0 / 2 ; /* f holds value 9.0 */
double g = 255 / 2.0; /* g holds value 127.5 */
double h = 45.6 / 4 ; /* h holds value 11.25 %/
printf("19 / 2 = %d\n", a); /* Will output "19 / 2 = 9" */
printf("18 / 2 = %d\n", b); /* Will output "18 / 2 = 9" */
printf("255 / 2 = %d\n", c); /* Will output "255 / 2 = 127" %/
printf("44 / 4 = %d\n", d); /* Will output "44 / 4 = 11" %/
printf("19 / 2.0 = %g\n", e); /* Will output "19 / 2.6 = 9.5" */
printf("18.0 / 2 = %g\n", f); /* Will output "18.0 / 2 = 9" */
printf("255 / 2.8 = %g\n", g); /* Will output "255 / 2.0 = 127.5" */
printf("45.8 / 4 = %g\n", h); /* Will output "45.6 / 4 = 11.25" =%/
return 0;

}

Modulo Operator

The modulo operator (%) receives integer operands only, and is used to calculate the remainder after the first
operand is divided by the second. Example:

#include <stdio.h>

int main (void) {

int a = 25 % 2; /* a holds value 1 */
int b =24 % 2; /* b holds value 8 */
int ¢ = 155 % 5; /* ¢ holds value 8 */
int d = 49 % 25; /* d holds value 24 */
printf("25 % 2 = %d\n", a); /* Will output "25 % 2 =1 */
printf("24 % 2 = %d\n", b); /* Will output "24 % 2 = 8" */
printf("155 % 5 = %d\n", c); /* Will output "155 % 5 = 6" */
printf("49 % 25 = %d\n", d); /* Will output "49 % 25 = 24" */

return 0;

Increment / Decrement Operators

The increment (a++) and decrement (
a_ -

) operators are different in that they change the value of the variable you apply them to without an assignment
operator. You can use increment and decrement operators either before or after the variable. The placement of the
operator changes the timing of the incrementation/decrementation of the value to before or after assigning it to
the variable. Example:

#include <stdio.h>

int main(void)

{

int a
int b

1;
4;

GoalKicker.com - C Notes for Professionals 21

(c) ketabton.com: The Digital Library

int ¢ = 1;

int d = 4;

at+:

printf("a = %d\n",a); /* Will output "a = 2" */
b--;

printf("b = %d\n",b); /* Will output "b = 3" */

if (++c > 1) { /* ¢ is incremented by 1 before being compared in the condition */

printf("This will print\n"); /* This is printed */
} else {
printf("This will never print\n"); /* This is not printed */
}
if (d-- < 4) { /* d is decremented after being compared */
printf("This will never print\n"); /* This is not printed */
} else {
printf("This will print\n"); /* This is printed #*/

}

As the example for ¢ and d shows, both operators have two forms, as prefix notation and postfix notation. Both
have the same effect in incrementing (++) or decrementing (--) the variable, but differ by the value they return:
prefix operations do the operation first and then return the value, whereas postfix operations first determine the
value that is to be returned, and then do the operation.

Because of this potentially counter-intuitive behaviour, the use of increment/decrement operators inside
expressions is controversial.

Section 4.7: Access Operators

The member access operators (dot . and arrow ->) are used to access a member of a struct.
Member of object
Evaluates into the Ivalue denoting the object that is a member of the accessed object.

struct MyStruct
{

int x;

int y;
iE

struct MyStruct myObject;
myObject.x = 42;
myObject.y 123;

1

printf(".x = %i, .y = %i\n", myObject.x, myObject.y); /#* Outputs ".x = 42, .y = 123". */

Member of pointed-to object

Syntactic sugar for dereferencing followed by member access. Effectively, an expression of the form x->y is
shorthand for (*x) .y — but the arrow operator is much clearer, especially if the structure pointers are nested.

struct MyStruct
{

int x;
int y;

GoalKicker.com - C Notes for Professionals 22

(c) ketabton.com: The Digital Library
iE

struct MyStruct myObject;
struct MyStruct *p = &myObject;

p->x = 42,
123;

5
\'
<
1

printf(".x = %i, .y
printf(".x = %i, .y

%i\n", p->x, p->y); /* Outputs ".x = 42, .y = 123". %/
%i\n", myObject.x, myObject.y); /* Also outputs ".x = 42, .y = 123". %/

Address-of

The unary & operator is the address of operator. It evaluates the given expression, where the resulting object must
be an Ivalue. Then, it evaluates into an object whose type is a pointer to the resulting object's type, and contains the
address of the resulting object.

int x = 3;

int *p = &x;

printf("%p = %p\n", (void *)&x, (void *)p); /#* Outputs "A = A", for some implementation-defined A.
*/

Dereference

The unary * operator dereferences a pointer. It evaluates into the Ivalue resulting from dereferencing the pointer
that results from evaluating the given expression.

int x = 42;
int *p = &x;

printf("x = %d, *p = %d\n", x, *p); /* Outputs "x = 42, #*p = 42". */

*p = 123,
printf("x = %d, *p = %d\n", x, *p); /* Outputs "x = 123, #*p = 123". */

Indexing

Indexing is syntactic sugar for pointer addition followed by dereferencing. Effectively, an expression of the form
a[i] is equivalentto =(a + i) — but the explicit subscript notation is preferred.

int arr[] = {1, 2, 3, 4, 5 };
printf("arr[2] = %i\n", arr[2]); /* Outputs "arr[2] = 3". %/

Interchangeability of indexing

Adding a pointer to an integer is a commutative operation (i.e. the order of the operands does not change the

result) so pointer + integer == integer + pointer.
A consequence of thisis thatarr[3] and 3[arr] are equivalent.
printf("3[arr] = %i\n", 3[arr]); /* Outputs "3[arr] = 4". %/

Usage of an expression 3[arr] instead of arr[3] is generally not recommended, as it affects code readability. It
tends to be a popular in obfuscated programming contests.

GoalKicker.com - C Notes for Professionals 23

(c) ketabton.com: The Digital Library
Section 4.8: sizeof Operator

With a type as operand

Evaluates into the size in bytes, of type size_t, of objects of the given type. Requires parentheses around the type.

printf("%zu\n", sizeof(int)); /#* Valid, outputs the size of an int object, which is platform-

dependent. */
printf("%zu\n", sizeof int); /* Invalid, types as arguments need to be surrounded by parentheses! */

With an expression as operand

Evaluates into the size in bytes, of type size_t, of objects of the type of the given expression. The expression itself
is not evaluated. Parentheses are not required; however, because the given expression must be unary, it's
considered best practice to always use them.

char ch = 'a';
printf("%zu\n", sizeof(ch)); /* Valid, will output the size of a char object, which is always 1 for

all platforms. */
printf("%zu\n", sizeof ch); /* Valid, will output the size of a char object, which is always 1 for

all platforms. */

Section 4.9: Cast Operator

Performs an explicit conversion into the given type from the value resulting from evaluating the given expression.

int x = 3;
inty = 4;
printf("%f\n", (double)x / y); /* Outputs "6.750000". */

Here the value of x is converted to a double, the division promotes the value of y to double, too, and the result of
the division, a double is passed to printf for printing.

Section 4.10: Function Call Operator

The first operand must be a function pointer (a function designator is also acceptable because it will be converted
to a pointer to the function), identifying the function to call, and all other operands, if any, are collectively known as
the function call's arguments. Evaluates into the return value resulting from calling the appropriate function with
the respective arguments.

int myFunction(int x, int y)

{
return x * 2 +vy;
}
int (*#fn)(int, int) = &myFunction;
int x = 42;
int y = 123;

printf("(*fn) (%1, %i) = %i\n", x, y, (*fn)(x, y)); /* Outputs "fn(42, 123) = 207". */
printf("fn(%i, %i) = %i\n", x, y, fn(x, y)); /* Another form: you don't need to dereference
explicitly */

GoalKicker.com - C Notes for Professionals 24

(c) ketabton.com: The Digital Library

Section 4.11; Increment / Decrement

The increment and decrement operators exist in prefix and postfix form.

int a = 1;

int b = 1;

int tmp = 0;

tmp = ++a; /* increments a by one, and returns new value; a == 2, tmp == */
tmp = a++; /* increments a by one, but returns old value; a == 3, tmp == 2 */
tmp = --b; /* decrements b by one, and returns new value; b == 0, tmp == 0 */
tmp = b--; /* decrements b by one, but returns old value; b == -1, tmp == 0 */

Note that arithmetic operations do not introduce sequence points, so certain expressions with ++ or -- operators
may introduce undefined behaviour.

Section 4.12: Assignment Operators

Assigns the value of the right-hand operand to the storage location named by the left-hand operand, and returns
the value.

int x = 5; /* Variable x holds the value 5. Returns 5. */
char y = 'c'; /* Variable y holds the value 99. Returns 99
* (as the character 'c' is represented in the ASCII table with 99).
*/
float z = 1.5; /* variable z holds the value 1.5. Returns 1.5. */
char const* s = "foo"; /* Variable s holds the address of the first character of the string 'foo’.
*/

Several arithmetical operations have a compound assignment operator.

a+=b /% equal to: a =a + b %/
a-=b /* equal to: a =a - b */
a *= b /* equal to: a = a * b */
a/=b /* equal to: a=a /b %/
a %= b /* equal to: a =a % b */
a & b /* equal to: a =a &b */
a|=b /* equal to: a =a | b */
ar=Db /* equal to: a =a b */
a <<= b /* equal to: a = a << b */
a >>=b /* equal to: a = a >> b */

One important feature of these compound assignments is that the expression on the left hand side (a) is only
evaluated once. E.g if p is a pointer

*p += 27;
dereferences p only once, whereas the following does so twice.
*p = *p + 27;

It should also be noted that the result of an assignment such as a = b is what is known as an rvalue. Thus, the
assignment actually has a value which can then be assigned to another variable. This allows the chaining of
assignments to set multiple variables in a single statement.

This rvalue can be used in the controlling expressions of if statements (or loops or switch statements) that guard

GoalKicker.com - C Notes for Professionals 25

(c) ketabton.com: The Digital Library

some code on the result of another expression or function call. For example:

char *buffer;
if ((buffer = malloc(1024)) != NULL)

{
/* do something with buffer */
free(buffer) ;
}
else
{
/* report allocation failure */
}

Because of this, care must be taken to avoid a common typo which can lead to mysterious bugs.

int a = 2;
/* .. %/
if (a = 1)

/* Delete all files on my hard drive */

This will have disastrous results, as a = 1 will always evaluate to 1 and thus the controlling expression of the if
statement will always be true (read more about this common pitfall here). The author almost certainly meant to use
the equality operator (==) as shown below:

int a = 2;
/* .. %/
if (a == 1)

/* Delete all files on my hard drive #*/
Operator Associativity

int a, b=1, ¢c =2;
a=>b-=c;

This assigns c to b, which returns b, which is than assigned to a. This happens because all assignment-operators
have right associativity, that means the rightmost operation in the expression is evaluated first, and proceeds from
right to left.

Section 4.13: Logical Operators
Logical AND

Performs a logical boolean AND-ing of the two operands returning 1 if both of the operands are non-zero. The
logical AND operator is of type int.

0 && B /* Returns 6. */
0 && 1 /* Returns 0. */
2 & O /* Returns 6. */
2 && 3 /* Returns 1. */
Logical OR

Performs a logical boolean OR-ing of the two operands returning 1 if any of the operands are non-zero. The logical
OR operator is of type int.

@ || 8 /* Returns 0. */

GoalKicker.com - C Notes for Professionals 26

(c) ketabton.com: The Digital Library
@ || 1 /* Returns 1. =%/
2 || @ /* Returns 1. =%/
2 || 3 /* Returns 1. =*/

Logical NOT

Performs a logical negation. The logical NOT operator is of type int. The NOT operator checks if at least one bit is
equal to 1, if so it returns 0. Else it returns 1;

11 /* Returns 6. */
15 /% Returns 6. */
19 /* Returns 1. */

Short-Circuit Evaluation
There are some crucial properties common to both && and | |:

¢ the left-hand operand (LHS) is fully evaluated before the right-hand operand (RHS) is evaluated at all,

¢ there is a sequence point between the evaluation of the left-hand operand and the right-hand operand,

¢ and, most importantly, the right-hand operand is not evaluated at all if the result of the left-hand operand
determines the overall result.

This means that:

o if the LHS evaluates to 'true' (non-zero), the RHS of | | will not be evaluated (because the result of 'true OR
anything' is 'true’),

o if the LHS evaluates to 'false' (zero), the RHS of && will not be evaluated (because the result of 'false AND
anything' is 'false’).

This is important as it permits you to write code such as:

const char *name_for_value(int value)

{

static const char #*names[] = { "zero", "one", "two", "three", };

enum { NUM_NAMES = sizeof(names) / sizeof(names[0]) };

return (value >= @ && value < NUM_NAMES) ? names[value] : "infinity";
}

If a negative value is passed to the function, the value >= 0 term evaluates to false and the value < NUM_NAMES
term is not evaluated.

Section 4.14: Pointer Arithmetic

Pointer addition

Given a pointer and a scalar type N, evaluates into a pointer to the Nth element of the pointed-to type that directly
succeeds the pointed-to object in memory.

int arr[] = {1, 2, 3, 4, 5};
printf("*(arr + 3) = %i\n", *(arr + 3)); /* Outputs "4", arr's fourth element. */

It does not matter if the pointer is used as the operand value or the scalar value. This means that things such as 3 +
arr arevalid. If arr[k] is the k+1 member of an array, then arr+k is a pointer to arr[k]. In other words, arr or
arr+0 is a pointer to arr[8], arr+1 is a pointer to arr[2], and so on. In general, *(arr+k) is same as arr[k].

GoalKicker.com - C Notes for Professionals 27

(c) ketabton.com: The Digital Library

Unlike the usual arithmetic, addition of 1 to a pointer to an int will add 4 bytes to the current address value. As

array names are constant pointers, + is the only operator we can use to access the members of an array via pointer
notation using the array name. However, by defining a pointer to an array, we can get more flexibility to process the

data in an array. For example, we can print the members of an array as follows:

#include<stdio.h>
static const size_t N = 5

int main()

{
size_t k = 9;
int arr[] = {1, 2, 3, 4, 5};
for(k = ©; k < N; k++)
{
printf("“\n\t%d", *(arr + k));
}
return 0;
}

By defining a pointer to the array, the above program is equivalent to the following:

#include<stdio.h>
static const size_t N = 5

int main()

{
size_t k = 9;
int arr[] = {1, 2, 3, 4, 5};
int *ptr = arr; /* or int #*ptr = &arr[8]; */
for(k = @; k < N; k++)
{
printf("\n\t%d", ptr[k]);
/* or printf("\n\t%d", *(ptr + k)); */
/* or printf("\n\t%d", #*ptr++); */
}
return 9;
}

See that the members of the array arr are accessed using the operators + and ++. The other operators that can be

used with the pointer ptr are - and --.

Pointer subtraction

Given two pointers to the same type, evaluates into an object of type ptrdiff_t that holds the scalar value that
must be added to the second pointer in order to obtain the value of the first pointer.

int arr[] = {1, 2, 3, 4, 5};
int *p = &arr[2];

int *q = &arr[3];

ptrdiff_t diff = q - p;

%ti\n", diff); /* Outputs "1". */

printf("q - p =
+ (q - p)) = %d\n", *(p + diff)); /* Outputs

printf("*(p

Section 4.15: _Alignof

Version = (C11

"4".

*/

GoalKicker.com - C Notes for Professionals

28

(c) ketabton.com: The Digital Library

Queries the alignment requirement for the specified type. The alignment requirement is a positive integral power
of 2 representing the number of bytes between which two objects of the type may be allocated. In C, the alignment
requirement is measured in size_t.

The type name may not be an incomplete type nor a function type. If an array is used as the type, the type of the
array element is used.

This operator is often accessed through the convenience macro alignof from <stdalign.h>.

int main(void)

{
printf("Alignment of char = %zu\n", alignof(char));
printf("Alignment of max_align_t = %zu\n", alignof(max_align_t));
printf("alignof(float[10]) = %zu\n", alignof(float[18]));
printf("alignof(struct{char c; int n;}) = %zu\n",
alignof(struct {char c¢; int n;}));
}

Possible Output:

Alignment of char = 1

Alignment of max_align_t = 16
alignof(float[10]) = 4
alignof(struct{char c; int n;}) = 4

http://en.cppreference.com/w/c/language/ Alignof

GoalKicker.com - C Notes for Professionals 29

(c) ketabton.com: The Digital Library

Chapter 5: Boolean
Section 5.1: Using stdbool.h

Version = (99

Using the system header file stdbool.h allows you to use bool as a Boolean data type. true evaluates to 1 and
false evaluates to .

#include <stdio.h>
#include <stdbool.h>

int main(void) {
bool x = true; /* equivalent to bool x 1; */
bool y = false; /#* equivalent to bool y = 8; */
if (x) /* Functionally equivalent to if (x != 0) or if (x != false) */

{
puts("This will print!");
}
if (ly) /#* Functionally equivalent to if (y == @) or if (y == false) */
{
puts("This will also print!");
}

bool is just a nice spelling for the data type _Bool. It has special rules when numbers or pointers are converted to it.

Section 5.2: Using #define

C of all versions, will effectively treat any integer value other than 8 as true for comparison operators and the
integer value @ as false. If you don't have _Bool or bool as of C99 available, you could simulate a Boolean data type
in C using #define macros, and you might still find such things in legacy code.

#include <stdio.h>

#define bool int
#define true 1
#define false 0

int main(void) {
bool x = true; /#* Equivalent to int x = 1; */
bool y = false; /* Equivalent to int y = 8; */
if (x) /#* Functionally equivalent to if (x != @) or if (x != false) */

{
puts("This will print!");
}
if (l!y) /* Functionally equivalent to if (y == @) or if (y == false) */
{
puts("This will also print!");
}

Don't introduce this in new code since the definition of these macros might clash with modern uses of
<stdbool.h>

GoalKicker.com - C Notes for Professionals 30

(c) ketabton.com: The Digital Library

Section 5.3: Using the Intrinsic (bvilt-in) Type _Bool

Version = (99

Added in the C standard version C99, _Bool is also a native C data type. It is capable of holding the values @ (for
false) and 1 (for true).

#include <stdio.h>

int main(void) {
_Bool x = 1;
_Bool y = 0;
if(x) /* Equivalent to if (x == 1) #*/
{
puts("This will print!");
}
if (l!y) /#* Equivalent to if (y == 8) */
{
puts("This will also print!");

}

_Bool is an integer type but has special rules for conversions from other types. The result is analogous to the usage
of other types in if expressions. In the following

_Bool z = X;

e If X has an arithmetic type (is any kind of number), z becomes @ if X == 8. Otherwise z becomes 1.
e If X has a pointer type, z becomes @ if X is a null pointer and 1 otherwise.

To use nicer spellings bool, false and true you need to use <stdbool.h>.

Section 5.4: Integers and pointers in Boolean expressions

All integers or pointers can be used in an expression that is interpreted as "truth value".

int main(int argc, charx argv[]) {
if (argc % 4) {
puts("arguments number is not divisible by 4");
} else {
puts("argument number is divisible by 4");

}

The expression argc % 4 is evaluated and leads to one of the values 8, 1, 2 or 3. The first, @ is the only value that is
"false" and brings execution into the else part. All other values are "true" and go into the if part.

double* A = malloc(n*sizeof =*A);
if (!'A) {
perror("allocation problems");
exit(EXIT_FAILURE);

Here the pointer A is evaluated and if it is a null pointer, an error is detected and the program exits.

Many people prefer to write something as A == NULL, instead, but if you have such pointer comparisons as part of

GoalKicker.com - C Notes for Professionals 31

(c) ketabton.com: The Digital Library

other complicated expressions, things become quickly difficult to read.

char const* s =; /* some pointer that we receive #*/
if (s != NULL && s[@] != '"\@' && isalpha(s[0])) {

printf("this starts well, %c is alphabetic\n", s[0]);
}

For this to check, you'd have to scan a complicated code in the expression and be sure about operator preference.

char constx s =; /* some pointer that we receive */
if (s && s[0@] && isalpha(s[@])) {

printf("this starts well, %c is alphabetic\n", s[@]);
}

is relatively easy to capture: if the pointer is valid we check if the first character is non-zero and then check if it is a

letter.

Section 5.5: Defining a bool type using typedef

Considering that most debuggers are not aware of #define macros, but can check enum constants, it may be
desirable to do something like this:

#if __STDC_VERSION__ < 199966L

typedef enum { false, true } bool;

/* Modern C code might expect these to be macros. */
ifndef bool

define bool bool
endif

ifndef true

define true true
endif

ifndef false

define false false
endif

#else

include <stdbool.h>
#endif

/* Somewhere later in the code ... */
bool b = true;

This allows compilers for historic versions of C to function, but remains forward compatible if the code is compiled

with a modern C compiler.

For more information on typedef, see Typedef, for more on enum see Enumerations

GoalKicker.com - C Notes for Professionals

32

(c) ketabton.com: The Digital Library

Chapter 6: Strings

In C, a string is not an intrinsic type. A C-string is the convention to have a one-dimensional array of characters
which is terminated by a null-character, by a '\e".

This means that a C-string with a content of "abc" will have four characters "a', 'b’, 'c' and "\@".

See the basic introduction to strings example.

Section 6.1: Tokenisation: strtok(), strtok_r() and strtok_s()

The function strtok breaks a string into a smaller strings, or tokens, using a set of delimiters.

#include <stdio.h>
#include <string.h>

int main(void)

{
int toknum = ©;
char src[] = "Hello,, world!";
const char delimiters[] = ", !'";
char *token = strtok(src, delimiters);
while (token != NULL)
{
printf("%d: [%s]\n", ++toknum, token);
token = strtok(NULL, delimiters);
}
/* source is now "Hello\@, world\6\8" */
}
Output:
1: [Hello]
2: [world]

The string of delimiters may contain one or more delimiters and different delimiter strings may be used with each
call to strtok.

Calls to strtok to continue tokenizing the same source string should not pass the source string again, but instead
pass NULL as the first argument. If the same source string is passed then the first token will instead be re-tokenized.
That is, given the same delimiters, strtok would simply return the first token again.

Note that as strtok does not allocate new memory for the tokens, it modifies the source string. That is, in the above
example, the string src will be manipulated to produce the tokens that are referenced by the pointer returned by
the calls to strtok. This means that the source string cannot be const (so it can't be a string literal). It also means
that the identity of the delimiting byte is lost (i.e. in the example the "," and "!" are effectively deleted from the
source string and you cannot tell which delimiter character matched).

Note also that multiple consecutive delimiters in the source string are treated as one; in the example, the second
comma is ignored.

strtok is neither thread safe nor re-entrant because it uses a static buffer while parsing. This means that if a
function calls strtok, no function that it calls while it is using strtok can also use strtok, and it cannot be called by
any function that is itself using strtok.

GoalKicker.com - C Notes for Professionals 33

(c) ketabton.com: The Digital Library

An example that demonstrates the problems caused by the fact that strtokis not re-entrant is as follows:

char src[] = "1.2,3.5,4.2";
char *first = strtok(src, ",");

do

{
char *part;
/* Nested calls to strtok do not work as desired */
printf("[%s]\n", first);

part = strtok(first, ".");
while (part != NULL)
{
printf(" [%s]\n", part);
part = strtok(NULL, ".");
}
} while ((first = strtok(NULL, ",")) != NULL);
Output:
[1.2]

[1]
[2]

The expected operation is that the outer do while loop should create three tokens consisting of each decimal
number string ("1.2", "3.5", "4.2"), for each of which the strtok calls for the inner loop should split it into
separate digit strings ("1", "2", "3", "5", "4", "2").

However, because strtok is not re-entrant, this does not occur. Instead the first strtok correctly creates the "1.2\0"
token, and the inner loop correctly creates the tokens "1" and "2". But then the strtok in the outer loop is at the
end of the string used by the inner loop, and returns NULL immediately. The second and third substrings of the src
array are not analyzed at all.

Version < Cl1

The standard C libraries do not contain a thread-safe or re-entrant version but some others do, such as POSIX'
strtok_r. Note that on MSVC the strtok equivalent, strtok_s is thread-safe.

Version = Cl1

C11 has an optional part, Annex K, that offers a thread-safe and re-entrant version named strtok_s. You can test
for the feature with __STDC_LIB_EXT1__. This optional part is not widely supported.

The strtok_s function differs from the POSIX strtok_r function by guarding against storing outside of the string
being tokenized, and by checking runtime constraints. On correctly written programs, though, the strtok_s and
strtok_r behave the same.

Using strtok_s with the example now yields the correct response, like so:

/* you have to announce that you want to use Annex K #*/
#define __STDC_WANT_LIB_EXT1__ 1

#include <string.h>

#ifndef __STDC_LIB_EXT1__
error "we need strtok_s from Annex K"
#endif

GoalKicker.com - C Notes for Professionals 34

(c) ketabton.com: The Digital Library

char src[] = "1.2,3.5,4.2";
char *next = NULL;
char *first = strtok_s(src, ",", &next);

do
{

char *part;
char *posn;

printf("[%s]\n", first);

part = strtok_s(first, ".", &posn);
while (part != NULL)
{
printf(" [%s]\n", part);
part = strtok_s(NULL, ".", &posn);
}
}
while ((first = strtok_s(NULL, ",", &next)) != NULL);

And the output will be:

[1.2]
[1]
[2]
[3.5]
[3]
[5]
[4.2]
[4]
[2]

Section 6.2: String literals

String literals represent null-terminated, static-duration arrays of char. Because they have static storage duration, a
string literal or a pointer to the same underlying array can safely be used in several ways that a pointer to an
automatic array cannot. For example, returning a string literal from a function has well-defined behavior:

const char xget_hello() {
return "Hello, World!"; /* safe */

}

For historical reasons, the elements of the array corresponding to a string literal are not formally const.
Nevertheless, any attempt to modify them has undefined behavior. Typically, a program that attempts to modify
the array corresponding to a string literal will crash or otherwise malfunction.

char *foo = "hello";
foo[@B] = 'y'; /% Undefined behavior - BAD! */

Where a pointer points to a string literal -- or where it sometimes may do -- it is advisable to declare that pointer's
referent const to avoid engaging such undefined behavior accidentally.

const char *foo = "hello";
/* GOOD: can't modify the string pointed to by foo */

On the other hand, a pointer to or into the underlying array of a string literal is not itself inherently special; its value
can freely be modified to point to something else:

GoalKicker.com - C Notes for Professionals 35

(c) ketabton.com: The Digital Library

char *foo = "hello";
foo = "World!"; /# OK - we're just changing what foo points to */

Furthermore, although initializers for char arrays can have the same form as string literals, use of such an initializer
does not confer the characteristics of a string literal on the initialized array. The initializer simply designates the
length and initial contents of the array. In particular, the elements are modifiable if not explicitly declared const:

char foo[] = "hello";
foo[@B] = 'y'; /% OK! %/

Section 6.3: Calculate the Length: strien()

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char x*xargv)

{
/* Exit if no second argument is found. #*/
if (argc !'= 2)
{
puts("Argument missing.");
return EXIT_FAILURE;
}
size_t len = strlen(argv[1]);
printf("The length of the second argument is %zu.\\n", len);
return EXIT_SUCCESS;
}

This program computes the length of its second input argument and stores the result in 1en. It then prints that
length to the terminal. For example, when run with the parameters program_name "Hello, world!", the program
will output The length of the second argument is 13. because the string Hello, world! is 13 characters long.

strlen counts all the bytes from the beginning of the string up to, but not including, the terminating NUL
character, '\\8'. As such, it can only be used when the string is guaranteed to be NUL-terminated.

Also keep in mind that if the string contains any Unicode characters, strlen will not tell you how many characters
are in the string (since some characters may be multiple bytes long). In such cases, you need to count the
characters (i.e., code units) yourself. Consider the output of the following example:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
char asciiString[50] = "Hello world!";
char utf8String[50] = "leid gou Koéoupe!"; /* "Hello World!" in Greek */

printf("asciiString has %zu bytes in the array\\n", sizeof(asciiString));
printf("utf8String has %zu bytes in the array\\n", sizeof(utf8String));
printf("\\"%s\\" is %zu bytes\\n", asciiString, strlen(asciiString));
printf("\\"%s\\" is %zu bytes\\n", utf8String, strlen(utf8String));

GoalKicker.com - C Notes for Professionals 36

(c) ketabton.com: The Digital Library

Output:

asciiString has 50 bytes in the array
utf8String has 50 bytes in the array
"Hello world!" is 12 bytes

"Teid gou Koope!" is 27 bytes

Section 6.4: Basic introduction to strings
In C, a string is a sequence of characters that is terminated by a null character (\0').

We can create strings using string literals, which are sequences of characters surrounded by double quotation
marks; for example, take the string literal "hello world". String literals are automatically null-terminated.

We can create strings using several methods. For instance, we can declare a char * and initialize it to point to the
first character of a string:

char * string = "hello world";

When initializing a char =* to a string constant as above, the string itself is usually allocated in read-only data;
string is a pointer to the first element of the array, which is the character 'h".

Since the string literal is allocated in read-only memory, it is non-modifiable1. Any attempt to modify it will lead to
undefined behaviour, so it's better to add const to get a compile-time error like this

char const * string = "hello world";
It has similar effect2 as
char const string_arr[] = "hello world";

To create a modifiable string, you can declare a character array and initialize its contents using a string literal, like
so:

char modifiable_string[] = "hello world";

This is equivalent to the following:
char modifiable_string[] = {'h"', 'e', '1', '1', 'o"', " ', 'w', ‘o', 'r", '1', 'd', "\@'};

Since the second version uses brace-enclosed initializer, the string is not automatically null-terminated unless a
"\@8' character is included explicitly in the character array usually as its last element.

1 Non-modifiable implies that the characters in the string literal can't be modified, but remember that the pointer
string can be modified (can point somewhere else or can be incremented or decremented).

2 Both strings have similar effect in a sense that characters of both strings can't be modified. It should be noted
that string is a pointer to char and it is a maodifiable I-value so it can be incremented or point to some other
location while the array string_arr is a non-modifiable I-value, it can't be modified.

Section 6.5: Copying strings

Pointer assignments do not copy strings

GoalKicker.com - C Notes for Professionals 37

(c) ketabton.com: The Digital Library

You can use the = operator to copy integers, but you cannot use the = operator to copy strings in C. Strings in C are
represented as arrays of characters with a terminating null-character, so using the = operator will only save the
address (pointer) of a string.

#include <stdio.h>

int main(void) {
int a = 10, b;
char c[] = "abc", =*d;

b = a; /* Integer is copied #*/
a = 20; /* Modifying a leaves b unchanged - b is a 'deep copy' of a #*/
printf("%d %d\n", a, b); /* "20 10" will be printed */

d =c;
/* Only copies the address of the string -
there is still only one string stored in memory #*/

c[1] = 'x';
/* Modifies the original string - d[71] = 'x' will do exactly the same thing */

printf("%s %s\n", c, d); /* "axc axc" will be printed */

return 0;

The above example compiled because we used char *d rather than char d[3]. Using the latter would cause a
compiler error. You cannot assign to arrays in C.

#include <stdio.h>

int main(void) {
char a[] = "abc";
char b[8];

b = a; /* compile error */
printf("%s\n", b);

return 0;
}
Copying strings using standard functions
strepy()

To actually copy strings, strcpy() function is available in string.h. Enough space must be allocated for the
destination before copying.

#include <stdio.h>
#include <string.h>

int main(void) {
char a[] = "abc";
char b[8];

strepy(b, a); /% think "b special equals a" */
printf("%s\n", b); /* "abc" will be printed */

return 0;
}

Version = (99

GoalKicker.com - C Notes for Professionals 38

(c) ketabton.com: The Digital Library

snprintf()

To avoid buffer overrun, snprintf() may be used. It is not the best solution performance-wise since it has to parse
the template string, but it is the only buffer limit-safe function for copying strings readily-available in standard
library, that can be used without any extra steps.

#include <stdio.h>
#include <string.h>

int main(void) {
char a[] = "012345678901234567890" ;
char b[8];

#if 0
strcpy(b, a); /* causes buffer overrun (undefined behavior), so do not execute this here! */
#endif

snprintf(b, sizeof(b), "%s", a); /* does not cause buffer overrun */
printf("%s\n", b); /* "0123456" will be printed */

return 0;
}

strncat()

A second option, with better performance, is to use strncat() (a buffer overflow checking version of strcat()) - it
takes a third argument that tells it the maximum number of bytes to copy:

char dest[32];

dest[B] = '"\0';

strncat(dest, source, sizeof(dest) - 1);
/* copies up to the first (sizeof(dest) - 1) elements of source into dest,
then puts a \@ on the end of dest #*/

Note that this formulation use sizeof(dest) - 1; thisis crucial because strncat() always adds a null byte (good),
but doesn't count that in the size of the string (a cause of confusion and buffer overwrites).

Also note that the alternative — concatenating after a non-empty string — is even more fraught. Consider:

char dst[24] = "Clownfish: ";

char src[] = "Marvin and Nemo":
size_t len = strlen(dst);

strncat(dst, src, sizeof(dst) - len - 1);
printf("%zu: [%s]\n", strlen(dst), dst);

The output is:

23: [Clownfish: Marvin and N]

Note, though, that the size specified as the length was not the size of the destination array, but the amount of space
left in it, not counting the terminal null byte. This can cause big overwriting problems. It is also a bit wasteful; to
specify the length argument correctly, you know the length of the data in the destination, so you could instead
specify the address of the null byte at the end of the existing content, saving strncat() from rescanning it:

strepy(dst, "Clownfish: ");

GoalKicker.com - C Notes for Professionals 39

(c) ketabton.com: The Digital Library

assert(len < sizeof(dst) - 1);
strncat(dst + len, src, sizeof(dst) - len - 1);
printf("%zu: [%s]\n", strlen(dst), dst);

This produces the same output as before, but strncat() doesn't have to scan over the existing content of dst
before it starts copying.

strncpy()

The last option is the strncpy() function. Although you might think it should come first, it is a rather deceptive
function that has two main gotchas:

1. If copying via strncpy() hits the buffer limit, a terminating null-character won't be written.
2. strncpy() always completely fills the destination, with null bytes if necessary.

(Such quirky implementation is historical and was initially intended for handling UNIX file names)

The only correct way to use it is to manually ensure null-termination:

strncpy(b, a, sizeof(b)); /#* the third parameter is destination buffer size */
b[sizeof(b)/sizeof(*b) - 1] = '\@'; /* terminate the string */
printf("%s\n", b); /* "0123456" will be printed */

Even then, if you have a big buffer it becomes very inefficient to use strncpy() because of additional null padding.

Section 6.6: Iterating Over the Characters in a String

If we know the length of the string, we can use a for loop to iterate over its characters:

char * string = "hello world"; /#* This 11 chars long, excluding the @-terminator. #*/
size_t i = 0;
for (; 1 < 11; i++) {

printf("%c\n", string[i]); /* Print each character of the string. */

}

Alternatively, we can use the standard function strlen() to get the length of a string if we don't know what the
string is:

size_t length = strlen(string);
size_t i = 0;
for (; i < length; i++) {
printf("%c\n", string[i]); /* Print each character of the string. */

}

Finally, we can take advantage of the fact that strings in C are guaranteed to be null-terminated (which we already
did when passing it to strlen() in the previous example ;-)). We can iterate over the array regardless of its size and
stop iterating once we reach a null-character:

size_t i = 0;

while (string[i] != "\@"') { /* Stop looping when we reach the null-character. */
printf("%c\n", string[i]); /* Print each character of the string. */
i++;

}

GoalKicker.com - C Notes for Professionals 40

(c) ketabton.com: The Digital Library
Section 6.7: Creating Arrays of Strings

An array of strings can mean a couple of things:

1. An array whose elements are char *s
2. An array whose elements are arrays of chars

We can create an array of character pointers like so:

char * string_array[] = {
"foo",
"bar",
"baz"

+s

Remember: when we assign string literals to char *, the strings themselves are allocated in read-only memory.
However, the array string_array is allocated in read/write memory. This means that we can modify the pointers in
the array, but we cannot modify the strings they point to.

In C, the parameter to main argv (the array of command-line arguments passed when the program was run) is an
array of char :char * argv][].

We can also create arrays of character arrays. Since strings are arrays of characters, an array of strings is simply an
array whose elements are arrays of characters:

char modifiable_string_array_literals[][4] = {
"foo",
"bar",
"baz"

}
This is equivalent to:

char modifiable_string_array[][4] = {
{"f', 'o', 'o", '"\0'},
{'b', 'a', 'r', '\0'},
{'b', 'a', 'z', '\0'}

bé

Note that we specify 4 as the size of the second dimension of the array; each of the strings in our array is actually 4
bytes since we must include the null-terminating character.

Section 6.8: Convert Strings to Number: atoi(), atof()
(dangerous, don't use them)

Warning: The functions atoi, atol, atoll and atof are inherently unsafe, because: If the value of the result cannot be
represented, the behavior is undefined. (7.20.1p1)

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char*x argv)

{
int val;
if (argc < 2)
{

GoalKicker.com - C Notes for Professionals 41

(c) ketabton.com: The Digital Library

printf("Usage: %s <integer>\n", argv[0]);

return 0;

}

val = atoi(argv[1]);

printf("String value = %s, Int value

return 0;

When the string to be converted is a valid decimal integer that is in range, the function works:

$./atoi 100
String value = 100, Int value = 100
$./atoi 200
String value = 200, Int value = 200

For strings that start with a number, followed by something else, only the initial number is parsed:

$./atoi 0x200

0

$./atoi 8123x300
123

In all other cases, the behavior is undefined:

$./atoi hello
Formatting the hard disk...

%d\n", argv[1], val);

Because of the ambiguities above and this undefined behavior, the atoi family of functions should never be used.

e To convert to long int, use strtol() instead of atol().
e To convert to double, use strtod() instead of atof().

Version = C99

e To convertto long long int, use strtoll() instead of atoll().

Section 6.9: string formatted data read/write

Write formatted data to string

int sprintf (char * str, const char * format,

use sprintf function to write float data to string.

#include <stdio.h>
int main ()
{
char buffer [50];
double PI = 3.1415926;
sprintf (buffer, "PI = %.7f", PI);
printf ("%s\n",buffer);
return 0;

GoalKicker.com - C Notes for Professionals

42

(c) ketabton.com: The Digital Library

Read formatted data from string

int sscanf (const char * s, const char * format,

use sscanffunction to parse formatted data.

#include <stdio.h>
int main ()
{
char sentence []="date : 06-06-2012";
char str [50];
int year;
int month;
int day;

sscanf (sentence,"%s : %2d-%2d-%4d", str, &day, &month, &year);
printf ("%s -> %02d-%02d-%4d\n",str, day, month, year);

return 0;

o))5

Section 6.10: Find first/last occurrence of a specific character:

strchr(), strrchr()

The strchr and strrchr functions find a character in a string, that is in a NUL-terminated character array. strchr
return a pointer to the first occurrence and strrchr to the last one.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{

char toSearchFor = '"A';

/* Exit if no second argument is found. */
if (argc !'= 2)

toSearchFor, argv[1], firstOcc-argv[1]); /* A pointer difference's result
is a signed integer and uses the length modifier 't'.

{
printf("Argument missing.\n");
return EXIT_FAILURE;
}
{
char xfirstOcc = strchr(argv[1], toSearchFor);
if (firstOcc != NULL)
{
printf("First position of %c in %s is %td.\n"
}
else
{
printf("%c is not in %s.\n", toSearchFor, argv[1]);
}
}
{

char xlastOcc = strrchr(argv[1], toSearchFor);

if (lastOcc != NULL)
{

printf("Last position of %c in %s is %td.\n",

GoalKicker.com - C Notes for Professionals

43

(c) ketabton.com: The Digital Library

toSearchFor, argv[1], lastOcc-argv([1]);

}

return EXIT_SUCCESS;

Outputs (after having generate an executable named pos):

$./pos AAAAAAA

First position of A in AAAAAAA is 0.

Last position of A in AAAAAAA is 6.

$./pos BAbbbbbAccccAAAAzzz

First position of A in BAbbbbbAccccAAAAzzz is 1.
Last position of A in BAbbbbbAccccAAAAzzz is 15.
$./pos gwerty

A is not in qwerty.

One common use for strrchr is to extract a file name from a path. For example to extract myfile.txt from
C:\Users\eak\myfile.txt:

char *getFileName(const char =*path)

{
char #*pend;
if ((pend = strrchr(path, '\')) != NULL)
return pend + 1;
return NULL;
}

Section 6.11: Copy and Concatenation: strcpy(), strcat()

#include <stdio.h>
#include <string.h>

int main(void)
{
/* Always ensure that your string is large enough to contain the characters
* and a terminating NUL character ('\0')!
*/
char mystring[10];

/* Copy "foo" into “mystring”, until a NUL character is encountered. */
strepy(mystring, "foo");
printf("%s\n", mystring);

/* At this point, we used 4 chars of 'mystring’, the 3 characters of "foo",
* and the NUL terminating byte.
*/

/* Append "bar" to ‘mystring . #*/
strcat(mystring, "bar");
printf("%s\n", mystring);

/* We now use 7 characters of ‘mystring’: "foo" requires 3, "bar" requires 3
* and there is a terminating NUL character ('\@') at the end.
*/

GoalKicker.com - C Notes for Professionals 44

(c) ketabton.com: The Digital Library

/* Copy "bar" into ‘mystring’, overwriting the former contents. */
strcepy(mystring, "bar");
printf("%s\n", mystring);

return 0;

Outputs:

foo
foobar
bar

If you append to or from or copy from an existing string, ensure it is NUL-terminated!

String literals (e.g. "foo") will always be NUL-terminated by the compiler.

Section 6.12: Comparsion: strcmp(), strncmp(), strcasecmp(),
strncasecmp()

The strcasex*-functions are not Standard C, but a POSIX extension.

The stremp function lexicographically compare two null-terminated character arrays. The functions return a
negative value if the first argument appears before the second in lexicographical order, zero if they compare equal,
or positive if the first argument appears after the second in lexicographical order.

#include <stdio.h>
#include <string.h>

void compare(char const *lhs, char const *rhs)

{
int result = strcmp(lhs, rhs); // compute comparison once
if (result < 0) {
printf("%s comes before %s\n", lhs, rhs);
} else if (result == 0) {
printf("%s equals %s\n", 1lhs, rhs);
} else { // last case: result > 0
printf("%s comes after %s\n", lhs, rhs);
}
}
int main(void)
{
compare("BBB", "BBB");
compare("BBB", "CCCCC");
compare("BBB", "AAAAAA");
return 0;
}
Outputs:

BBB equals BBB
BBB comes before CCCCC
BBB comes after AAAAAA

As strcmp, strcasecmp function also compares lexicographically its arguments after translating each character to its
lowercase correspondent:

GoalKicker.com - C Notes for Professionals 45

(c) ketabton.com: The Digital Library

#include <stdio.h>
#include <string.h>

void compare(char const *lhs, char const *rhs)

{
int result = strcasecmp(lhs, rhs); // compute case-insensitive comparison once
if (result < 0) {
printf("%s comes before %s\n", lhs, rhs);
} else if (result == 0) {
printf("%s equals %s\n", lhs, rhs);
} else { // last case: result > 0
printf("%s comes after %s\n", lhs, rhs);
}
}
int main(void)
{
compare("BBB", "bBB");
compare("BBB", "ccCCC");
compare("BBB", "aaaaaa");
return 0;
}
Outputs:

BBB equals bBB
BBB comes before ccCCC
BBB comes after aaaaaa

strncmp and strncasecmp compare at most n characters:

#include <stdio.h>
#include <string.h>

void compare(char const *lhs, char const *rhs, int n)

{
int result = strncmp(lhs, rhs, n); // compute comparison once
if (result < 0) {
printf("%s comes before %s\n", lhs, rhs);
} else if (result == 0) {
printf("%s equals %s\n", lhs, rhs);
} else { // last case: result > 0
printf("%s comes after %s\n", lhs, rhs);
}
}
int main(void)
{
compare("BBB", "Bb", 1);
compare("BBB", "Bb", 2);
compare("BBB", "Bb", 3);
return 0;
}
Outputs:

BBB equals Bb
BBB comes before Bb
BBB comes before Bb

GoalKicker.com - C Notes for Professionals

(c) ketabton.com: The Digital Library

Section 6.13: Safely convert Strings to Number: strtoX
functions

Version = C99

Since C99 the Clibrary has a set of safe conversion functions that interpret a string as a number. Their names are of
the form strtoX, where X is one of 1, ul, d, etc to determine the target type of the conversion

double strtod(char const* p, charxx endptr);
long double strtold(char const* p, char** endptr);

They provide checking that a conversion had an over- or underflow:

double ret = strtod(argv[1], @); /* attempt conversion */

/* check the conversion result. */

if ((ret == HUGE_VAL || ret == -HUGE_VAL) && errno == ERANGE)
return; /% numeric overflow in in string */

else if (ret == HUGE_VAL && errno == ERANGE)
return; /#* numeric underflow in in string */

/* At this point we know that everything went fine so ret may be used #*/

If the string in fact contains no number at all, this usage of strtod returns 0. 0.

If this is not satisfactory, the additional parameter endptr can be used. It is a pointer to pointer that will be pointed
to the end of the detected number in the string. If it is set to 0, as above, or NULL, it is simply ignored.

This endptr parameter provides indicates if there has been a successful conversion and if so, where the number
ended:

char *check = 0;
double ret = strtod(argv[1], &check); /* attempt conversion #*/

/* check the conversion result. */

if (argv[1] == check)
return; /* No number was detected in string */

else if ((ret == HUGE_VAL || ret == -HUGE_VAL) && errno == ERANGE)
return; /* numeric overflow in in string */

else if (ret == HUGE_VAL && errno == ERANGE)
return; /# numeric underflow in in string #*/

/* At this point we know that everything went fine so ret may be used #*/

There are analogous functions to convert to the wider integer types:

long strtol(char const* p, charxx endptr, int nbase);

long long strtoll(char const* p, charxx endptr, int nbase);

unsigned long strtoul(char const* p, char** endptr, int nbase);
unsigned long long strtoull(char const* p, charxx endptr, int nbase);

These functions have a third parameter nbase that holds the number base in which the number is written.

long a = strtol("101", 0, 2); /* a=5L %/

long b = strtol("101", @, 8); /*x b = 65L %/
long ¢ = strtol("101", 0, 18); /* c = 101L */
long d = strtol("101", @, 16); /* d = 257L */
long e = strtol("101", 0, 0); /xe = 101L */

GoalKicker.com - C Notes for Professionals 47

(c) ketabton.com: The Digital Library

long f = strtol("e101", @, @); /* f
long g = strtol("ex101", @, @); /* g

65L */
257L */

The special value 0 for nbase means the string is interpreted in the same way as number literals are interpreted in a
C program: a prefix of @x corresponds to a hexadecimal representation, otherwise a leading @ is octal and all other
numbers are seen as decimal.

Thus the most practical way to interpret a command-line argument as a number would be

int main(int argc, charx argv[] {
if (argc < 1)
return EXIT_FAILURE; /# No number given. #*/

/* use strtoull because size_t may be wide #*/
size_t mySize = strtoull(argv[1], @, 0);

/* then check conversion results. */

return EXIT_SUCCESS;

This means that the program can be called with a parameter in octal, decimal or hexadecimal.

Section 6.14: strspn and strcspn

Given a string, strspn calculates the length of the initial substring (span) consisting solely of a specific list of
characters. strecspn is similar, except it calculates the length of the initial substring consisting of any characters
except those listed:

/%
Provided a string of "tokens" delimited by "separators”, print the tokens along
with the token separators that get skipped.

*/

#include <stdio.h>

#include <string.h>

int main(void)

{
const char sepchars[] = ", .;!?";
char foo[] = ";ball call, .fall gall hall!?.,";
char *s;
int n;

for (s = foo; *s != 0; /*xempty*/) {
/* Get the number of token separator characters. */
n = (int)strspn(s, sepchars);

if (n > 9)
printf("skipping separators: << %.*s >> (length=%d)\n

, N, s, n);

/* Actually skip the separators now. */
s +=n;

/* Get the number of token (non-separator) characters. */
n = (int)strcspn(s, sepchars);

GoalKicker.com - C Notes for Professionals 48

(c) ketabton.com: The Digital Library

if (n > 9)
printf("token found: << %.*s >> (length=%d)\n

o My &y)5
/* Skip the token now. #*/

s += n;

}
printf("== token list exhausted ==\n");

return 0;

Analogous functions using wide-character strings are wesspn and wescspn; they're used the same way.

GoalKicker.com - C Notes for Professionals

49

(c) ketabton.com: The Digital Library

Chapter 7: Literals for numbers,
characters and strings

Section 7.1: Floating point literals

Floating point literals are used to represent signed real numbers. The following suffixes can be used to specify type

of a literal:

Suffix Type Examples
none double 3.1415926 -3E6

f,F float 3.1415926f 2.1E-6F

1,L long double 3.1415926L 1E126L

In order to use these suffixes, the literal must be a floating point literal. For example, 3f is an error, since 3 is an
integer literal, while 3.f or 3.0f are correct. For long double, the recommendation is to always use capital L for the
sake of readability.

Section 7.2: String literals

String literals are used to specify arrays of characters. They are sequences of characters enclosed within double
quotes (e.g. "abcd" and have the type charx).

The L prefix makes the literal a wide character array, of type wchar_t*. For example, L"abcd".

Since C11, there are other encoding prefixes, similar to L:

prefix base type encoding
none char platform dependent
L wchar_t platform dependent
us char UTF-8

u char16_t usually UTF-16

U char32_t usually UTF-32

For the latter two, it can be queried with feature test macros if the encoding is effectively the corresponding UTF
encoding.

Section 7.3: Character literals

Character literals are a special type of integer literals that are used to represent one character. They are enclosed in
single quotes, e.g. 'a’' and have the type int. The value of the literal is an integer value according to the machine's
character set. They do not allow suffixes.

The L prefix before a character literal makes it a wide character of type wchar_t. Likewise since C11 u and U prefixes
make it wide characters of type char16_t and char32_t, respectively.

When intending to represent certain special characters, such as a character that is non-printing, escape sequences
are used. Escape sequences use a sequence of characters that are translated into another character. All escape
sequences consist of two or more characters, the first of which is a backslash \. The characters immediately
following the backslash determine what character literal the sequence is interpreted as.

Escape Sequence Represented Character

GoalKicker.com - C Notes for Professionals 50

(c) ketabton.com: The Digital Library

\b Backspace

\f Form feed

\n Line feed (new line)
\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\' Single quotation mark
\" Double quotation mark
\? Question mark

\nnn Octal value

\xnn... Hexadecimal value

Version = (€89

Escape Sequence Represented Character

\a Alert (beep, bell)

Version = (€99

Escape Sequence Represented Character
\unnnn Universal character name

\Unnnnnnnn Universal character name

A universal character name is a Unicode code point. A universal character name may map to more than one
character. The digits n are interpreted as hexadecimal digits. Depending on the UTF encoding in use, a universal
character name sequence may result in a code point that consists of multiple characters, instead of a single normal
char character.

When using the line feed escape sequence in text mode /0, it is converted to the OS-specific newline byte or byte
sequence.

The question mark escape sequence is used to avoid trigraphs. For example, ??/ is compiled as the trigraph
representing a backslash character "\"', but using ?\?/ would result in the string "2?/".

There may be one, two or three octal numerals n in the octal value escape sequence.

Section 7.4: Integer literals

Integer literals are used to provide integral values. Three numerical bases are supported, indicated by prefixes:

Base Prefix Example
Decimal None 5

Octal 0 0345
Hexadecimal 8x or 8X 0x12AB, OX12AB, 0x12ab, 0x12Ab

Note that this writing doesn't include any sign, so integer literals are always positive. Something like -1 is treated as
an expression that has one integer literal (1) that is negated with a -

The type of a decimal integer literal is the first data type that can fit the value from int and long. Since C99, long
long is also supported for very large literals.

The type of an octal or hexadecimal integer literal is the first data type that can fit the value from int, unsigned,
long, and unsigned long. Since C99, long long and unsigned long long are also supported for very large literals.

GoalKicker.com - C Notes for Professionals 51

(c) ketabton.com: The Digital Library

Using various suffixes, the default type of a literal can be changed.

Suffix Explanation
18, il long int
LL, 11 (since C99) long long int
U u unsigned

The U and L/LL suffixes can be combined in any order and case. It is an error to duplicate suffixes (e.g. provide two
U suffixes) even if they have different cases.

GoalKicker.com - C Notes for Professionals

52

(c) ketabton.com: The Digital Library

Chapter 8: Compound Literals

Section 8.1: Definition/Initialisation of Compound Literals

A compound literal is an unnamed object which is created in the scope where is defined. The concept was first
introduced in C99 standard. An example for compound literal is

Examples from C standard, C11-§6.5.2.5/9:
int *p = (int [2]){ 2, 4 };
p is initialized to the address of the first element of an unnamed array of two ints.

The compound literal is an Ivalue. The storage duration of the unnamed object is either static (if the literal appears
at file scope) or automatic (if the literal appears at block scope), and in the latter case the object's lifetime ends
when control leaves the enclosing block.

void f(void)

{
int *p;
VA 74
p = (int [2]){ *p };
VA V4
}

p is assigned the address of the first element of an array of two ints, the first having the value previously
pointed to by p and the second, zero.[...]

Here p remains valid until the end of the block.
Compound literal with designators

(also from C11)

struct point {
unsigned x;
unsigned vy;

}
extern void drawline(struct point, struct point);

// used somewhere like this
drawline((struct point){.x=1, .y=1}, (struct point){.x=3, .y=4});

A fictive function drawline receives two arguments of type struct point. The first has coordinate values x == 1
andy == 1, whereas the secondhas x == 3andy == 4

Compound literal without specifying array length
int *p = (int []1){ 1, 2, 3};

In this case the size of the array is no specified then it will be determined by the length of the initializer.

Compound literal having length of initializer less than array size specified
int *p = (int [10]){1, 2, 3};

GoalKicker.com - C Notes for Professionals 53

(c) ketabton.com: The Digital Library

rest of the elements of compound literal will be initialized to @ implicitly.
Read-only compound literal

Note that a compound literal is an Ivalue and therefore it's elements can be modifiable. A read-only compound
literal can be specified using const qualifier as (const int[]){1,2}.

Compound literal containing arbitrary expressions
Inside a function, a compound literal, as for any initialization since C99, can have arbitrary expressions.

void foo()

{
int *p;
inti=2; j=25;
/*. .. %/
p = (int [2]){ i+j, i*j };
VA 74
}

GoalKicker.com - C Notes for Professionals

54

(c) ketabton.com: The Digital Library

Chapter 9: Bit-fields

Parameter Description
type-specifier signed, unsigned, int or _Bool

identifier The name for this field in the structure
Size The number of bits to use for this field

Most variables in C have a size that is an integral number of bytes. Bit-fields are a part of a structure that don't
necessarily occupy a integral number of bytes; they can any number of bits. Multiple bit-fields can be packed into a
single storage unit. They are a part of standard C, but there are many aspects that are implementation defined.
They are one of the least portable parts of C.

Section 9.1: Bit-fields

A simple bit-field can be used to describe things that may have a specific number of bits involved.

struct encoderPosition {
unsigned int encoderCounts : 23;
unsigned int encoderTurns : 4;
unsigned int _reserved 3 B¢

b

In this example we consider an encoder with 23 bits of single precision and 4 bits to describe multi-turn. Bit-fields
are often used when interfacing with hardware that outputs data associated with specific number of bits. Another
example could be communication with an FPGA, where the FPGA writes data into your memory in 32 bit sections
allowing for hardware reads:

struct FPGAInfo {
union {
struct bits {
unsigned int bulb10n 1
unsigned int bulb20n 1
unsigned int bulb10ff : 1;
unsigned int bulb20ff : 1
unsigned int jetOn 1
iE
unsigned int data;
iE
i

For this example we have shown a commonly used construct to be able to access the data in its individual bits, or to
write the data packet as a whole (emulating what the FPGA might do). We could then access the bits like this:

FPGAInfo fInfo;

fInfo.data = OxFF34F;

if (fInfo.bits.bulb10n) {
printf("Bulb 1 is on\n");

}

This is valid, but as per the C99 standard 6.7.2.1, item 10:

The order of allocation of bit-fields within a unit (high-order to low-order or low-order to high-order) is
implementation-defined.

GoalKicker.com - C Notes for Professionals 55

(c) ketabton.com: The Digital Library

You need to be aware of endianness when defining bit-fields in this way. As such it may be necessary to use a
preprocessor directive to check for the endianness of the machine. An example of this follows:

typedef union {
struct bits {

#if defined(WIN32) || defined(LITTLE_ENDIAN)
uint8_t commFailure :1;
uint8_t hardwareFailure :1;
uint8_t _reserved :6;

#else
uint8_t _reserved :6;
uint8_t hardwareFailure :1;
uint8_t commFailure :1;

#endif
e
uint8_t data;

} hardwareStatus;

Section 9.2: Using bit-fields as small integers

#include <stdio.h>

int main(void)

{
/* define a small bit-field that can hold values from 6 .. 7 */
struct
{
unsigned int uint3: 3;
} small;
/* extract the right 3 bits from a value */
unsigned int value = 255 - 2; /# Binary 11111101 */
small.uint3 = value; /* Binary 101 %/
printf("%d", small.uint3);
/* This is in effect an infinite loop */
for (small.uint3 = @; small.uint3 < 8; small.uint3++)
{
printf("%d\n", small.uint3);
}
return 0;
}

Section 9.3: Bit-field alignment

Bit-fields give an ability to declare structure fields that are smaller than the character width. Bit-fields are
implemented with byte-level or word-level mask. The following example results in a structure of 8 bytes.

struct C
{
short s; /* 2 bytes */
char c; /* 1 byte */
int bit1l : 1; /* 1 bit */
int nib : 4; /* 4 bits padded up to boundary of 8 bits. Thus 3 bits are padded */
int sept : 7; /* 7 Bits septet, padded up to boundary of 32 bits. #*/
b

GoalKicker.com - C Notes for Professionals

(c) ketabton.com: The Digital Library

The comments describe one possible layout, but because the standard says the alignment of the addressable storage
unit is unspecified, other layouts are also possible.

An unnamed bit-field may be of any size, but they can't be initialized or referenced.

A zero-width bit-field cannot be given a name and aligns the next field to the boundary defined by the datatype of
the bit-field. This is achieved by padding bits between the bit-fields.

The size of structure 'A' is 1 byte.

struct A
{

unsigned char c¢1 : 3;
unsigned char c2 : 4;
unsigned char ¢3 : 1;

|

In structure B, the first unnamed bit-field skips 2 bits; the zero width bit-field after c2 causes ¢3 to start from the
char boundary (so 3 bits are skipped between c2 and c3. There are 3 padding bits after c4. Thus the size of the
structure is 2 bytes.

struct B
{

unsigned char c1 1
unsigned char 2 /* Skips 2 bits in the layout */

unsigned char c2 : 2;

unsigned char :0; /* Causes padding up to next container boundary */
unsigned char c3 4
unsigned char c4 : 1

b

Section 9.4: Don'ts for bit-fields

Arrays of bit-fields, pointers to bit-fields and functions returning bit-fields are not allowed.

The address operator (&) cannot be applied to bit-field members.

The data type of a bit-field must be wide enough to contain the size of the field.

The sizeof () operator cannot be applied to a bit-field.

There is no way to create a typedef for a bit-field in isolation (though you can certainly create a typedef for a
structure containing bit-fields).

ok =

typedef struct mybitfield

{
unsigned char c1 : 20; /* incorrect, see point 3 */
unsigned char c2 : 4; /* correct */
unsigned char ¢3 : 1;
unsigned int x[10]: 5; /% incorrect, see point 1 */
rA;

int SomeFunction(void)

{
// Somewhere in the code
Aa={..7};
printf("Address of a.c2 is %p\n", &a.c2); /* incorrect, see point 2 */
printf("Size of a.c2 is %zu\n", sizeof(a.c2)); /* incorrect, see point 4 */
}

GoalKicker.com - C Notes for Professionals 57

(c) ketabton.com: The Digital Library
Section 9.5: When are bit-fields useful?

A bit-field is used to club together many variables into one object, similar to a structure. This allows for reduced
memory usage and is especially useful in an embedded environment.

e.g. consider the following variables having the ranges as given below.

a --> range @ - 3
b --> range 0 - 1
cC --> range 0 - 7
d --> range 0 - 1
e --> range 0 - 1

If we declare these variables separately, then each has to be at least an 8-bit integer and the total space required
will be 5 bytes. Moreover the variables will not use the entire range of an 8 bit unsigned integer (0-255). Here we
can use bit-fields.

typedef struct {
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
} bit_a;

O O O T o

The bit-fields in the structure are accessed the same as any other structure. The programmer needs to take care
that the variables are written in range. If out of range the behaviour is undefined.

int main(void)

{
bit_a bita_var;
bita_var.a = 2; // to write into element a
printf ("%d",bita_var.a); // to read from element a.
return 0;

}

Often the programmer wants to zero the set of bit-fields. This can be done element by element, but there is second
method. Simply create a union of the structure above with an unsigned type that is greater than, or equal to, the
size of the structure. Then the entire set of bit-fields may be zeroed by zeroing this unsigned integer.

typedef union {
struct {
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

® O O T o

b
uint8_t data;
} union_bit;

Usage is as follows

int main(void)

{
union_bit un_bit;
un_bit.data = 0x00; // clear the whole bit-field
un_bit.a = 2; // write into element a

GoalKicker.com - C Notes for Professionals 58

(c) ketabton.com: The Digital Library

printf ("%d",un_bit.a); // read from element a.
return 0;

In conclusion, bit-fields are commonly used in memory constrained situations where you have a lot of variables
which can take on limited ranges.

GoalKicker.com - C Notes for Professionals

59

(c) ketabton.com: The Digital Library

Chapter 10: Arrays

Arrays are derived data types, representing an ordered collection of values ("elements") of another type. Most
arrays in C have a fixed number of elements of any one type, and its representation stores the elements
contiguously in memory without gaps or padding. C allows multidimensional arrays whose elements are other
arrays, and also arrays of pointers.

C supports dynamically allocated arrays whose size is determined at run time. C99 and later supports variable
length arrays or VLAs.

Section 10.1: Declaring and initializing an array

The general syntax for declaring a one-dimensional array is

type arrName[size];

where type could be any built-in type or user-defined types such as structures, arrName is a user-defined identifier,
and size is an integer constant.

Declaring an array (an array of 10 int variables in this case) is done like this:

int array[10];

it now holds indeterminate values. To ensure it holds zero values while declaring, you can do this:
int array[10] = {@};

Arrays can also have initializers, this example declares an array of 10 int's, where the first 3 int's will contain the
values 1, 2, 3, all other values will be zero:

int array[10] = {1, 2, 3};

In the above method of initialization, the first value in the list will be assigned to the first member of the array, the
second value will be assigned to the second member of the array and so on. If the list size is smaller than the array
size, then as in the above example, the remaining members of the array will be initialized to zeros. With designated
list initialization (ISO C99), explicit initialization of the array members is possible. For example,

int array[5] = {[2] = 5, [1] = 2, [4] = 9}; /* array is {0, 2, 5, 0, 9} */

In most cases, the compiler can deduce the length of the array for you, this can be achieved by leaving the square
brackets empty:

int array|[]
int array|[]

{1, 2, 3}; /* an array of 3 int's */
{[3] = 8, [@] = 9}; /* size is 4 */

Declaring an array of zero length is not allowed.
Version = (€99 Version < C11

Variable Length Arrays (VLA for short) were added in C99, and made optional in C11. They are equal to normal
arrays, with one, important, difference: The length doesn't have to be known at compile time. VLA's have automatic
storage duration. Only pointers to VLA's can have static storage duration.

GoalKicker.com - C Notes for Professionals 60

(c) ketabton.com: The Digital Library

size_t m = calc_length(); /* calculate array length at runtime */
int vla[m]; /* create array with calculated length */

Important:

VLA's are potentially dangerous. If the array vla in the example above requires more space on the stack than
available, the stack will overflow. Usage of VLA's is therefore often discouraged in style guides and by books and
exercises.

Section 10.2: Iterating through an array efficiently and row-
major order

Arrays in C can be seen as a contiguous chunk of memory. More precisely, the last dimension of the array is the
contiguous part. We call this the row-major order. Understanding this and the fact that a cache fault loads a
complete cache line into the cache when accessing uncached data to prevent subsequent cache faults, we can see
why accessing an array of dimension 10000x10000 with array[8][0] would potentially load array[0][1] in cache,
but accessing array[1][8] right after would generate a second cache fault, since it is sizeof (type)*10000 bytes

away from array[0][@], and therefore certainly not on the same cache line. Which is why iterating like this is
inefficient:

#define ARRLEN 10000
int array[ARRLEN][ARRLEN];

size_t i, j;
for (i = ©; i < ARRLEN; ++i)

{
for(j = ©; j < ARRLEN; ++j)
{
array[jl[i] = @;
}
}

And iterating like this is more efficient:

#define ARRLEN 10000

int array[ARRLEN][ARRLEN];
size_t i, j;

for (1 = @; i < ARRLEN; ++i)

{
for(j = ©; j < ARRLEN; ++j)
{
array[i][j] = @;
}
}

In the same vein, this is why when dealing with an array with one dimension and multiple indexes (let's say 2
dimensions here for simplicity with indexes i and j) it is important to iterate through the array like this:

#define DIM_X 10
#define DIM_Y 20

int array[DIM_X*DIM_Y];

size_t i, j;
for (i = 0; i < DIM_X; ++i)

GoalKicker.com - C Notes for Professionals 61

(c) ketabton.com: The Digital Library

{
for(j = 0; j < DIM_Y; ++j)
{
array[i*DIM_Y+j] = 0;
}
}

Or with 3 dimensions and indexes i,j and k:

#define DIM_X 10
#define DIM_Y 20
#define DIM_Z 30

int array[DIM_X*DIM_Y*DIM_Z];

size_t i, j, k;
for (1 = @; 1 < DIM_X; ++i)

{
for(j = 0; j < DIM_Y; ++j)
{
for (k = ©; k < DIM_Z; ++k)
{
array[i*DIM_Y*DIM_Z+j*DIM_Z+k] = 0;
}
}
}

Or in a more generic way, when we have an array with N1 x N2 x ... x Nd elements, d dimensions and indices noted
as n1,n2,...,nd the offset is calculated like this

d d
Ng+ Na+(ng_1 + Ng_1-(naa+Nga-(--++ Nang)-++))) = z H Ne | ng
F=1 \t=k+1

Picture/formula taken from: https://en.wikipedia.org/wiki/Row-major_order

Section 10.3: Array length

Arrays have fixed lengths that are known within the scope of their declarations. Nevertheless, it is possible and
sometimes convenient to calculate array lengths. In particular, this can make code more flexible when the array
length is determined automatically from an initializer:

int array[] = { @, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

/* size of ‘array’ in bytes */
size_t size = sizeof(array);

/* number of elements in “array = */
size_t length = sizeof(array) / sizeof(array[0]);

However, in most contexts where an array appears in an expression, it is automatically converted to ("decays to") a
pointer to its first element. The case where an array is the operand of the sizeof operator is one of a small number
of exceptions. The resulting pointer is not itself an array, and it does not carry any information about the length of
the array from which it was derived. Therefore, if that length is needed in conjunction with the pointer, such as
when the pointer is passed to a function, then it must be conveyed separately.

For example, suppose we want to write a function to return the last element of an array of int. Continuing from the

GoalKicker.com - C Notes for Professionals 62

(c) ketabton.com: The Digital Library

above, we might call it like so:

/* array will decay to a pointer, so the length must be passed separately */
int last = get_last(array, length);

The function could be implemented like this:

int get_last(int input[], size_t length) {
return input[length - 1];
}

Note in particular that although the declaration of parameter input resembles that of an array, it in fact declares
input as a pointer (to int). It is exactly equivalent to declaring input as int *input. The same would be true even
if a dimension were given. This is possible because arrays cannot ever be actual arguments to functions (they decay
to pointers when they appear in function call expressions), and it can be viewed as mnemonic.

It is a very common error to attempt to determine array size from a pointer, which cannot work. DO NOT DO THIS:

int BAD_get_last(int input[]) {
/* INCORRECTLY COMPUTES THE LENGTH OF THE ARRAY INTO WHICH input POINTS: */
size_t length = sizeof(input) / sizeof(input[0]));

return input[length - 1]; /* Oops -- not the droid we are looking for */

In fact, that particular error is so common that some compilers recognize it and warn about it. clang, for instance,
will emit the following warning:

warning: sizeof on array function parameter will return size of 'int *' instead of 'int []' [-
Wsizeof-array-argument]
int length = sizeof(input) / sizeof(input[@]);
A

note: declared here
int BAD_get_last(int input[])

A

Section 10.4: Passing multidimensional arrays to a function

Multidimensional arrays follow the same rules as single-dimensional arrays when passing them to a function.
However the combination of decay-to-pointer, operator precedence, and the two different ways to declare a
multidimensional array (array of arrays vs array of pointers) may make the declaration of such functions non-
intuitive. The following example shows the correct ways to pass multidimensional arrays.

#include <assert.h>
#include <stdlib.h>

/* When passing a multidimensional array (i.e. an array of arrays) to a
function, it decays into a pointer to the first element as usual. But only
the top level decays, so what is passed is a pointer to an array of some fixed
size (4 in this case). */
void f(int x[][4]) {
assert(sizeof(*x) == sizeof(int) * 4);

}

/* This prototype is equivalent to f(int x[][4]).
The parentheses around #*x are required because [index] has a higher
precedence than #*expr, thus int *x[4] would normally be equivalent to int

GoalKicker.com - C Notes for Professionals 63

(c) ketabton.com: The Digital Library

*(x[4]), i.e. an array of 4 pointers to int. But if it's declared as a
function parameter, it decays into a pointer and becomes int #*#Xx,
which is not compatable with x[2][4]. */
void g(int (*x)[4]) {
assert(sizeof(*x) == sizeof(int) * 4);

}

/* An array of pointers may be passed to this, since it'll decay into a pointer
to pointer, but an array of arrays may not. */

void h(int **x) {
assert(sizeof(*x) == sizeof(intx));

}

int main(void) {
int foo[2]1[4];
f(foo);
g(foo);

/* Here we're dynamically creating an array of pointers. Note that the
size of each dimension is not part of the datatype, and so the type
system just treats it as a pointer to pointer, not a pointer to array
or array of arrays. #*/

int **bar = malloc(sizeof(*bar) * 2);

assert(bar);

for (size_t i =0; i < 2; i++) {

bar[i] = malloc(sizeof(*bar[i]) * 4);
assert(bar[i]);

}
h(bar);
for (size_t i =0; i < 2; i++) {

free(bar[i]);

}
free(bar);

See also

Passing in Arrays to Functions

Section 10.5: Multi-dimensional arrays

The C programming language allows multidimensional arrays. Here is the general form of a multidimensional array
declaration -

type name[sizel][size2]...[sizeN];
For example, the following declaration creates a three dimensional (5 x 10 x 4) integer array:
int arr[5][10][4];
Two-dimensional Arrays
The simplest form of multidimensional array is the two-dimensional array. A two-dimensional array is, in essence, a

list of one-dimensional arrays. To declare a two-dimensional integer array of dimensions m x n, we can write as
follows:

GoalKicker.com - C Notes for Professionals 64

(c) ketabton.com: The Digital Library

type arrayName[m][n];

Where type can be any valid C data type (int, float, etc.) and arrayName can be any valid C identifier. A two-
dimensional array can be visualized as a table with m rows and n columns. Note: The order does matter in C. The

array int a[4][3] is not the same as the array int a[3][4]. The number of rows comes first as C is a row-major
language.

A two-dimensional array a, which contains three rows and four columns can be shown as follows:

Column 0 Column 1 Column 2 Column 3
Row 0 af0][0] af0][1] a[0][2] a[0][3]
Row 1 a[1][0] af1][1] | a[1][2] a[1][3]
Row 2 af2][0] a[2][1] a[2][2] a[2][3]

Thus, every element in the array a is identified by an element name of the form a[i][j], where a is the name of the
array, i represents which row, and j represents which column. Recall that rows and columns are zero indexed. This
is very similar to mathematical notation for subscripting 2-D matrices.

Initializing Two-Dimensional Arrays

Multidimensional arrays may be initialized by specifying bracketed values for each row. The following define an
array with 3 rows where each row has 4 columns.

int a[3][4] = {
{6, 1, 2, 3} , /* initializers for row indexed by 6 */
{4, 5, 6, 7} , /* initializers for row indexed by 1 */
{8, 9, 10, 11} /* initializers for row indexed by 2 */
H

The nested braces, which indicate the intended row, are optional. The following initialization is equivalent to the
previous example:

int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

While the method of creating arrays with nested braces is optional, it is strongly encouraged as it is more readable
and clearer.

Accessing Two-Dimensional Array Elements

An element in a two-dimensional array is accessed by using the subscripts, i.e., row index and column index of the
array. For example -

int val = a[2][3];

The above statement will take the 4th element from the 3rd row of the array. Let us check the following program
where we have used a nested loop to handle a two-dimensional array:

#include <stdio.h>
int main () {

/* an array with 5 rows and 2 columns*/
int a[5][2] = { {e,0}, {1,2}, {2,4}, {3,6},{4,8}};

GoalKicker.com - C Notes for Professionals 65

(c) ketabton.com: The Digital Library
int 1, j;

/* output each array element's value */
for (1 =0; i <5; i++) {

for (j =0; j <2; j++) {
printf("a[%d][%d] = %d\n", i,j, alillj]);
}
}

return 0;

When the above code is compiled and executed, it produces the following result:

al0][0]:
al0][1]:
a[l][o]:
a[1ll[1]:
al2][0]:
al2]1[1]:
a[3][0]:
a[3]1[1]:
al4][0]:
al41[1]:

O~ OWSRANNREFEOO

Three-Dimensional array:

A 3D array is essentially an array of arrays of arrays: it's an array or collection of 2D arrays, and a 2D array is an
array of 1D arrays.

31 32 33 2" 2-D Array
21 22 23 1% 2-D Array
11 12 13 |j=—Q" 2-D Array

14 16 16

17 18 19

3D array memory map:

[1)] ,qrra:,l > 1= 20 ,!I||_—.:|:|| - | —]]] Ay — -

A0 1R T WS I WY W12 W e e el Bied LEF.

Initializing a 3D Array:

double cprogram[3][2][4]={

{{-0.1, 0.22, 0.3, 4.3}, {2.3, 4.7, -0.9, 2}},
{{0.9, 3.6, 4.5, 4}, {1.2, 2.4, 0.22, -1}},

{{8.2, 3.12, 34.2, 0.1}, {2.1, 3.2, 4.3, -2.0}}

H

We can have arrays with any number of dimensions, although it is likely that most of the arrays that are created will
be of one or two dimensions.

GoalKicker.com - C Notes for Professionals 66

(c) ketabton.com: The Digital Library

Section 10.6: Define array and access array element

#include <stdio.h>

#define ARRLEN (10)

int main (void)

{

int n[ARRLEN]; /* n is an array of 10 integers */

size_t 1,

j; /* Use size_t to address memory, that is to index arrays, as its guaranteed to

be wide enough to address all of the possible available memory.

Using signed integers to do so should be considered a special use case,
and should be restricted to the uncommon case of being in the need of

negative indexes. */

/* Initialize elements of array n. #*/

0; 1 < ARRLEN ; i++)

=i + 100; /* Set element at location i to i + 100. */

each array element's value. */
0; j < ARRLEN ; j++)

printf("Element[%zu] = %d\n", j, n[j]);

for (i =
{

n[i]
}
/* Output
for (j =
{
}
return 0;

Section 10.7: Clearing array contents (zeroing)

Sometimes it's necessary to set an array to zero, after the initialization has been done.

#include <stdlib.h> /* for EXIT_SUCCESS */

#define ARRLEN (10)

int main(void)

{

size_t 1i;
for(i = 0;

array[i]

int array[ARRLEN]; /* Allocated but not initialised, as not defined static or global. */

i < ARRLEN; ++1i)

:e'

return EXIT_SUCCESS;

An common short cut to the above loop is to use memset () from <string.h>. Passing array as shown below makes
it decay to a pointer to its 1st element.

memset(array, 0, ARRLEN * sizeof (int)); /# Use size explicitly provided type (int here). */

or

GoalKicker.com - C Notes for Professionals

67

(c) ketabton.com: The Digital Library

memset(array, 0, ARRLEN * sizeof *array); /* Use size of type the pointer is pointing to. */

As in this example array is an array and not just a pointer to an array's 1st element (see Array length on why this is
important) a third option to 0-out the array is possible:

memset(array, 0, sizeof array); /+* Use size of the array itself. #/

Section 10.8: Setting values in arrays

Accessing array values is generally done through square brackets:

int val;
int array[10];

/* Setting the value of the fifth element to 5: */

array[4] = 5;

/* The above is equal to: */

x(array + 4) = 5;

/* Reading the value of the fifth element: #*/

val = array[4];

As a side effect of the operands to the + operator being exchangeable (--> commutative law) the following is

equivalent:
x(array + 4) = 5;
*(4 + array) = 5;

so as well the next statements are equivalent:

array|[4]
4[array]

3;

and those two as well:

val = array[4];

5; /* Weird but valid C ... #*/

val = 4[array]; /* Weird but valid C ... */

C doesn't perform any boundary checks, accessing contents outside of the declared array is undefined (Accessing
memory beyond allocated chunk):

int val;
int array[10];

array[4] = 5;

val = array[4];
array[19] = 20;
val = array[15];

/*
/*
/*
/*

Section 10.9:
defined size

#include <stdio.h>

#include <stdlib.

h>

ok */
ok */
undefined behavior */
undefined behavior */

Allocate and zero-initialize an array with user

GoalKicker.com - C Notes for Professionals

68

(c) ketabton.com: The Digital Library

int main (void)

{

This program tries to scan in an unsigned integer value from standard input, allocate a block of memory for an

int * pdata;
size_t n;

printf ("Enter the size of the array: ");
fflush(stdout); /* Make sure the prompt gets printed to buffered stdout. #/

if (1 != scanf("%zu", &n)) /* If zu is not supported (Windows?) use lu. */
{

fprintf("scanf() did not read a in proper value.\n");
exit(EXIT_FAILURE);

}

pdata = calloc(n, sizeof #*pdata);
if (NULL == pdata)
{

perror("calloc() failed"); /* Print error. */
exit(EXIT_FAILURE);

}

free(pdata); /* Clean up. */

return EXIT_SUCCESS;

array of n elements of type int by calling the calloc() function. The memory is initialized to all zeros by the latter.

In case of success the memory is releases by the call to free().

Section 10.10: Iterating through an array using pointers

#include <stdio.h>
#define SIZE (10)
int main()

{

size_t i = 0;
int *p = NULL;
int a[SIZE];

/* Setting up the values to be i*i */
for(i = 0; i < SIZE; ++1i)
{

af[i] =1 » 1i;

}

/* Reading the values using pointers */
for(p = a; p < a + SIZE; ++p)

{

printf("%d\n", *p);
}
return 0;

Here, in the initialization of p in the first for loop condition, the array a decays to a pointer to its first element, as it
would in almost all places where such an array variable is used.

Then, the ++p performs pointer arithmetic on the pointer p and walks one by one through the elements of the

GoalKicker.com - C Notes for Professionals

69

(c) ketabton.com: The Digital Library

array, and refers to them by dereferencing them with *p.

GoalKicker.com - C Notes for Professionals

70

(c) ketabton.com: The Digital Library

Chapter 11: Linked lists
Section 11.1: A doubly linked list

An example of code showing how nodes can be inserted at a doubly linked list, how the list can easily be reversed,

and how it can be printed in reverse.

#include <stdio.h>
#include <stdlib.h>

/* This data is not always stored in a structure, but it is sometimes for ease of use */
struct Node {

/* Sometimes a key is also stored and used in the functions */

int data;

struct Node* next;

struct Node* previous;

b

void insert_at_beginning(struct Node **pheadNode, int value);
void insert_at_end(struct Node **pheadNode, int value);

void print_list(struct Node *headNode);
void print_list_backwards(struct Node *headNode);

void free_list(struct Node xheadNode);

int main(void) {
/* Sometimes in a doubly linked list the last node is also stored */
struct Node *head = NULL;

printf("Insert a node at the beginning of the list.\n");
insert_at_beginning(&head, 5);
print_list(head);

printf("Insert a node at the beginning, and then print the list backwards\n");
insert_at_beginning(&head, 10);
print_list_backwards(head);

printf("Insert a node at the end, and then print the list forwards.\n");

insert_at_end(&head, 15);
print_list(head);

free_list(head);

return 0;

}

void print_list_backwards(struct Node *headNode) {
if (NULL == headNode)
{
return;
}
/%
Iterate through the list, and once we get to the end, iterate backwards to print
out the items in reverse order (this is done with the pointer to the previous node).
This can be done even more easily if a pointer to the last node is stored.
*/
struct Node *i = headNode;
while (i->next != NULL) {

GoalKicker.com - C Notes for Professionals

71

(c) ketabton.com: The Digital Library

i = i->next; /* Move to the end of the list */

}

while (i != NULL) {
printf("Value: %d\n", i->data);
i = i->previous;
}
}

void print_list(struct Node *headNode) {
/* Iterate through the list and print out the data member of each node */
struct Node *i;
for (i = headNode; i !'= NULL; i = i->next) {
printf("Value: %d\n", i->data);
}
}

void insert_at_beginning(struct Node **pheadNode, int value) {
struct Node *currentNode;

if (NULL == pheadNode)
{
return;
}
/%
This is done similarly to how we insert a node at the beginning of a singly linked
list, instead we set the previous member of the structure as well
*/
currentNode = malloc(sizeof *currentNode);

currentNode->next = NULL;
currentNode->previous = NULL;
currentNode->data = value;

if (*pheadNode == NULL) { /# The list is empty */
*pheadNode = currentNode;
return;

}

currentNode->next = *pheadNode;
(*pheadNode)->previous = currentNode;
*pheadNode = currentNode;

}

void insert_at_end(struct Node **pheadNode, int value) {
struct Node *currentNode;

if (NULL == pheadNode)
{

return;

}

/*

This can, again be done easily by being able to have the previous element. It

would also be even more useful to have a pointer to the last node, which is commonly
used.

*/

currentNode = malloc(sizeof *currentNode);
struct Node *i = *pheadNode;

currentNode->data = value;

GoalKicker.com - C Notes for Professionals

72

(c) ketabton.com: The Digital Library

currentNode->next = NULL;
currentNode->previous = NULL;

if (*pheadNode == NULL) {
*pheadNode = currentNode;
return;

}

while (i->next != NULL) { /* Go to the end of the list #*/
i = i->next;

}

i->next = currentNode;
currentNode->previous = 1i;

}

void free_list(struct Node *node)
while (node != NULL) {
struct Node *next = node->next;
free(node) ;
node = next;

Note that sometimes, storing a pointer to the last node is useful (it is more efficient to simply be able to jump
straight to the end of the list than to need to iterate through to the end):

struct Node *lastNode = NULL;

In which case, updating it upon changes to the list is needed.
Sometimes, a key is also used to identify elements. It is simply a member of the Node structure:

struct Node {
int data;
int key;
struct Node* next;
struct Node* previous;

}
The key is then used when any tasks are performed on a specific element, like deleting elements.

Section 11.2: Reversing a linked list

You can also perform this task recursively, but | have chosen in this example to use an iterative approach. This task
is useful if you are inserting all of your nodes at the beginning of a linked list. Here is an example:

#include <stdio.h>
#include <stdlib.h>

#define NUM_ITEMS 10

struct Node {
int data;
struct Node *next;

b

void insert_node(struct Node **headNode, int nodeValue, int position);
void print_list(struct Node *headNode);

GoalKicker.com - C Notes for Professionals 73

(c) ketabton.com: The Digital Library

void reverse_list(struct Node **headNode);

int main(void) {
int 1i;
struct Node *head = NULL;

for(i = 1; i <= NUM_ITEMS; i++) {
insert_node(&head, i, i);

}
print_list(head);

printf("I will now reverse the linked list\n");
reverse_list(&head);

print_list(head);

return 0;

void print_list(struct Node *headNode) {
struct Node *iterator;

for(iterator = headNode; iterator != NULL; iterator = iterator->next) {
printf("Value: %d\n", iterator->data);
}
}

void insert_node(struct Node **headNode, int nodeValue, int position) {
int i;
struct Node *currentNode = (struct Node *)malloc(sizeof(struct Node));
struct Node *nodeBeforePosition = *headNode;

currentNode->data = nodeValue;

if(position == 1) {
currentNode->next = *headNode;
*headNode = currentNode;
return;

}

for (i = ©; i < position - 2; i++) {
nodeBeforePosition = nodeBeforePosition->next;

}

currentNode->next = nodeBeforePosition->next;
nodeBeforePosition->next = currentNode;

}

void reverse_list(struct Node **headNode)
struct Node *iterator = *headNode;
struct Node *previousNode = NULL;
struct Node *nextNode = NULL;

while (iterator != NULL) {
nextNode = iterator->next;
iterator->next = previousNode;
previousNode = iterator;
iterator = nextNode;

/* Iterator will be NULL by the end, so the last node will be stored in
previousNode. We will set the last node to be the headNode */
*headNode = previousNode;

GoalKicker.com - C Notes for Professionals

74

(c) ketabton.com: The Digital Library

}

Explanation for the Reverse List Method

We start the previousNode out as NULL, since we know on the first iteration of the loop, if we are looking for the
node before the first head node, it will be NULL. The first node will become the last node in the list, and the next
variable should naturally be NULL.

Basically, the concept of reversing the linked list here is that we actually reverse the links themselves. Each node's
next member will become the node before it, like so:

Head -> 1 -> 2 -> 3 -> 4 -> 5
Where each number represents a node. This list would become:
1T <- 2 <-3 <-4 <- 5 <- Head

Finally, the head should point to the 5th node instead, and each node should point to the node previous of it.

Node 1 should point to NULL since there was nothing before it. Node 2 should point to node 1, node 3 should point
to node 2, et cetera.

However, there is one small problem with this method. If we break the link to the next node and change it to the
previous node, we will not be able to traverse to the next node in the list since the link to it is gone.

The solution to this problem is to simply store the next element in a variable (nextNode) before changing the link.

Section 11.3: Inserting a node at the nth position

So far, we have looked at inserting a node at the beginning of a singly linked list. However, most of the times you
will want to be able to insert nodes elsewhere as well. The code written below shows how it is possible to write an
insert() function to insert nodes anywhere in the linked lists.

#include <stdio.h>
#include <stdlib.h>

struct Node {
int data;
struct Node* next;

b

struct Node* insert(struct Node* head, int value, size_t position);
void print_list (struct Node* head);

int main(int argc, char *xargv[]) {
struct Node #*head = NULL; /# Initialize the list to be empty #*/

/* Insert nodes at positions with values: #*/
head = insert(head, 1, 0);

head = insert(head, 100, 1);
head = insert(head, 21, 2);
head = insert(head, 2, 3);
head = insert(head, 5, 4);
head = insert(head, 42, 2);

print_list(head);
return 0;

GoalKicker.com - C Notes for Professionals 75

(c) ketabton.com: The Digital Library
}

struct Node* insert(struct Nodex head, int value, size_t position) {
size_t i = 0;
struct Node *currentNode;

/* Create our node */
currentNode = malloc(sizeof *currentNode);
/* Check for success of malloc() here! */

/* Assign data */
currentNode->data = value;

/* Holds a pointer to the 'next' field that we have to link to the new node.
By initializing it to &head we handle the case of insertion at the beginning. */
struct Node **nextForPosition = &head;
/* Iterate to get the 'next' field we are looking for.
Note: Insert at the end if position is larger than current number of elements. */
for (i = ©; i < position && *nextForPosition != NULL; i++) {
/* nextForPosition is pointing to the 'next' field of the node.
So *nextForPosition is a pointer to the next node.
Update it with a pointer to the 'next' field of the next node. */
nextForPosition = &(*nextForPosition)->next;

}

/* Here, we are taking the link to the next node (the one our newly inserted node should
point to) by dereferencing nextForPosition, which points to the 'next' field of the node
that is in the position we want to insert our node at.

We assign this link to our next value. #*/

currentNode->next = *nextForPosition;

/* Now, we want to correct the link of the node before the position of our
new node: it will be changed to be a pointer to our new node. */
*nextForPosition = currentNode;

return head;

}

void print_list (struct Node* head) {
/* Go through the list of nodes and print out the data in each node #*/
struct Nodex i = head;
while (i != NULL) {
printf("%d\n", i->data);
i = i->next;

Section 11.4: Inserting a node at the beginning of a singly
linked list

The code below will prompt for numbers and continue to add them to the beginning of a linked list.

/* This program will demonstrate inserting a node at the beginning of a linked list */

#include <stdio.h>
#include <stdlib.h>

struct Node {
int data;
struct Node* next;

b

GoalKicker.com - C Notes for Professionals

(c) ketabton.com: The Digital Library

void insert_node (struct Node **head, int nodeValue);
void print_list (struct Node =*head);

int main(int argc, char *argv[]) {
struct Node* headNode;
headNode = NULL; /* Initialize our first node pointer to be NULL. */
size_t listSize, i;

do {
printf("How many numbers would you like to input?\n");
} while(1 !'= scanf("%zu", &listSize));

for (i = 0; i < listSize; i++) {
int numToAdd;
do {
printf("Enter a number:\n");
} while (1 !'= scanf("%d", &numToAdd));

insert_node (&headNode, numToAdd);
printf("Current list after your inserted node: \n");
print_list(headNode) ;

}

return 0;

}

void print_list (struct Node =*head)
struct node* currentNode = head;

/* Iterate through each link. */
while (currentNode != NULL) {
printf("Value: %d\n", currentNode->data);
currentNode = currentNode -> next;
}
}

void insert_node (struct Node **head, int nodeValue) {
struct Node *currentNode = malloc(sizeof *currentNode);
currentNode->data nodeValue;
currentNode->next = (*head);

*head = currentNode;

Explanation for the Insertion of Nodes
In order to understand how we add nodes at the beginning, let's take a look at possible scenarios:

1. The list is empty, so we need to add a new node. In which case, our memory looks like this where HEAD is a
pointer to the first node:

| HEAD | --> NULL

The line currentNode->next = xheadNode; will assign the value of currentNode->next to be NULL since headNode
originally starts out at a value of NULL.

Now, we want to set our head node pointer to point to our current node.

|HEAD | --> |CURRENTNODE| --> NULL /* The head node points to the current node */

GoalKicker.com - C Notes for Professionals 77

(c) ketabton.com: The Digital Library

This is done with *headNode = currentNode;

2. The listis already populated; we need to add a new node to the beginning. For the sake of simplicity, let's
start out with 1 node:

With currentNode->next = *headNode, the data structure looks like this:

currentNode --> HEAD --> POINTER TO FIRST NODE --> NULL

HEAD -> currentNode --> NODE -> NULL

This is done with *headNode = currentNode;

GoalKicker.com - C Notes for Professionals

78

(c) ketabton.com: The Digital Library

Chapter 12: Enumerations

Section 12.1: Simple Enumeration

An enumeration is a user-defined data type consists of integral constants and each integral constant is given a
name. Keyword enum is used to define enumerated data type.

If you use enum instead of int or string/ char#, you increase compile-time checking and avoid errors from passing
in invalid constants, and you document which values are legal to use.

Example 1
enum color{ RED, GREEN, BLUE };

void printColor(enum color chosenColor)

{
const char *color_name = "Invalid color";
switch (chosenColor)
{
case RED:
color_name = "RED";
break;
case GREEN:
color_name = "GREEN";
break;
case BLUE:
color_name = "BLUE";
break;
}
printf("%s\n", color_name);
}

With a main function defined as follows (for example):

int main(){
enum color chosenColor;
printf("Enter a number between 0 and 2");
scanf("%d", (intx)&chosenColor);
printColor(chosenColor);
return 9;

}

Version = (C99

Example 2

(This example uses designated initializers which are standardized since C99.)

enum week{ MON, TUE, WED, THU, FRI, SAT, SUN };

static const char* const dow[] = {
[MON] = "Mon", [TUE] = "Tue", [WED] "Wed",
[THU] = "Thu", [FRI] = "Fri", [SAT] = "Sat", [SUN] = "Sun" };

void printDayOfWeek(enum week day)

{
printf("%s\n", dow[day]);

}

GoalKicker.com - C Notes for Professionals 79

(c) ketabton.com: The Digital Library

The same example using range checking:

enum week{ DOW_INVALID = -1,
MON, TUE, WED, THU, FRI, SAT, SUN,
DOW_MAX };

static const char* const dow[] = {
[MON] = "Mon", [TUE] = "Tue", [WED]
[THU] = "Thu", [FRI] = "Fri", [SAT]

"Wed"
"Sat", [SUN] = "Sun" };

void printDayOfWeek(enum week day)

{
assert(day > DOW_INVALID && day < DOW_MAX);

printf("%s\n", dow[day]);

Section 12.2: enumeration constant without typename

Enumeration types can also be declared without giving them a name:

enum { buffersize = 256, };
static unsigned char buffer [buffersize] = { 0 };

This enables us to define compile time constants of type int that can as in this example be used as array length.

Section 12.3: Enumeration with duplicate value
An enumerations value in no way needs to be unique:

#include <stdlib.h> /% for EXIT_SUCCESS */
#include <stdio.h> /* for printf() =*/

enum Dupes
{

Base, /* Takes 0 */

One, /* Takes Base + 1 */

Two, /* Takes One + 1 */

Negative = -1,

AnotherZero /* Takes Negative + 1 == 0, sigh */
b

int main(void)

{
printf("Base = %d\n", Base);
printf("One = %d\n", One);
printf("Two = %d\n", Two);
printf("Negative = %d\n", Negative);
printf("AnotherZero = %d\n", AnotherZero);

return EXIT_SUCCESS;

The sample prints:

Base = 0
One =1
Two = 2

GoalKicker.com - C Notes for Professionals

80

(c) ketabton.com: The Digital Library

Negative = -1
AnotherZero = 0

Section 12.4: Typedef enum

There are several possibilities and conventions to name an enumeration. The first is to use a tag name just after the
enum keyword.

enum color

{
RED,
GREEN,
BLUE
bé

This enumeration must then always be used with the keyword and the tag like this:
enum color chosenColor = RED;

If we use typedef directly when declaring the enum, we can omit the tag name and then use the type without the
enum keyword:

typedef enum

{
RED,
GREEN,
BLUE
} color;

color chosenColor = RED;

But in this latter case we cannot use it as enum color, because we didn't use the tag name in the definition. One
common convention is to use both, such that the same name can be used with or without enum keyword. This has
the particular advantage of being compatible with C++

enum color /* as in the first example */
{

RED,

GREEN,

BLUE
i

typedef enum color color; /* also a typedef of same identifier */

color chosenColor = RED;
enum color defaultColor = BLUE;

Function:

void printColor ()
{
if (chosenColor == RED)
{
printf("RED\n");
}
else if (chosenColor == GREEN)

{
printf("GREEN\n");

GoalKicker.com - C Notes for Professionals 81

(c) ketabton.com: The Digital Library

}
else if (chosenColor == BLUE)
{
printf("BLUE\n");
}

For more on typedef see Typedef

GoalKicker.com - C Notes for Professionals

82

(c) ketabton.com: The Digital Library

Chapter 13: Structs

Structures provide a way to group a set of related variables of diverse types into a single unit of memory. The
structure as a whole can be referenced by a single name or pointer; the structure members can be accessed
individually too. Structures can be passed to functions and returned from functions. They are defined using the
keyword struct.

Section 13.1: Flexible Array Members

Version = (99
Type Declaration

A structure with at least one member may additionally contain a single array member of unspecified length at the
end of the structure. This is called a flexible array member:

struct ex1

{
size_t foo;
int flex|[];
iE
struct ex2_header
{
int foo;
char bar;
i
struct ex2
{
struct ex2_header hdr;
int flex|[];
e
/* Merged ex2_header and ex2 structures. */
struct ex3
{
int foo;
char bar;
int flex|[];
iE

Effects on Size and Padding

A flexible array member is treated as having no size when calculating the size of a structure, though padding
between that member and the previous member of the structure may still exist:

/* Prints "8,8" on my machine, so there is no padding. */
printf("%zu,%zu\n", sizeof(size_t), sizeof(struct ex1));

/* Also prints "8,8" on my machine, so there is no padding in the ex2 structure itself. */
printf("%zu,%zu\n", sizeof(struct ex2_header), sizeof(struct ex2));

/* Prints "5,8" on my machine, so there are 3 bytes of padding. */
printf("%zu,%zu\n", sizeof(int) + sizeof(char), sizeof(struct ex3));

The flexible array member is considered to have an incomplete array type, so its size cannot be calculated using

sizeof.

GoalKicker.com - C Notes for Professionals

(c) ketabton.com: The Digital Library
Usage

You can declare and initialize an object with a structure type containing a flexible array member, but you must not
attempt to initialize the flexible array member since it is treated as if it does not exist. It is forbidden to try to do
this, and compile errors will result.

Similarly, you should not attempt to assign a value to any element of a flexible array member when declaring a
structure in this way since there may not be enough padding at the end of the structure to allow for any objects
required by the flexible array member. The compiler will not necessarily prevent you from doing this, however, so
this can lead to undefined behavior.

/* invalid: cannot initialize flexible array member */

struct ex1 el = {1, {2, 3}};

/* invalid: hdr={foo=1, bar=2} 0K, but cannot initialize flexible array member */
struct ex2 e2 = {{1, 2}, {3}};

/* valid: initialize foo=1, bar=2 members */

struct ex3 e3 = {1, 2};

el.flex[8] = 3; /* undefined behavior, in my case */
e3.flex[0] = 2; /* undefined behavior again */
e2.flex[0] = e3.flex[0]; /* undefined behavior */

You may instead choose to use malloc, calloc, or realloc to allocate the structure with extra storage and later
free it, which allows you to use the flexible array member as you wish:

/* valid: allocate an object of structure type ‘ex1’ along with an array of 2 ints #*/
struct ex1 *pel = malloc(sizeof(*pel) + 2 * sizeof(pel->flex[0]));

/* valid: allocate an object of structure type ex2 along with an array of 4 ints #*/
struct ex2 *pe2 = malloc(sizeof(struct ex2) + sizeof(int[4]));

/* valid: allocate 5 structure type ex3 objects along with an array of 3 ints per object */
struct ex3 *pe3 = malloc(5 * (sizeof(*pe3) + sizeof(int[3])));

pel->flex[@B] = 3; /* valid */
pe3[0]->flex[0] = pel->flex[0]; /* valid */

Version < (C99
The 'struct hack'

Flexible array members did not exist prior to C99 and are treated as errors. A common workaround is to declare an
array of length 1, a technique called the 'struct hack":

struct ex1

{
size_t foo;
int flex[1];

i
This will affect the size of the structure, however, unlike a true flexible array member:

/* Prints "8,4,16" on my machine, signifying that there are 4 bytes of padding. */
printf("%d,%d,%d\n", (int)sizeof(size_t), (int)sizeof(int[1]), (int)sizeof(struct ex1));

To use the flex member as a flexible array member, you'd allocate it with malloc as shown above, except that
sizeof(*pel) (or the equivalent sizeof (struct ex1))would be replaced with offsetof(struct ex1, flex) orthe
longer, type-agnostic expression sizeof (xpel)-sizeof(pel->flex). Alternatively, you might subtract 1 from the
desired length of the "flexible" array since it's already included in the structure size, assuming the desired length is

GoalKicker.com - C Notes for Professionals 84

(c) ketabton.com: The Digital Library

greater than 0. The same logic may be applied to the other usage examples.
Compatibility

If compatibility with compilers that do not support flexible array members is desired, you may use a macro defined
like FLEXMEMB_SIZE below:

#if __STDC_VERSION__ < 1999@1L
#define FLEXMEMB_SIZE 1

#else

#define FLEXMEMB_SIZE /* nothing */
#endif

struct exl

{

size_t foo;
int flex[FLEXMEMB_SIZE];
s

When allocating objects, you should use the of fsetof (struct ex1, flex) form to refer to the structure size
(excluding the flexible array member) since it is the only expression that will remain consistent between compilers
that support flexible array members and compilers that do not:

struct ex1 *pel1® = malloc(offsetof(struct ex1, flex) + n * sizeof(pel10->flex[0]));

The alternative is to use the preprocessor to conditionally subtract 1 from the specified length. Due to the increased
potential for inconsistency and general human error in this form, | moved the logic into a separate function:

struct ex1 *ex1_alloc(size_t n)

{
struct ex1 tmp;
#if __STDC_VERSION__ < 199901L
if (n = 09)
n--,
#endif
return malloc(sizeof(tmp) + n * sizeof(tmp.flex[0]));

/* allocate an ex1 object with "flex" array of length 3 */
struct ex1 *pel = ex1_alloc(3);

Section 13.2: Typedef Structs
Combining typedef with struct can make code clearer. For example:

typedef struct
{

int x, y;
} Point;

as opposed to:

struct Point

{

int x, y;

}s

GoalKicker.com - C Notes for Professionals 85

(c) ketabton.com: The Digital Library

could be declared as:

Point point;

instead of;

struct Point point;

Even better is to use the following

typedef struct Point Point;
struct Point

{

int x, y;

b

to have advantage of both possible definitions of point. Such a declaration is most convenient if you learned C++
first, where you may omit the struct keyword if the name is not ambiguous.

typedef names for structs could be in conflict with other identifiers of other parts of the program. Some consider
this a disadvantage, but for most people having a struct and another identifier the same is quite disturbing.
Notorious is e.g POSIX' stat

int stat(const char *pathname, struct stat xbuf);

where you see a function stat that has one argument that is struct stat.

typedef'd structs without a tag name always impose that the whole struct declaration is visible to code that uses
it. The entire struct declaration must then be placed in a header file.

Consider:

#include "bar.h"

struct foo

{

bar xaBar;

|

So with a typedefd struct that has no tag name, the bar.h file always has to include the whole definition of bar. If
we use

typedef struct bar bar;

in bar .h, the details of the bar structure can be hidden.

See Typedef

Section 13.3: Pointers to structs

When you have a variable containing a struct, you can access its fields using the dot operator (.). However, if you
have a pointer to a struct, this will not work. You have to use the arrow operator (->) to access its fields. Here's an
example of a terribly simple (some might say "terrible and simple") implementation of a stack that uses pointers to
structs and demonstrates the arrow operator.

GoalKicker.com - C Notes for Professionals 86

(c) ketabton.com: The Digital Library

#include <stdlib.h>
#include <stdio.h>

/* structs */
struct stack

{
struct node *top;
int size;
b
struct node
{
int data;
struct node *next;
i

/* function declarations */
int push(int, struct stackx);
int pop(struct stackx);

void destroy(struct stackx);

int main(void)
{
int result = EXIT_SUCCESS;

size_t 1i;

/* allocate memory for a struct stack and record its pointer */
struct stack *stack = malloc(sizeof #*stack);
if (NULL == stack)
{
perror("malloc() failed");
return EXIT_FAILURE;

}
/* initialize stack */
stack->top = NULL;

stack->size = 9;

/* push 10 ints */

{
int data = 9;
for(i =0; i < 10; i++)
{
printf("Pushing: %d\n", data);
if (-1 == push(data, stack))
{
perror("push() failed");
result = EXIT_FAILURE;
break;
}
++data;
}
}

if (EXIT_SUCCESS == result)
{
/* pop 5 ints #*/
for(i =0; 1 < 5; i++)
{
printf("Popped: %i\n", pop(stack));

GoalKicker.com - C Notes for Professionals

(c) ketabton.com: The Digital Library

}
}

/* destroy stack */
destroy(stack);

return result;

}

/* Push a value onto the stack. */
/* Returns @ on success and -1 on failure. */
int push(int data, struct stack *stack)

{
int result = 0;
/* allocate memory for new node */
struct node *new_node = malloc(sizeof *new_node);
if (NULL == new_node)
{
result = -1;
}
else
{
new_node->data = data;
new_node->next = stack->top;
stack->top = new_node;
stack->size++;
}
return result;
}

/* Pop a value off of the stack. */
/* Returns the value popped off the stack */
int pop(struct stack *stack)

{
struct node *top = stack->top;
int data = top->data;
stack->top = top->next;
stack->size--;
free(top);
return data;

}

/* destroy the stack */
void destroy(struct stack *stack)

{
/* free all pointers */
while(stack->top != NULL)
{
pop(stack);
}
}

Section 13.4: Passing structs to functions

In C, all arguments are passed to functions by value, including structs. For small structs, this is a good thing as it
means there is no overhead from accessing the data through a pointer. However, it also makes it very easy to
accidentally pass a huge struct resulting in poor performance, particularly if the programmer is used to other
languages where arguments are passed by reference.

GoalKicker.com - C Notes for Professionals

88

(c) ketabton.com: The Digital Library

struct coordinates

{
int x;
int y;
int z;
fi 7

// Passing and returning a small struct by value, very fast
struct coordinates move(struct coordinates position, struct coordinates movement)

{
position.x += movement.x;
position.y += movement.y;
position.z += movement.z;
return position;

}

// A very big struct
struct lotsOfData
{

int paraml;

char param2[80000];
H

// Passing and returning a large struct by value, very slow!
// Given the large size of the struct this could even cause stack overflow
struct lotsOfData doubleParami(struct lotsOfData value)
{
value.paraml #*= 2;
return value;

}

// Passing the large struct by pointer instead, fairly fast
void doubleParam1ByPtr(struct lotsOfData *value)
{

value->paraml *= 2;

}

Section 13.5: Object-based programming using structs

Structs may be used to implement code in an object oriented manner. A struct is similar to a class, but is missing
the functions which normally also form part of a class, we can add these as function pointer member variables. To
stay with our coordinates example:

/* coordinates.h */

typedef struct coordinate_s

{
/* Pointers to method functions #*/
void (*setx)(coordinate *this, int x);
void (*sety)(coordinate #*this, int y);
void (*print)(coordinate *this);
/* Data */
int x;
int y;

} coordinate;

/* Constructor */

coordinate *coordinate_create(void);

/* Destructor */

void coordinate_destroy(coordinate *this);

GoalKicker.com - C Notes for Professionals 89

(c) ketabton.com: The Digital Library

And now the implementing C file:
/* coordinates.c */

#include "coordinates.h"
#include <stdio.h>

#include <stdlib.h>

/* Constructor #*/
coordinate *coordinate_create(void)

{
coordinate *c = malloc(sizeof(*c));
if (c != 9)
{
c->setx = &coordinate_setx;
c->sety = &coordinate_sety;
c->print = &coordinate_print;
c->X = 0;
c->y = 0;
}
return c;
}

/* Destructor */
void coordinate_destroy(coordinate *this)

{
if (this != NULL)
{
free(this);
}
}

/* Methods */
static void coordinate_setx(coordinate *this, int x)

{
if (this !'= NULL)
{
this->x = x;
}
}
static void coordinate_sety(coordinate *this, int y)
{
if (this !'= NULL)
{
this->y = vy;
}
}
static void coordinate_print(coordinate *this)
{
if (this !'= NULL)
{
printf("Coordinate: (%i, %i)\n", this->x, this->y);
}
else
{
printf("NULL pointer exception!\n");
}
}

GoalKicker.com - C Notes for Professionals

(c) ketabton.com: The Digital Library

An example usage of our coordinate class would be:

/* main.c */

#include "coordinates.h"
#include <stddef.h>

int main(void)

{
/* Create and initialize pointers to coordinate objects */
coordinate *c1 = coordinate_create();
coordinate *c2 = coordinate_create();

/* Now we can use our objects using our methods and passing the object as parameter */
c1->setx(c1, 1);
cl->sety(c1, 2);

c2->setx(c2, 3);
c2->sety(c2, 4);

c1->print(c1);

c2->print(c2);

/* After using our objects we destroy them using our "destructor" function */
coordinate_destroy(c1);

c1 = NULL;

coordinate_destroy(c2);

c2 = NULL;

return 0;

Section 13.6: Simple data structures

Structure data types are useful way to package related data and have them behave like a single variable.

Declaring a simple struct that holds two int members:

struct point

{
int x;
int y;
b

x and y are called the members (or fields) of point struct.

Defining and using structs:

struct point p; // declare p as a point struct
p.x =5; // assign p member variables
p.y =3;

Structs can be initialized at definition. The above is equivalent to:
struct point p = {5, 3};

Structs may also be initialized using designated initializers.

GoalKicker.com - C Notes for Professionals 91

(c) ketabton.com: The Digital Library

Accessing fields is also done using the . operator

printf("point is (x = %d, y = %d)", p.X, p.Y);

GoalKicker.com - C Notes for Professionals

92

(c) ketabton.com: The Digital Library

Chapter 14: Standard Math

Section 14.1: Power functions - pow(), powf(), powl()

The following example code computes the sum of 7+4(3+3/2+343+3/4+...+3AN) series using pow() family of standard
math library.

#include <stdio.h>
#include <math.h>
#include <errno.h>
#include <fenv.h>

int main()

{
double pwr, sum=0;
int i, n;
printf("\n1+4(3+342+323+3%4+...+3*N)=?\nEnter N:");
scanf("%d",&n) ;
if (n<=0) {
printf("Invalid power N=%d", n);
return -1;
}
for (i=0; i<n+1; i++)
errno = 0;
feclearexcept (FE_ALL_EXCEPT) ;
pwr = powl(3,1i);
if (fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW |
FE_UNDERFLOW)) {
perror("Math Error");
}
sum += 1 ? pwr : O;
printf("N= %d\tS= %g\n", i, 1+4+*sum);
}
return 9;
}

Example Output:

1+4(3+372+373+3%4+...+3"N)=?

Enter N:10

N= 0 S=1

N=1 S= 13

N= 2 S= 49

N= 3 S= 157

N= 4 S= 481

N= 5 S= 1453
N= 6 S= 4369
N= 7 S= 13117
N= 8 S= 39361
N= 9 S= 118093
N= 10 S= 354289

GoalKicker.com - C Notes for Professionals 93

(c) ketabton.com: The Digital Library

Section 14.2: Double precision floating-point remainder:
fmod()

This function returns the floating-point remainder of the division of x/y. The returned value has the same sign as x.

#include <math.h> /* for fmod() =*/
#include <stdio.h> /* for printf() =*/

int main(void)

{
double x = 10.0;
double y = 5.1;
double modulus = fmod(x, y);
printf("%1f\n", modulus); /# f is the same as 1f. #*/
return 0;
}
Output:
4.90000

Important: Use this function with care, as it can return unexpected values due to the operation of floating point
values.

#include <math.h>
#include <stdio.h>

int main(void)

{
printf("%f\n", fmod(1, ©.1));
printf("%19.17f\n", fmod(1, 0.1));
return 0;

}

Output:

0.1

0.09999999999999995

Section 14.3: Single precision and long double precision
floating-point remainder: fmodf(), fmodI()

Version = C99

These functions returns the floating-point remainder of the division of x/y. The returned value has the same sign as
X.

Single Precision:

#include <math.h> /* for fmodf() =*/
#include <stdio.h> /* for printf() =*/

GoalKicker.com - C Notes for Professionals 94

(c) ketabton.com: The Digital Library

int main(void)

{
float x = 10.90;
float y = 5.1;
float modulus = fmodf(x, y);
printf("%f\n", modulus); /* 1f would do as well as modulus gets promoted to double. */
}
Output:
4.90000

Double Double Precision:

#include <math.h> /% for fmodl() */
#include <stdio.h> /* for printf() =*/

int main(void)

{
long double x = 10.0;
long double y = 5.1;
long double modulus = fmodl(x, y);
printf("%Lf\n", modulus); /* Lf is for long double. */
}
Output:
4.90000

GoalKicker.com - C Notes for Professionals

95

(c) ketabton.com: The Digital Library

Chapter 15: Iteration Statements/Loops:
for, while, do-while

Section 15.1: For loop

In order to execute a block of code over an over again, loops comes into the picture. The for loop is to be used
when a block of code is to executed a fixed number of times. For example, in order to fill an array of size n with the
user inputs, we need to execute scanf () for n times.

Version = (99

#include <stddef.h> // for size_t

int array[10]; // array of 10 int

for (size_t i = 0; i < 10; i++) // 1 starts at @ and finishes with 9
{

scanf("%d", &array[i]);

}

In this way the scanf () function call is executed n times (10 times in our example), but is written only once.

Here, the variable i is the loop index, and it is best declared as presented. The type size_t (size type) should be
used for everything that counts or loops through data objects.

This way of declaring variables inside the for is only available for compilers that have been updated to the C99
standard. If for some reason you are still stuck with an older compiler you can declare the loop index before the
for loop:

Version < C99

#include <stddef.h> /* for size_t */

size_t i;

int array[10]; /* array of 10 int */

for (i =0; i < 10; i++) /* 1 starts at @ and finishes at 9 */
{

scanf("%d", &array[i]);

}

Section 15.2: Loop Unrolling and Duff's Device

Sometimes, the straight forward loop cannot be entirely contained within the loop body. This is because, the loop
needs to be primed by some statements B. Then, the iteration begins with some statements A, which are then
followed by B again before looping.

do_B();

while (condition) {
do_A();
do_B();

To avoid potential cut/paste problems with repeating B twice in the code, Duff's Device could be applied to start the
loop from the middle of the while body, using a switch statement and fall through behavior.

switch (true) while (condition) {
case false: do_A(); /* FALL THROUGH */

GoalKicker.com - C Notes for Professionals 96

(c) ketabton.com: The Digital Library

default: do_B(); /* FALL THROUGH %/
}

Duff's Device was actually invented to implement loop unrolling. Imagine applying a mask to a block of memory,
where n is a signed integral type with a positive value.

do {
*ptr++ "= mask;
} while (--n > 0);

If n were always divisible by 4, you could unroll this easily as:

do {
*ptr++ = mask;
*ptr++ = mask;
*ptr++ = mask;
*ptr++ = mask;

} while ((n -= 4) > 0);

But, with Duff's Device, the code can follow this unrolling idiom that jumps into the right place in the middle of the
loop if n is not divisible by 4.

switch (n % 4) do {

case 0: *ptr++ *= mask; /* FALL THROUGH */
case 3: *ptr++ *= mask; /* FALL THROUGH */
case 2: *ptr++ *= mask; /* FALL THROUGH */
case 1: *ptr++ 7= mask; /* FALL THROUGH */
} while ((n -= 4) > 0);

This kind of manual unrolling is rarely required with modern compilers, since the compiler's optimization engine
can unroll loops on the programmer's behalf.

Section 15.3: While loop

A while loop is used to execute a piece of code while a condition is true. The while loop is to be used when a block
of code is to be executed a variable number of times. For example the code shown gets the user input, as long as
the user inserts numbers which are not 0. If the user inserts 8, the while condition is not true anymore so execution
will exit the loop and continue on to any subsequent code:

int num = 1;

while (num != @)
{

scanf("%d", &num);

}

Section 15.4: Do-While loop

Unlike for and while loops, do-while loops check the truth of the condition at the end of the loop, which means
the do block will execute once, and then check the condition of the while at the bottom of the block. Meaning that a
do-while loop will always run at least once.

For example this do-while loop will get numbers from user, until the sum of these values is greater than or equal to
50:

GoalKicker.com - C Notes for Professionals 97

(c) ketabton.com: The Digital Library

int num, sum;
num = sum = 0;

do
{

scanf("%d", &num);
sum += num;

} while (sum < 50);

do-while loops are relatively rare in most programming styles.

Section 15.5: Structure and flow of control in a for loop

for ([declaration-or-expression]; [expression2]; [expression3])

{
/* body of the loop */

}

In a for loop, the loop condition has three expressions, all optional.

¢ The first expression, declaration-or-expression, initializes the loop. It is executed exactly once at the
beginning of the loop.

Version = C99

It can be either a declaration and initialization of a loop variable, or a general expression. If it is a declaration, the
scope of the declared variable is restricted by the for statement.

Version < C99

Historical versions of C only allowed an expression, here, and the declaration of a loop variable had to be placed
before the for.

¢ The second expression, expression2, is the test condition. It is first executed after the initialization. If the

condition is true, then the control enters the body of the loop. If not, it shifts to outside the body of the loop
at the end of the loop. Subsequently, this conditon is checked after each execution of the body as well as the

update statement. When true, the control moves back to the beginning of the body of the loop. The

condition is usually intended to be a check on the number of times the body of the loop executes. This is the

primary way of exiting a loop, the other way being using jump statements.

¢ The third expression, expression3, is the update statement. It is executed after each execution of the body of

the loop. It is often used to increment a variable keeping count of the number of times the loop body has
executed, and this variable is called an iterator.

Each instance of execution of the loop body is called an iteration.

Example:

Version = C99
for(int i1 = @; i < 10 ; i++)
{
printf("%d", 1i);
}

The output is:

GoalKicker.com - C Notes for Professionals

98

(c) ketabton.com: The Digital Library

0123456789

In the above example, first i = @ is executed, initializing i. Then, the condition i < 18 is checked, which evaluates
to be true. The control enters the body of the loop and the value of i is printed. Then, the control shifts to i++,
updating the value of i from 0 to 1. Then, the condition is again checked, and the process continues. This goes on
till the value of i becomes 10. Then, the condition i < 10 evaluates false, after which the control moves out of the
loop.

Section 15.6: Infinite Loops

Aloop is said to be an infinite loop if the control enters but never leaves the body of the loop. This happens when
the test condition of the loop never evaluates to false.

Example:

Version = (€99
for (int 1 = 08; i >= 0;)
{
/* body of the loop where i is not changed*/

}

In the above example, the variable i, the iterator, is initialized to 0. The test condition is initially true. However, i is
not modified anywhere in the body and the update expression is empty. Hence, i will remain 0, and the test
condition will never evaluate to false, leading to an infinite loop.

Assuming that there are no jump statements, another way an infinite loop might be formed is by explicitly keeping
the condition true:

while (true)

{
/* body of the loop */

}

In a for loop, the condition statement optional. In this case, the condition is always true vacuously, leading to an

infinite loop.
for (53)
{

/* body of the loop */
}

However, in certain cases, the condition might be kept true intentionally, with the intention of exiting the loop
using a jump statement such as break.

while (true)

{
/* statements */
if (condition)
{
/* more statements */
break;
}
}

GoalKicker.com - C Notes for Professionals 99

(c) ketabton.com: The Digital Library

Chapter 16: Selection Statements
Section 16.1: if () Statements

One of the simplest ways to control program flow is by using if selection statements. Whether a block of code is to
be executed or not to be executed can be decided by this statement.

The syntax for if selection statement in C could be as follows:

if(cond)
{

statement(s); /#*to be executed, on condition being truex/

}
For example,

if (a > 1) {
puts("a is larger than 1");

}

Where a > 1 is a condition that has to evaluate to true in order to execute the statements inside the if block. In
this example "a is larger than 1" is only printed ifa > 1 s true.

if selection statements can omit the wrapping braces { and } if there is only one statement within the block. The
above example can be rewritten to

if (a > 1)
puts("a is larger than 1");

However for executing multiple statements within block the braces have to used.

The condition for if can include multiple expressions. if will only perform the action if the end result of expression
is true.

For example

if ((a > 1) & (b > 1)) {
puts("a is larger than 1");
a++;

will only execute the printf and a++ if both a and b are greater than 1.

Section 16.2: Nested if()...else VS if()..else Ladder

Nested if()...else statements take more execution time (they are slower) in comparison to an if()...else
ladder because the nested if()...else statements check all the inner conditional statements once the outer
conditional if () statement is satisfied, whereas the if()..else ladder will stop condition testing once any of the
if() orthe else if() conditional statements are true.

Anif()...else ladder

#include <stdio.h>

GoalKicker.com - C Notes for Professionals 100

(c) ketabton.com: The Digital Library

int main(int argc, char xargv[])
{
int a, b, c;
printf("\nEnter Three numbers = ");
scanf("%d%d%d", &a, &b, &c);
if ((a < b) & (a < ¢))

{

printf("\na = %d is the smallest.",
}
else if ((b < a) && (b < ¢c))
{

printf("\nb = %d is the smallest.",
}
else if ((c < a) && (c < b))
{

printf("\nc = %d is the smallest.",
}
else
{

printf("\nImprove your coding logic"
}
return 0;

Is, in the general case, considered to be better than the equivalent nested if()...else:

#include <stdio.h>

int main(int argc, char xargv[])
{
int a, b, c;
printf("\nEnter Three numbers = ");
scanf("%d%d%d", &a, &b, &c);
if (a < b)
{
if (a < ¢)
{
printf("\na

else

{
printf("\nc

}
}
else
{
if(b < ¢)
{
printf("\nb
}

else

{

printf("\nc = %d is the smallest.", c);

}
}

return 0;

}

a);

b);

c);

%d is the smallest.", a);

%d is the smallest.", c);

%d is the smallest.", b);

GoalKicker.com - C Notes for Professionals

101

(c) ketabton.com: The Digital Library

Section 16.3: switch () Statements

switch statements are useful when you want to have your program do many different things according to the value
of a particular test variable.

An example usage of switch statement is like this:

int a = 1;

switch (a) {
case 1:
puts('"a is 1");
break;
case 2:
puts("a is 2");
break;
default:
puts("a is neither 1 nor 2");
break;

This example is equivalent to

int a = 1;

9F (@ == 1)
puts("a is 1");

} else if (a == 2) {
puts("a is 2");

} else {
puts("a is neither 1 nor 2");

}

If the value of a is 1 when the switch statementis used, a is 1 will be printed. If the value of ais 2 then, a is 2 will
be printed. Otherwise, a is neither 1 nor 2 will be printed.

case n: is used to describe where the execution flow will jump in when the value passed to switch statement is n.
n must be compile-time constant and the same n can exist at most once in one switch statement.

default: is used to describe that when the value didn't match any of the choices for case n:. Itis a good practice
to include a default case in every switch statement to catch unexpected behavior.

A break; statement is required to jump out of the switch block.

Note: If you accidentally forget to add a break after the end of a case, the compiler will assume that you intend to
"fall through" and all the subsequent case statements, if any, will be executed (unless a break statement is found in
any of the subsequent cases), regardless of whether the subsequent case statement(s) match or not. This particular
property is used to implement Duff's Device. This behavior is often considered a flaw in the C language
specification.

Below is an example that shows effects of the absence of break;:
int a = 1;
switch (a) {

case 1:
case 2:

GoalKicker.com - C Notes for Professionals 102

(c) ketabton.com: The Digital Library

puts("a is 1 or 2");

case 3:
puts("a is 1, 2 or 3");
break;
default:
puts("a is neither 1, 2 nor 3");
break;
}

When the value of ais1or2,a is 1 or 2anda is 1, 2 or 3 will both be printed. When ais3,onlya is 1, 2
or 3 will be printed. Otherwise, a is neither 1, 2 nor 3 will be printed.

Note that the default case is not necessary, especially when the set of values you get in the switch is finished and
known at compile time.

The best example is using a switch on an enum.

enum msg_type { ACK, PING, ERROR };
void f(enum msg_type t)
{
switch (t) {
case ACK:
// do nothing
break;
case PING:
// do something
break;
case ERROR:
// do something else
break;
}
}

There are multiple advantages of doing this:

e most compilers will report a warning if you don't handle a value (this would not be reported if a default case
were present)

¢ for the same reason, if you add a new value to the enum, you will be notified of all the places where you forgot
to handle the new value (with a default case, you would need to manually explore your code searching for
such cases)

e The reader does not need to figure out "what is hidden by the default:", whether there other enum values or
whether it is a protection for "just in case". And if there are other enum values, did the coder intentionally use
the default case for them or is there a bug that was introduced when he added the value?

¢ handling each enum value makes the code self explanatory as you can't hide behind a wild card, you must
explicitly handle each of them.

Nevertheless, you can't prevent someone to write evil code like:
enum msg_type t = (enum msg_type)666; // I'm evil
Thus you may add an extra check before your switch to detect it, if you really need it.

void f(enum msg_type t)
{
if (!is_msg_type_valid(t)) {
// Handle this unlikely error
}

GoalKicker.com - C Notes for Professionals 103

(c) ketabton.com: The Digital Library

switch(t) {
// Same code than before

}

Section 16.4: if () ... else statements and syntax

While if performs an action only when its condition evaluate to true, if / else allows you to specify the different
actions when the condition true and when the condition is false.

Example:

if (a > 1)

puts("a is larger than 1");
else

puts("a is not larger than 1");

Just like the if statement, when the block within if or else is consisting of only one statement, then the braces can
be omitted (but doing so is not recommended as it can easily introduce problems involuntarily). However if there's
more than one statement within the if or else block, then the braces have to be used on that particular block.

if (a > 1)

{
puts("a is larger than 1");
a--;

}

else

{
puts("a is not larger than 1");
at+;

}

Section 16.5: if()...else Ladder Chaining two or more if () ... else
statements

While the if ()... else statement allows to define only one (default) behaviour which occurs when the condition
within the if () is not met, chaining two or more if () ... else statements allow to define a couple more
behaviours before going to the last else branch acting as a "default", if any.

Example:
int a = ... /* initialise to some value. */
if (a >= 1)
{
printf("a is greater than or equals 1.\n");
ilse if (a == @) //we already know that a is smaller than 1
{ printf("a equals 8.\n");
lee /* a is smaller than 1 and not equals 6, hence: */
{ printf("a is negative.\n");
}

GoalKicker.com - C Notes for Professionals 104

(c) ketabton.com: The Digital Library

Chapter 17: Initialization

Section 17.1: Initialization of Variables in C

In the absence of explicit initialization, external and static variables are guaranteed to be initialized to zero;
automatic variables (including register variables) have indeterminate (i.e., garbage) initial values.

Scalar variables may be initialized when they are defined by following the name with an equals sign and an
expression:

int x = 1;
char squota = '"\'"';
long day = 1000L * 60L * 60L * 24L; /* milliseconds/day */

For external and static variables, the initializer must be a constant expression2; the initialization is done once,
conceptually before the program begins execution.

For automatic and register variables, the initializer is not restricted to being a constant: it may be any expression
involving previously defined values, even function calls.

For example, see the code snippet below

int binsearch(int x, int v[], int n)

{
int low = 0©;
int high = n - 1;
int mid;

instead of

int low, high, mid;

low = ©;
high = n - 1;

In effect, initialization of automatic variables are just shorthand for assignment statements. Which form to prefer is
largely a matter of taste. We generally use explicit assignments, because initializers in declarations are harder to
see and further away from the point of use. On the other hand, variables should only be declared when they're
about to be used whenever possible.

Initializing an array:

An array may be initialized by following its declaration with a list of initializers enclosed in braces and separated by
commas.

For example, to initialize an array days with the number of days in each month:
int days_of_month[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }

(Note that January is encoded as month zero in this structure.)

When the size of the array is omitted, the compiler will compute the length by counting the initializers, of which
there are 12 in this case.

GoalKicker.com - C Notes for Professionals 105

(c) ketabton.com: The Digital Library

If there are fewer initializers for an array than the specified size, the others will be zero for all types of variables.

It is an error to have too many initializers. There is no standard way to specify repetition of an initializer — but GCC
has an extension to do so.

Version < C99

In C89/C90 or earlier versions of C, there was no way to initialize an element in the middle of an array without
supplying all the preceding values as well.

Version = C99

With C99 and above, designated initializers allow you to initialize arbitrary elements of an array, leaving any
uninitialized values as zeros.

Initializing Character arrays:

Character arrays are a special case of initialization; a string may be used instead of the braces and commas
notation:

char chr_array[] = "hello";

is a shorthand for the longer but equivalent:

char chr_array[] = { 'h', 'e', '1', '"1', 'o', '\@' };

In this case, the array size is six (five characters plus the terminating '\e8").

1 What happens to a declared, uninitialized variable in C? Does it have a value?

2 Note that a constant expression is defined as something that can be evaluated at compile-time. So, int

global_var = f(); isinvalid. Another common misconception is thinking of a const qualified variable as a constant
expression. In C, const means "read-only", not "compile time constant". So, global definitions like const int SIZE =
10; int global_arr[SIZE]; and const int SIZE = 18; int global_var = SIZE; are notlegalin C.

Section 17.2: Using designated initializers

Version = (99

C99 introduced the concept of designated initializers. These allow you to specify which elements of an array,
structure or union are to be initialized by the values following.

Designated initializers for array elements
For a simple type like plain int:
int array[] = { [4] = 29, [5] = 31, [17] = 101, [18] = 103, [19] = 107, [208] = 109 };

The term in square brackets, which can be any constant integer expression, specifies which element of the array is
to be initialized by the value of the term after the = sign. Unspecified elements are default initialized, which means
zeros are defined. The example shows the designated initializers in order; they do not have to be in order. The
example shows gaps; those are legitimate. The example doesn't show two different initializations for the same
element; that too is allowed (ISO/IEC 9899:2011, §6.7.9 Initialization, 19 The initialization shall occur in initializer list
order, each initializer provided for a particular subobject overriding any previously listed initializer for the same
subobject).

GoalKicker.com - C Notes for Professionals 106

(c) ketabton.com: The Digital Library

In this example, the size of the array is not defined explicitly, so the maximum index specified in the designated
initializers dictates the size of the array — which would be 21 elements in the example. If the size was defined,
initializing an entry beyond the end of the array would be an error, as usual.

Designated initializers for structures
You can specify which elements of a structure are initialized by using the .element notation:

struct Date

{
int year;
int month;
int day;
bé

struct Date us_independence_day = { .day = 4, .month = 7, .year = 1776 };

If elements are not listed, they are default initialized (zeroed).
Designated initializer for unions

You can specify which element of a union is initialize with a designated initializer.

Version = (89

Prior to the C standard, there was no way to initialize a union. The C89/C90 standard allows you to initialize the first
member of a union — so the choice of which member is listed first matters.

struct discriminated_union

{
enum { DU_INT, DU_DOUBLE } discriminant;
union
{
int du_int;
double du_double;
} du;
b

{ .discriminant
{ .discriminant

struct discriminated_union du1

DU_INT, .du = { .du_int =1 } };
struct discriminated_union du2 =

DU_DOUBLE, .du = { .du_double

3.14159 } };

Version = Cl1

Note that C11 allows you to use anonymous union members inside a structure, so that you don't need the du name
in the previous example:

struct discriminated_union

{
enum { DU_INT, DU_DOUBLE } discriminant;
union
{
int du_int;
double du_double;
H
s

struct discriminated_union dul = { .discriminant
struct discriminated_union du2 { .discriminant

DU_INT, .du_int =1 };
DU_DOUBLE, .du_double = 3.14159 };

Designated initializers for arrays of structures, etc

GoalKicker.com - C Notes for Professionals 107

(c) ketabton.com: The Digital Library

These constructs can be combined for arrays of structures containing elements that are arrays, etc. Using full sets
of braces ensures that the notation is unambiguous.

typedef struct Date Date; // See earlier in this example

struct date_range

{
Date dr_from;
Date dr_to;
char dr_what[80];
b
struct date_range ranges[] =
{
[3] = { .dr_from = { .year = 1066, .month = 10, .day = 14 },
.dr_to = { .year = 1066, .month = 12, .day = 25 },
.dr_what = "Battle of Hastings to Coronation of William the Conqueror”
}l
[2] = { .dr_from = { .month = 7, .day = 4, .year = 1776 },
.dr_to = { .month = 5, .day = 14, .year = 1787 },
.dr_what = "US Declaration of Independence to Constitutional Convention",
}
b5

Specifying ranges in array initializers

GCC provides an extension that allows you to specify a range of elements in an array that should be given the same
initializer:

int array[] = { [3 ... 7] =29, 19 = 107 };

The triple dots need to be separate from the numbers lest one of the dots be interpreted as part of a floating point
number (maximimal munch rule).

Section 17.3: Initializing structures and arrays of structures

Structures and arrays of structures can be initialized by a series of values enclosed in braces, one value per
member of the structure.

struct Date

{
int year;
int month;
int day;
H

struct Date us_independence_day = { 1776, 7, 4 };

struct Date uk_battles[] =

{
{ 1066, 10, 14 }, // Battle of Hastings
{ 1815, 6, 18 }, // Battle of Waterloo
{ 1805, 10, 21 }, // Battle of Trafalgar
b

Note that the array initialization could be written without the interior braces, and in times past (before 1990, say)
often would have been written without them:

GoalKicker.com - C Notes for Professionals 108

(c) ketabton.com: The Digital Library

struct Date uk_battles[] =

{
1066, 10, 14, // Battle of Hastings
1815, 6, 18, // Battle of Waterloo
1805, 10, 21, // Battle of Trafalgar
i

Although this works, it is not good modern style — you should not attempt to use this notation in new code and
should fix the compiler warnings it usually yields.

See also designated initializers.

GoalKicker.com - C Notes for Professionals 109

(c) ketabton.com: The Digital Library

Chapter 18: Declaration vs Definition

Section 18.1: Understanding Declaration and Definition

A declaration introduces an identifier and describes its type, be it a type, object, or function. A declaration is what
the compiler needs to accept references to that identifier. These are declarations:

extern int bar;

extern int g(int, int);

double f(int, double); /#* extern can be omitted for function declarations */
double h1(); /* declaration without prototype */

double h2(); /* ditto */

A definition actually instantiates/implements this identifier. It's what the linker needs in order to link references to
those entities. These are definitions corresponding to the above declarations:

int bar;

int g(int 1lhs, int rhs) {return lhs#*rhs;}

double f(int i, double d) {return i+d;}

double h1(int a, int b) {return -1.5;}

double h2() {} /* prototype is implied in definition, same as double h2(void) */

A definition can be used in the place of a declaration.

However, it must be defined exactly once. If you forget to define something that's been declared and referenced
somewhere, then the linker doesn't know what to link references to and complains about a missing symbols. If you
define something more than once, then the linker doesn't know which of the definitions to link references to and
complains about duplicated symbols.

Exception:

extern int i = 0; /# defines 1 */
extern int j; /* declares j */

This exception can be explained using concepts of "Strong symbols vs Weak symbols" (from a linker's perspective) .
Please look here (Slide 22) for more explanation.

/* All are definitions. */

struct S { int a; int b; }; /* defines S */
struct X { /* defines X */
int x; /* defines non-static data member x */
H
struct X anX; /* defines anX */

GoalKicker.com - C Notes for Professionals 10

(c) ketabton.com: The Digital Library

Chapter 19: Command-line arguments

Parameter Details

argument count - initialized to the number of space-separated arguments given to the program from

argc . .
& the command-line as well as the program name itself.

argument vector - initialized to an array of char-pointers (strings) containing the arguments (and the

argv program name) that was given on the command-line.

Section 19.1: Print the arguments to a program and convert to
integer values

The following code will print the arguments to the program, and the code will attempt to convert each argument
into a number (to a long):

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <limits.h>

int main(int argc, char* argv[]) {

for (int 1 = 1; 1 < argc; i++) {
printf("Argument %d is: %s\n", i, argv[i]);

errno = 0;
char #*p;
long argument_numValue = strtol(argv[i], &p, 10);

if (p == argv[i]) A
fprintf(stderr, "Argument %d is not a number.\n", 1i);

}
else if ((argument_numValue == LONG_MIN || argument_numValue == LONG_MAX) && errno ==
ERANGE) {
fprintf(stderr, "Argument %d is out of range.\n", i);
}
else {
printf("Argument %d is a number, and the value is: %1d\n",
i, argument_numValue);
}
}
return 0;
}
References:

e strtol() returns an incorrect value
e Correct usage of strtol

Section 19.2: Printing the command line arguments

After receiving the arguments, you can print them as follows:

int main(int argc, char =*=*argv)

{
for (int i = 1; i < argc; i++)
{

printf("Argument %d: [%s]\n", i, argv[i]);

GoalKicker.com - C Notes for Professionals m

(c) ketabton.com: The Digital Library

}

Notes

1. The argv parameter can be also defined as char *argv][].

2. argv[@] may contain the program name itself (depending on how the program was executed). The first "real"
command line argument is at argv[1], and this is the reason why the loop variable i is initialized to 1.

3. In the print statement, you can use *=(argv + i) instead of argv[i] - it evaluates to the same thing, but is
more verbose.

4. The square brackets around the argument value help identify the start and end. This can be invaluable if
there are trailing blanks, newlines, carriage returns, or other oddball characters in the argument. Some
variant on this program is a useful tool for debugging shell scripts where you need to understand what the
argument list actually contains (although there are simple shell alternatives that are almost equivalent).

Section 19.3: Using GNU getopt tools

Command-line options for applications are not treated any differently from command-line arguments by the C
language. They are just arguments which, in a Linux or Unix environment, traditionally begin with a dash (-).

With glibc in a Linux or Unix environment you can use the getopt tools to easily define, validate, and parse
command-line options from the rest of your arguments.

These tools expect your options to be formatted according to the GNU Coding Standards, which is an extension of
what POSIX specifies for the format of command-line options.

The example below demonstrates handling command-line options with the GNU getopt tools.

#include <stdio.h>
#include <getopt.h>
#include <string.h>

/* print a description of all supported options */
void usage (FILE *fp, const char #*path)

{
/* take only the last portion of the path */
const char xbasename = strrchr(path, '/');
basename = basename ? basename + 1 : path;
fprintf (fp, "usage: %s [OPTION]\n", basename);
fprintf (fp, " -h, --help\t\t"
"Print this help and exit.\n");
fprintf (fp, " -f, --file[=FILENAME]\t"
"Write all output to a file (defaults to out.txt).\n");
fprintf (fp, " -m, --msg=STRING\t"
"Output a particular message rather than 'Hello world'.\n");
}

/* parse command-line options and print message #*/
int main(int argc, char xargv[])
{
/* for code brevity this example just uses fixed buffer sizes for strings */
char filename[256] = { 0 };
char message[256] = "Hello world";
FILE *fp:
int help_flag = 0;
int opt;

GoalKicker.com - C Notes for Professionals 12

(c) ketabton.com: The Digital Library

N
*

% % % ¥ % % X % ¥ %

*/

table of all supported options in their long form.

fields: name, has_arg, flag, val

‘has_arg" specifies whether the associated long-form option can (or, in
some cases, must) have an argument. the valid values for ‘has_arg' are
‘no_argument’, ‘optional_argument’, and ‘required_argument’.

if “flag' points to a variable, then the variable will be given a value
of ‘val' when the associated long-form option is present at the command
line.

if “flag® is NULL, then “val" is returned by ‘getopt_long (see below)
when the associated long-form option is found amongst the command-line
arguments.

struct option longopts[] = {

|3

{ "help", no_argument, &help_flag, 1 },
{ "file", optional_argument, NULL, 'f' },
{ "msg", required_argument, NULL, 'm' },

{0}

/* infinite loop, to be broken when we are done parsing options */
while (1)

/* getopt_long supports GNU-style full-word "long" options in addition
* to the single-character "short" options which are supported by

* getopt.

* the third argument is a collection of supported short-form options.
* these do not necessarily have to correlate to the long-form options.
* one colon after an option indicates that it has an argument, two
* indicates that the argument is optional. order is unimportant.

opt = getopt_long (argc, argv, "hf::m:", longopts, 0);

if (opt == -1) {
/* a return value of -1 indicates that there are no more options */
break;

}

switch (opt)

case 'h':
/* the help_flag and value are specified in the longopts table,
* which means that when the --help option is specified (in its long
* form), the help_flag variable will be automatically set.
* however, the parser for short-form options does not support the
* automatic setting of flags, so we still need this code to set the
* help_flag manually when the -h option is specified.
*/
help_flag = 1;
break;

case 'f':
/* optarg is a global variable in getopt.h. it contains the argument
* for this option. it is null if there was no argument.
*/
printf ("outarg: '%s'\n", optarg);
strncpy (filename, optarg ? optarg : "out.txt", sizeof (filename));
/* strncpy does not fully guarantee null-termination */
filename[sizeof (filename) - 1] = '\@';
break;

case 'm':
/* since the argument for this option is required, getopt guarantees
* that aptarg is non-null.

*/
strncpy (message, optarg, sizeof (message));
message[sizeof (message) - 1] = '\@';

GoalKicker.com - C Notes for Professionals

13

(c) ketabton.com: The Digital Library

break;
case '?':
/* a return value of '?' indicates that an option was malformed.
* this could mean that an unrecognized option was given, or that an
* option which requires an argument did not include an argument.

*/
usage (stderr, argv[0]);
return 1;
default:
break;

}

if (help_flag) {
usage (stdout, argv[@]);
return 0;

}

if (filename[@]) {

fp = fopen (filename, "w");
} else {
fp = stdout;
}
if ('fp) {
fprintf(stderr, "Failed to open file.\n");
return 1;
}

fprintf (fp, "%s\n", message);
fclose (fp);
return 0;

It can be compiled with gcc:

gcc example.c -o example

It supports three command-line options (--help, --file, and --msg). All have a "short form" as well (-h, -f, and -m).
The "file" and "msg" options both accept arguments. If you specify the "msg" option, its argument is required.

Arguments for options are formatted as:

e --option=value (for long-form options)
e -ovalue or -o"value" (for short-form options)

GoalKicker.com - C Notes for Professionals 14

(c) ketabton.com: The Digital Library

Chapter 20: Files and I/O streams

Parameter Details
const char *mode A string describing the opening mode of the file-backed stream. See remarks for possible values.

Can be SEEK_SET to set from the beginning of the file, SEEK_END to set from its end, or SEEK_CUR

int when .)
twhence to set relative to the current cursor value. Note: SEEK_END is non-portable.

Section 20.1: Open and write to file

#include <stdio.h> /% for perror(), fopen(), fputs() and fclose() */
#include <stdlib.h> /* for the EXIT_* macros */

int main(int argc, char **xargv)

{
int e = EXIT_SUCCESS;

/* Get path from argument to main else default to output.txt */
char *path = (argc > 1) ? argv[1] : "output.txt";

/* Open file for writing and obtain file pointer */
FILE *file = fopen(path, "w");

/* Print error message and exit if fopen() failed */
if (!file)
{

perror(path);

return EXIT_FAILURE;

}

/* Writes text to file. Unlike puts(), fputs() does not add a new-line. */
if (fputs("Output in file.\n", file) == EOF)
{

perror(path);

e = EXIT_FAILURE;

}

/* Close file */
if (fclose(file))
{

perror(path);

return EXIT_FAILURE;
}

return e;

This program opens the file with name given in the argument to main, defaulting to output.txt if no argument is
given. If a file with the same name already exists, its contents are discarded and the file is treated as a new empty
file. If the files does not already exist the fopen() call creates it.

If the fopen() call fails for some reason, it returns a NULL value and sets the global errno variable value. This means
that the program can test the returned value after the fopen() call and use perror () if fopen() fails.

If the fopen() call succeeds, it returns a valid FILE pointer. This pointer can then be used to reference this file until
fclose() is called onit.

The fputs() function writes the given text to the opened file, replacing any previous contents of the file. Similarly to
fopen(), the fputs() function also sets the errno value if it fails, though in this case the function returns EOF to

GoalKicker.com - C Notes for Professionals 15

(c) ketabton.com: The Digital Library

indicate the fail (it otherwise returns a non-negative value).

The fclose() function flushes any buffers, closes the file and frees the memory pointed to by FILE . The return
value indicates completion just as fputs() does (though it returns '0' if successful), again also setting the errno
value in the case of a fail.

Section 20.2: Run process

#include <stdio.h>

void print_all(FILE *stream)

{
int c;
while ((c = getc(stream)) != EOF)
putchar(c);
}
int main(void)
{
FILE *stream;
/* call netstat command. netstat is available for Windows and Linux */
if ((stream = popen('netstat", "r")) == NULL)
return 1;
print_all(stream);
pclose(stream);
return 0;
}

This program runs a process (netstat) via popen() and reads all the standard output from the process and echoes
that to standard output.

Note: popen () does not exist in the standard C library, but it is rather a part of POSIX C)

Section 20.3: fprintf

You can use fprintf on a file just like you might on a console with printf. For example to keep track of game wins,
losses and ties you might write

/* saves wins, losses and, ties */
void savewlt(FILE *fout, int wins, int losses, int ties)
{
fprintf(fout, "Wins: %d\nTies: %d\nLosses: %d\n", wins, ties, losses);

}

A side note: Some systems (infamously, Windows) do not use what most programmers would call "normal” line
endings. While UNIX-like systems use \n to terminate lines, Windows uses a pair of characters: \r (carriage return)
and \n (line feed). This sequence is commonly called CRLF. However, whenever using C, you do not need to worry
about these highly platform-dependent details. A C compiler is required to convert every instance of \n to the
correct platform line ending. So a Windows compiler would convert \n to \r\n, but a UNIX compiler would keep it as-
is.

Section 20.4: Get lines from a file using getline()

The POSIX C library defines the getline() function. This function allocates a buffer to hold the line contents and
returns the new line, the number of characters in the line, and the size of the buffer.

GoalKicker.com - C Notes for Professionals 16

(c) ketabton.com: The Digital Library

Example program that gets each line from example. txt:

#include <stdlib.h>
#include <stdio.h>

#define FILENAME "example.txt"

int main(void)

{

}

/* Open the file for reading */
char *line_buf = NULL;
size_t line_buf_size = 0;
int line_count = 0;
ssize_t line_size;
FILE *fp = fopen(FILENAME, "r");
if (!'fp)
{
fprintf(stderr, "Error opening file '%s'\n", FILENAME);
return EXIT_FAILURE;
}

/* Get the first line of the file. */
line_size = getline(&line_buf, &line_buf_size, fp);

/* Loop through until we are done with the file. */
while (line_size >=)
{

/* Increment our line count #*/

line_count++;

/* Show the line details */

printf("line[%06d]: chars=%06zd, buf size=%06zu, contents: %s", line_count,

line_size, line_buf_size, line_buf);

/* Get the next line #*/
line_size = getline(&line_buf, &line_buf_size, fp);

}

/* Free the allocated line buffer */
free(line_buf);

line_buf = NULL;

/* Close the file now that we are done with it */
fclose(fp);

return EXIT_SUCCESS;

Input file example. txt

This is a file

which has

multiple lines

with various indentation,
blank lines

a really long line to show that getline() will reallocate the line buffer if the length of a line
is too long to fit in the buffer it has been given,
and punctuation at the end of the lines.

GoalKicker.com - C Notes for Professionals

17

(c) ketabton.com: The Digital Library

Output

1ine[000001]: chars=000015, buf size=000016, contents: This is a file
1ine[000002]: chars=000012, buf size=000016, contents: which has
1ine[000003]: chars=000015, buf size=000016, contents: multiple lines
1line[000004]: chars=000030, buf size=000032, contents: with various indentation,
1ine[000005]: chars=000012, buf size=000032, contents: blank lines
1ine[000006]: chars=000001, buf size=000032, contents:
1ine[000007]: chars=000001, buf size=000032, contents:
1line[000008]: chars=000001, buf size=000032, contents:
1ine[000009]: chars=000150, buf size=000160, contents: a really long line to show that getline()

will reallocate the line buffer

been given,
1line[000010]: chars=000042, buf size=000160, contents: and punctuation at the end of the lines.
1line[000011]: chars=000001, buf size=000160, contents:

if the length of a line is too long to fit in the buffer it has

In the example, getline() is initially called with no buffer allocated. During this first call, getline() allocates a
buffer, reads the first line and places the line's contents in the new buffer. On subsequent calls, getline() updates
the same buffer and only reallocates the buffer when it is no longer large enough to fit the whole line. The
temporary buffer is then freed when we are done with the file.

Another option is getdelim(). This is the same as getline() except you specify the line ending character. This is
only necessary if the last character of the line for your file type is not '\n'. getline() works even with Windows text
files because with the multibyte line ending ("\r\n")"\n'" is still the last character on the line.

Example implementation of getline()

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>

#if !(defined _POSIX_C_SOURCE)
typedef long int ssize_t;
#endif

/* Only include our version of getline() if the POSIX version isn't available.

#if !(defined _POSIX_C_SOURCE) || _POSIX_C_SOURCE < 200809L

#if !(defined SSIZE_MAX)
#define SSIZE_MAX (SIZE_MAX >> 1)
#endif

ssize_t getline(char **pline_buf, size_t *pn, FILE *fin)

{

const size_t INITALLOC
const size_t ALLOCSTEP
size_t num_read = 0;

16;
16;

/* First check that none of our input pointers are NULL. */
if ((NULL == pline_buf) || (NULL == pn) || (NULL == fin))
{

errno = EINVAL;

return -1;

}

/* If output buffer is NULL, then allocate a buffer. */
if (NULL == *pline_buf)

%/

GoalKicker.com - C Notes for Professionals

18

(c) ketabton.com: The Digital Library

{
*pline_buf = malloc(INITALLOC);
if (NULL == *pline_buf)
{
/* Can't allocate memory. */
return -1;
}
else
{
/* Note how big the buffer is at this time. */
*pn = INITALLOC;
}
}

/* Step through the file, pulling characters until either a newline or EOF. */

{
int c;
while (EOF != (c = getc(fin)))
{
/* Note we read a character. */
num_read++;

/* Reallocate the buffer if we need more room */
if (num_read >= *pn)
{
size_t n_realloc = #*pn + ALLOCSTEP;
char * tmp = realloc(*pline_buf, n_realloc + 1); /* +1 for the trailing NUL. %/
if (NULL !'= tmp)
{
/* Use the new buffer and note the new buffer size. */
*pline_buf = tmp;
*pn = n_realloc;
}
else
{
/* Exit with error and let the caller free the buffer. */
return -1;

}

/* Test for overflow. */
if (SSIZE_MAX < *pn)
{
errno = ERANGE;
return -1;
}
}

/* Add the character to the buffer. */
(*pline_buf)[num_read - 1] = (char) c;

/* Break from the loop if we hit the ending character. */
if (¢ == '"\n")
{
break;
}
}

/* Note if we hit EOF. */
if (EOF == c¢)
{

errno = 90;

GoalKicker.com - C Notes for Professionals 19

(c) ketabton.com: The Digital Library

return -1;

}
}

/* Terminate the string by suffixing NUL. */

(*pline_buf)[num_read] = '\@';

return (ssize_t) num_read;

}

#endif

Section 20.5: fscanf()

Let's say we have a text file and we want to read all words in that file, in order to do some requirements.

file.txt:

This is just
a test file
to be used by fscanf()

This is the main function:

#include <stdlib.h>
#include <stdio.h>

void printAllWords(FILE *);
int main(void)
{
FILE *fp;
if ((fp = fopen("file.txt", "r")) == NULL) {
perror("Error opening file");

exit(EXIT_FAILURE);
¥

printAllWords(fp);
fclose(fp);

return EXIT_SUCCESS;

}
void printAllWords(FILE * fp)
{
char tmp[20];
int 1 = 1;
while (fscanf(fp, "%19s", tmp) != EOF) {
printf("Word %d: %s\n", i, tmp);
i++;
}
}

The output will be:

GoalKicker.com - C Notes for Professionals 120

(c) ketabton.com: The Digital Library

Word 1: This
Word 2: is
Word 3: just
Word 4: a
Word 5: test
Word 6: file
Word 7: to
Word 8: be
Word 9: used
Word 10: by

Word 11: fscanf()

Section 20.6: Read lines from a file

The stdio.h header defines the fgets() function. This function reads a line from a stream and stores it in a
specified string. The function stops reading text from the stream when either n - 1 characters are read, the
newline character (' \n') is read or the end of file (EOF) is reached.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAX_LINE_LENGTH 86

int main(int argc, char x*xargv)

{
char *path;
char 1ine[MAX_LINE_LENGTH] = {0};
unsigned int line_count = 0;

if (argc < 1)
return EXIT_FAILURE;
path = argv[1];

/* Open file */
FILE *file = fopen(path, "r");

if (1file)
{

perror(path);

return EXIT_FAILURE;
}

/* Get each line until there are none left */
while (fgets(line, MAX_LINE_LENGTH, file))

{
/* Print each line #*/
printf("line[%06d]: %s", ++line_count, line);
/* Add a trailing newline to lines that don't already have one */
if (line[strlen(line) - 1] !'= '\n")
printf("“\n");
}

/* Close file */

if (fclose(file))

{
return EXIT_FAILURE;
perror(path);

GoalKicker.com - C Notes for Professionals

121

(c) ketabton.com: The Digital Library

}

Calling the program with an argument that is a path to a file containing the following text:

This is a file

which has

multiple lines

with various indentation,
blank lines

a really long line to show that the line will be counted as two lines if the length of a line is
too long to fit in the buffer it has been given,
and punctuation at the end of the lines.

Will result in the following output:

1ine[000001]: This is a file
1ine[000002]: which has
1line[000003]: multiple lines

1line[000004] : with various indentation,
1ine[000005]: blank lines

1line[000006] :

1ine[000007]:

1ine[000008] :

1ine[000009]: a really long line to show that the line will be counted as two lines if the le
1ine[000010]: ngth of a line is too long to fit in the buffer it has been given,
1line[000011]: and punctuation at the end of the lines.

1ine[000012]:

This very simple example allows a fixed maximum line length, such that longer lines will effectively be counted as
two lines. The fgets() function requires that the calling code provide the memory to be used as the destination for
the line that is read.

POSIX makes the getline() function available which instead internally allocates memory to enlarge the buffer as
necessary for a line of any length (as long as there is sufficient memory).

Section 20.7: Open and write to a binary file

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
result = EXIT_SUCCESS;

char file_name[] = "outbut.bin";
char str[] = "This is a binary file example";
FILE * fp = fopen(file_name, "wb");

if (fp == NULL) /* If an error occurs during the file creation */

{
result = EXIT_FAILURE;

fprintf(stderr, "fopen() failed for '%s'\n", file_name);

GoalKicker.com - C Notes for Professionals 122

(c) ketabton.com: The Digital Library

This program creates and writes text in the binary form through the fwrite function to the file output.bin.
If a file with the same name already exists, its contents are discarded and the file is treated as a new empty file.

A binary stream is an ordered sequence of characters that can transparently record internal data. In this mode,

}
else
{
size_t element_size = sizeof *str;
size_t elements_to_write = sizeof str;
/* Writes str (_including_ the NUL-terminator) to the binary file. */
size_t elements_written = fwrite(str, element_size, elements_to_write, fp);
if (elements_written != elements_to_write)
{
result = EXIT_FAILURE;
/* This works for >=c99 only, else the z length modifier is unknown. */
fprintf(stderr, "fwrite() failed: wrote only %zu out of %zu elements.\n",
elements_written, elements_to_write);
/* Use this for <c99: *
fprintf(stderr, "fwrite() failed: wrote only %lu out of %lu elements.\n",
(unsigned long) elements_written, (unsigned long) elements_to_write);
*/
}
fclose(fp);
}

return result;

bytes are written between the program and the file without any interpretation.

To write integers portably, it must be known whether the file format expects them in big or little-endian format, and
the size (usually 16, 32 or 64 bits). Bit shifting and masking may then be used to write out the bytes in the correct

order. Integers in C are not guaranteed to have two's complement representation (though almost all

implementations do). Fortunately a conversion to unsigned is guaranteed to use twos complement. The code for
writing a signed integer to a binary file is therefore a little surprising.

/* write a 16-bit little endian integer */
int fputl16le(int x, FILE =*fp)

{

unsigned int rep = x;
int el, e2;

el
e2

= fputc(rep & OxFF, fp);
fputc((rep >> 8) & OxFF, fp);

if(e1 == EOF || e2 == EOF)

return EOF;

return 0;

The other functions follow the same pattern with minor modifications for size and byte order.

GoalKicker.com - C Notes for Professionals

123

(c) ketabton.com: The Digital Library

Chapter 21: Formatted Input/Output

Section 21.1: Conversion Specifiers for printing

Conversion

Specifier
i d
u

o

X

> 0 @O «Q

%

Type of Argument

int

unsigned int
unsigned int
unsigned int
unsigned int

double
double
double

double

double
double
double
double
char

char*
void*

n/a
int *

Description

prints decimal

prints decimal

prints octal

prints hexadecimal, lower-case
prints hexadecimal, upper-case

prints float with a default precision of 6, if no precision is given (lower-case used
for special numbers nan and inf or infinity)

prints float with a default precision of 6, if no precision is given (upper-case
used for special numbers NAN and INF or INFINITY)

prints float with a default precision of 6, if no precision is given, using scientific
notation using mantissa/exponent; lower-case exponent and special numbers

prints float with a default precision of 6, if no precision is given, using scientific
notation using mantissa/exponent; upper-case exponent and special numbers

uses either f or e [see below]
uses either F or E [see below]
prints hexadecimal, lower-case
prints hexadecimal, upper-case
prints single character

prints string of characters up to a NUL terminator, or truncated to length given
by precision, if specified

prints void-pointer value; a nonvoid-pointer should be explicitly converted
("cast") to voidx; pointer to object only, not a function-pointer

prints the % character
write the number of bytes printed so far into the int pointed at.

Note that length modifiers can be applied to %n (e.g. %hhn indicates that a following n conversion specifier applies to a
pointer to a signed char argument, according to the ISO/IEC 9899:2011 §7.21.6.1 7).

Note that the floating point conversions apply to types float and double because of default promotion rules —
§6.5.2.2 Function calls, {7 The ellipsis notation in a function prototype declarator causes argument type conversion to
stop after the last declared parameter. The default argument promotions are performed on trailing arguments.) Thus,
functions such as printf() are only ever passed double values, even if the variable referenced is of type float.

With the g and G formats, the choice between e and f (or E and F) notation is documented in the C standard and in
the POSIX specification for printf():

The double argument representing a floating-point number shall be converted in the style f or e (or in the
style F or E in the case of a G conversion specifier), depending on the value converted and the precision.
Let P equal the precision if non-zero, 6 if the precision is omitted, or 1 if the precision is zero. Then, if a
conversion with style E would have an exponent of X:

e If P> X>=-4, the conversion shall be with style f (or F) and precision P - (X+1).
¢ Otherwise, the conversion shall be with style e (or E) and precision P - 1.

GoalKicker.com - C Notes for Professionals 124

(c) ketabton.com: The Digital Library

Finally, unless the '#' flag is used, any trailing zeros shall be removed from the fractional portion of the
result and the decimal-point character shall be removed if there is no fractional portion remaining.

Section 21.2: The printf() Function

Accessed through including <stdio.h>, the function printf() is the primary tool used for printing text to the
consolein C.

printf("Hello world!");
// Hello world!

Normal, unformatted character arrays can be printed by themselves by placing them directly in between the
parentheses.

printf("%d is the answer to life, the universe, and everything.", 42);
// 42 is the answer to life, the universe, and everything.

int x = 3;

char y = '2";

char* z = "Example";

printf("Int: %d, Char: %c, String: %s", X, y, Zz);
// Int: 3, Char: Z, String: Example

Alternatively, integers, floating-point numbers, characters, and more can be printed using the escape character %,
followed by a character or sequence of characters denoting the format, known as the format specifier.

All additional arguments to the function printf() are separated by commas, and these arguments should be in the
same order as the format specifiers. Additional arguments are ignored, while incorrectly typed arguments or a lack
of arguments will cause errors or undefined behavior. Each argument can be either a literal value or a variable.

After successful execution, the number of characters printed is returned with type int. Otherwise, a failure returns
a negative value.

Section 21.3: Printing format flags

The C standard (C11, and C99 too) defines the following flags for printf():

Flag Conversions Meaning
The result of the conversion shall be left-justified within the field. The conversion is right-

) al justified if this flag is not specified.
B signed The result of a signed conversion shall always begin with a sign ('+' or '-'). The conversion
numeric shall begin with a sign only when a negative value is converted if this flag is not specified.
. If the first character of a signed conversion is not a sign or if a signed conversion results in
signed . : .
<space> "° . no characters, a <space> shall be prefixed to the result. This means that if the <space>

and '+ flags both appear, the <space> flag shall be ignored.

Specifies that the value is to be converted to an alternative form. For o conversion, it shall
increase the precision, if and only if necessary, to force the first digit of the result to be a
zero (if the value and precision are both 0, a single 0 is printed). For x or X conversion
specifiers, a non-zero result shall have 0x (or 0X) prefixed to it. For a, A, e, E, f, F, g, and G

all conversion specifiers, the result shall always contain a radix character, even if no digits
follow the radix character. Without this flag, a radix character appears in the result of
these conversions only if a digit follows it. For g and G conversion specifiers, trailing zeros
shall not be removed from the result as they normally are. For other conversion
specifiers, the behavior is undefined.

GoalKicker.com - C Notes for Professionals 125

(c) ketabton.com: The Digital Library

Ford,i,o,u,x, X a, A e Ef F g and G conversion specifiers, leading zeros (following any
indication of sign or base) are used to pad to the field width rather than performing space
padding, except when converting an infinity or NaN. If the '0' and '-' flags both appear, the

numeric '0' flag is ignored. For d, i, 0, u, x, and X conversion specifiers, if a precision is specified, the
'0' flag shall be ignored. = If the '0' and <apostrophe> flags both appear, the grouping
characters are inserted before zero padding. For other conversions, the behavior is
undefined. &

These flags are also supported by Microsoft with the same meanings.

The POSIX specification for printf() adds:

Flag Conversions Meaning

The integer portion of the result of a decimal conversion shall be formatted with thousands'
i,d, u, f, F g G grouping characters. For other conversions the behavior is undefined. The non-monetary
grouping character is used.

Section 21.4: Printing the Value of a Pointer to an Object

To print the value of a pointer to an object (as opposed to a function pointer) use the p conversion specifier. It is
defined to print void-pointers only, so to print out the value of a non voi