Digital Design

FourTH EDITION

M. Morris Mano

Emeritus Professor of Computer Engineering
California State University, Los Angeles

Michael D. Ciletti

Department of Electrical and Computer Engineering
University of Colorado at Colorado Springs

PEARSON

—

)]‘I'('Ili ice
Hall

Upper Saddle River, N 07458



©

v O i rary

Contents

Preface ix
1 Digital Systems and Binary Numbers 1
1.1 Digital Systems 1
1.2 Binary Numbers 3
1.3 Number-Base Conversions 5
1.4 Octal and Hexadecimal Numbers 8
1.5 Complements 9
1.6 Signed Binary Numbers 14
137 Binary Codes 17
1.8 Binary Storage and Registers 25
1.9 Binary Logic 28
2 Boolean Algebra and Logic Gates 36
2.1 Introduction 36
2.2 Basic Definitions 36
2.3 Axiomatic Definition of Boolean Algebra 38
2.4 Basic Theorems and Properties
of Boolean Algebra 41
2.5 Boolean Functions 44
2.6 Canonical and Standard Forms 48
2.7 Other Logic Operations 55
2.8 Digital Logic Gates 57
29 Integrated Circuits 63

i



c) ketabton.com: The Digital Li
()W ab %orﬁgnts e Digital Library

3 Gate-Level Minimization 70
3.1 Intraduction 70
3.2 The Map Method 70
33 Four-Variable Map 76
34 Five-Variable Map 81
3.5 Product-of-5ums Simplification 83
3.6 Don’t-Care Conditions 86
3.7 NAND and NOR Implementation 89
38 Other Two-Level Implementations 96
39 Exclusive-OR Function 101
3.10 Hardware Description Language 106
4 Combinational Logic 122
41 Introduction 122
4.2 Combinational Circuits 122
43 Analysis Procedure 123
4.4 Design Procedure 126
4.5 Binary Adder-Subtractor 130
4.6 Decimal Adder 139
4.7 Binary Multiplier 142
4.8 Magnitude Comparator 144
4.9 Decoders 146
4.10 Encoders 150
411 Multiplexers 152
412 HDL Models of Combinational Circuits 159
5 Synchronous Sequential Logic 182
5.1 Introduction 182
5.2 Sequential Circuits 182
53 Storage Elements: Latches 184
54 Storage Elements: Flip-Flops 188
5.5 Analysis of Clocked Sequential Circuits 195
5.6 Synthesizable HDL Models of Sequential
Circuits 207
57 State Reduction and Assignment 221
5.8 Design Procedure 225
6 Registers and Counters 242
6.1 Registers 242
6.2 Shift Registers 245



(c) ketabton.com: The Digital Library Contents v

6.3 Ripple Counters 253
6.4 Synchronous Counters 258
6.5 Other Counters 265
6.6 HDL for Registers and Counters 269
7 Memory and Programmable Logic 284
71 Introduction 284
7.2 Random-Access Memory 285
7.3 Memory Decoding 291
7.4 Error Detection and Correction 296
7.5 Read-Only Memory 299
7.6 Programmable Logic Array 305
7.7 Programmable Array Logic 309
7.8 Sequential Programmable Devices amn

8 Design at the Register

Transfer Level 334
8.1 Intreduction 334
8.2 Register Transfer Level (RTL) Notation 334
83 Register Transfer Level in HDL 336
8.4 Algorithmic State Machines (ASMs) 345
8.5 Design Example 352
8.6 HDL Description of Design Example 361
8.7 Sequential Binary Multiplier 371
8.8 Control Logic 376
8.9 HDL Description of Binary Multiplier 382
8.10 Design with Multiplexers 390
8.1 Race-Free Design 401
8.12 Latch-Free Design 403
8.13 Other Language Features 404
9 Asynchronous Sequential Logic 415
9.1 Introduction 415
9.2 Analysis Procedure 417
9.3 Circuits with Latches 425
9.4 Design Procedure 433
9.5 Reduction of State and Flow Tables 439
9.6 Race-Free State Assignment 446
9.7 Hazards 452

9.8 Design Example 457



(c) ketabton.comy:. The Digital Library

10 Digital Integrated Circuits 471
10.1 Introduction 471
10.2 Special Characteristics 473
10.3 Bipolar-Transistor Characteristics 477
10.4 RTL and DTL Circuits 481
10.5 Transistor-Transistor Logic 484
10.6 Emitter-Coupled Logic 493
10.7 Metal-Oxide Semiconductor 495
10.8 Complementary MOS 498
10.9 CMOS Transmission Gate Circuits 5071

10.10 Switch-Level Modeling with HDL 505

11 Laboratory Experiments

with Standard ICs and FPGAs 511
1.1 Introduction to Experiments 511
1.2 Experiment 1: Binary and Decimal Numbers 516
1.3 Experiment 2: Digital Logic Gates 519
1.4 Experiment 3: Simplification of Boolean
Functions 520
11.5 Experiment 4: Combinational Circuits 522
11.6 Experiment 5: Code Converters 524
1.7 Experiment 6: Design with Multiplexers 526
11.8 Experiment 7: Adders and Subtractors 527
11.9 Experiment 8: Flip-Flops 530
11.10 Experiment 9: Sequential Circuits 532
11.11 Experiment 10: Counters 534
11.12 Experiment 11: Shift Registers 535
11.13 Experiment 12: Serial Addition 538
11.14 Experiment 13: Memory Unit 539
11.15 Experiment 14: Lamp Handball 541
11.16 Experiment 15: Clock-Pulse Generator 545
11.17 Experiment 16: Parallel Adder and
Accumulator 547
11.18 Experiment 17: Binary Multiplier 549
11.19 Experiment 18: Asynchronous Sequential
Circuits 553
11.20 Verilog HDL Simulation Experiments
and Rapid Prototyping with FPGAs 553
12 Standard Graphic Symbols 559
121 Rectangular-Shape Symbols 559
12.2 Qualifying Symbols 562
123 Dependency Notation 564



(c) ketabton.com: The Digital Library

12.4
125
126
12.7
128

Symbols for Combinational Elements
Symbols for Flip-Flops

Symbols for Registers

Symbols for Counters

Symbol for RAM

Answers to Selected Problems

Index

Contents

566
568
570
573
575

il

577
597



(c) ketabton.com: The Digital Library

Preface

Digital electronic circuits are the engines of cell phones, MPEG players, digital cameras, com-
puters, data servers, personal digital devices, GPS displays. and many other consumer prod-
ucts that process and use information in a digital format. This book presents a basic treatment
of digital circuits and the fundamental concepts used in their design. It is suitable for use as a
textbook in an introductory course in an electrical engineering, computer engineering, or com-
puter science curriculum,

Each significant advance in industry practice ultimately works its way into the engineering
curriculum. Since the mid-1980's, the use of computer-based design 1ools has transformed the
electronics industry worldwide, Application specific integrated circuits (ASICs) are designed
today by using a hardware description language (HDL), such as Verilog or VHDL, to write
a behavioral model of the circuit’s functionality, and then synthesizing that description into
a hardware realization in a particular technology, e.g., CMOS integrated circuits or field-
programmable gate arrays (FPGAs). No longer a novelty, these design tools are now readily
available to universities, and are migrating in a strategic way from graduate level curricula
into undergraduate courses. It is clear that HDLs have an esseatial, significant role in edueat-
ing our future engineers. Learning to design with an HDL is as important to today’s students,
we think, as oscilloscopes, breadboards, and logic analyzers were to previous generations of
engineers, so this edition of the text adds more weight to the use of hardware description lan-
guages in designing digital circuits.

We note that introducing HDLs in a first course in designing digital circuits is not intend-
ed to replace fundamental understanding of the building blocks of such circuits or to eliminate
a discussion of manual methods of design. It is still essential for a student to understand how
hardware works. Thus, we retain a thorough treatment of combinational and sequential logic
devices. Manual design practices are presented, and their results are compared with those ob-
tained with a HDL-based paradigm. What we are presenting, however, is a shift in emphasis



(c) ketabton.com: The Digital Library
X Preface

on how hardware is designed, a shift that, we think, better prepares a student for a career in
today’s industry, where HDL-based design practices are prevalent,

FLEXIBILITY

The sequence of topics in the text can accommodate courses that adhere to traditional, manu-
al-based, treatments of digital design, courses that treat design using an HDL, and courses that
are in transition between or blend the two approaches. Because modern synthesis tools auto-
matically perform logic minimization, Karnaugh maps and related topics in optimization can
be presented at the beginning of a treatment of digital design, or they can be presented after cir-
cuits and their applications are examined, designed. and simulated with an HDL. The text in-
cludes both manual and HDL-based design examples, Our end-of-chapter problems further
facilitate this flexibility by cross-referencing problems that address a traditional manual design
task with a companion problem that uses an HDL to accomplish the task. Additionally, we link
manual and HDL-based approaches by presenting annotated results of simulations in the text,
in answers to selected problems at the end of the text. and in the solutions manual.

WHAT'S NEW?

The previous edition of this text recognized the importance of hardware description languages
in the design of digital circuits, and incorporated new material and examples introducing stu-
dents to the Verilog language, as defined by [EEE Standard 1364-1995. This revision updates
and expands that treatment by:

revising HDL-based examples to present the ANSI-C like syntax that was adopted in the
standards IEEE 1364-2001 and [EEE 1364-2005

ensuring that all HDL examples conform o industry-accepted practices for modelling dig-
ital circuits

providing a systematic methodology for designing a datapath controller

presenting selected exercises and solutions to end-of-chapter problems in Verilog 1995
and Verilog 200172005 syntax

introducing an important design tool — the algorithmic state machine and datapath
(ASMD) chart

revising the end-of-chapter problems and expanding the set of problems by including
over 75 additional problems

providing students with fully developed answers to selected problems, including simu-
lation results

providing students with a CD-ROM containing simulator-ready HDL solutions of an-
swers to sclected problems

expanding the treatment of programmable logic devices to include FPGAs

.



(c) ketabton.com: The Digital Library
Preface xi

* revising the solutions manual and web-based materials and ensuring that solutions of
HDL-based exercises conform to industry practices for modelling with an HDL

* discussing and demonstrating the importance of test plans for verifying HDL models of
circuits

= providing instructors with verified. simulator-ready source code and test benches for all
end-of chapter problems

» making all figures. tables, and HDL examples available to instructors for downioading
in PDF format from the publisher

* including with the book a CD-ROM with tutorals and simulators for the [EEE-1995 and
IEEE-2001 Standards of the Verilog language

In addition to the above enhancements, the text incorp more graphical ial to bet-

ter serve learners who are oriented toward a graphical medium. A d graphical results and
< :

p ions of simul are p | to help students understand digital circuits and 10 fa-
cilitate classroom discussions of them. Kamaugh mups are presented with additional graphics.

DESIGN METHODOLOGY

This edition of the text extends the previous edition’s treatment of synchronous finite state ma-
chines by presenting a systematic methodology for designing a state machine to control the data-
path of a digital system. Moreover, the framework in which this material is presented treats the
realistic situation in which the controller uses signals from the datapath. i.e., the system has feed-
back. The methodology is applicable to manual and HDL-based approaches to design.

HDL-BASED APPROACH

It is not sufficient for an introduction to HDLs to dwell on language syntax. We present only
those elements of the Verilog language that are matched to the level and scope of this text.
Also, correct syntax does not guarantee that a model meets a functional specification or that
it can be synthesized into physical hardware. We introduce students to a disciplined use of
industry-based practices for writing models 1o ensure that a behavioral description can be syn-
thesized into physical hardware. and that the behavior of the synthesized circuit will match
that of the behavioral description. Failure to follow this discipline can lead 1o software race con-
ditions in the HDL models of such machines, race conditions in the testbench used to verify
them, and a mismatch between the results of simulating a behavioral model and its synthe-
sized physical counterpart. Similarly, fuilure to abide by industry practices may lead to designs
that simulate correctly, but which have hardware latches that are introduced into the design
accidentally as a consequence of the modelling style used by the designer. The industry-based
methodology we present leads to race-free and Jatch-free designs. It is important that students
learn and follow industry practices in using HDL models, independent of whether a stadent’s
curriculum has access to synthesis tools,



(c) ketabton.com: The Digital Library

xil

Preface

VERIFICATION

In industry, significant effort is expended to verify that the functionality of a circuit is comrect. Yet
not much atteation is given to verification in introductory texts on digital design, where the focus
is on design itself, and testing is perhaps viewed as a secondary undenaking. Our experience is
that this view can lead 1o premature declarations that “the circuit works beautifully.” Likewise,
industry gains repeated returns on its invesiment in an HDL model by ensuring that it is readable,
portable and reusable. We demonstrate naming practices and the use of parameters. We also pro-
vide test benches for all of the solutions and exercises to (1) verify the functionality of the cir-
cuit, (2) underscore the importance of thorough testing, and (3) introduce students to important
concepts, such as self-checking test benches. Advocating and illustrating the development of a
test plan 1o guide the development of a test bench, we introduce them in the text and expand
them in the solutions manual and in the answers to selected problems at the end of the text.

HDL CONTENT

This edition of the text updates und expands its treatment of the Verilog Hardware Descrip-
tion Language (HDL) and exploits key enhancements available in [EEE Standards 1364-2001
and 1364-2005. We have ensured that all examples in the text and all answers in the solution
manual conform to accepted industry practices for modeling digital hardware. As in the pre-
vious edition, HDL material is inserted in separate sections so it can be covered or skipped
as desired, does not diminish treatment of manual-based design, and does not dictate the se-
quence of presentation. The treatment is at a level suitable for beginning students that are
learning digital circuits and a hardware description language at the same time. The text pre-
pares students to work on significant independent design projects and to suceed in a later
course in computer architecture.

* Digital circuits are introduced in Chapters 1 through 3 with an introduction 1o Verilog
HDL in Section 3.10.

« Further discussion of modeling with HDLs occurs in Section 4.12 following the study
of combinational circuits.

= Sequential circuits are covered in Chapters 5 and 6 with corresponding HDL examples
in Sections 5.6 and 6.6.

* The HDL description of memory is presented in Section 7.2.

+ The RTL symbols used in Verilog are introduced in Sections 8.3.

= Examples of RTL and structural models in Verilog are provided in Sections 8.6 and 8.9.
Chapter 8 also presents a new, comprehensive treatment of HDL-based design of a data-
path controller.

* Section 10.10 covers switch-level modeling corresponding to CMOS circuits.

+ Section 11.20 supplements the hardware experiments of Chapter 11 with HDL experi-
ments. Now the circuits designed in the laboratory can be checked by modeling them in
Verilog and simulating their behavior. Then they can be synthesized and implemented with
an FPGA on a prototyping board.



(c) ketabton.com: The Digital Library
Preface xiii

HDL SIMULATORS

The CD-ROM in the back of the book contains the Verilog HDL source code files for the ex-
amples in the book and two simulators provided by SynaptiCAD, The first simulator is
VeriLogger Pro, a traditional Verilog simulator that can be used to simulate the HDL examples
in the book and to verify the solutions of HDL problems. This simulator accepts the syntax of
the TEEE-1995 Standard and will be useful 1o those who have legacy models. As an interac-
tive simulator, Verilogger Extreme, accepts the syntax of IEEE-2001 as well as [EEE-1995, al-
lowing the designer to simulate and analyze design ideas before a complete simulation model
or schematic is available. This technology is particularly useful for students, because they can
quickly enter Boolean and D flip-flop or latch input equations 1o check equivalency or to ex-
periment with flip-flops and latch designs.

INSTRUCTOR RESOURCES

Instructors can download the following classroom-ready resources from the publisher
(www.prenhall.com/mano):

+ Source code and test benches for all Verilog HDL examples in the rest
« All figures and tables in the text
+ Source code for all HDL models in the solutions manual

A solution manual in typed hardcopy format with graphics. suitable for classroom presen-
tation, will also be provided instructors,

CHAPTER SUMMARY

The following is a brief summary of the topics that are covered in each chapter.

Chapter 1 presents the various binary systems suitable for representing information in dig-
ital systems. The binary number system is explained and binary codes are illustrated. Examples
are given for addition and subtraction of signed binary numbers and decimal numbers in BCD.

Chapter 2 introduces the basic postulates of Boolean algebra and shows the correlation be-
tween Boolean expressions and their corresponding logic diagrams. All possible logic opera-
tions for two variables are investigated and from that, the most useful logic gates used in the
design of digital systems are determined. The characteristics of integrated circuit gates are
mentioned in this chapter but a more detailed analysis of there the electronic circuits of the gates
is done in Chapter 10.

Chapter 3 covers the map method for simplifying Boolean expressions, The map method
is also used to simplify digital circuits constructed with AND-OR. NAND. or NOR gates. All
other possible two-level gate circuits are considered and their method of implementation is
explained, Verilog HDL is introduced together with simple gate-level modeling examples.

Chapter 4 outlines the formal procedures for the analysis and design of combinational cir-
cuits. Some basic components used in the design of digital systems, such as adders and code



(c) ketabton.com: The Digital Library

xiv

Preface

converters, are introduced as design examples. Frequently used digital logic functions such as
parallel adders and subtractors, decoders, encoders, and multiplexers are explained, and their
use in the design of combinational circuits is illustrated. HDL examples are given in the gate-
level, dataflow, and behavioral modeling 1o show the alternative ways available for describing
combinational circuits in Verilog HDL. The procedure for writing a simple test bench to pro-
vide stimulus to an HDL design is presented.

Chapter 5 outlines the formal procedures for the analysis and design of clocked (synchro-
nous) sequential circuits, The gate structure of several types of flip-flops is presented togeth-
er with a discussion on the difference between level and edge triggering. Specific examples are
used to show the derivation of the state table and state diagram when analyzing a sequential
circuit. A number of design examples are presented with emphasis on sequential circuits that
use D-type flip-flops. Behavioral modeling in Verilog HDL for sequential circuits is explained.
HDL Examples are given to illustrate Mealy and Moore models of sequential circuits,

Chapter 6 deals with various sequential circuits components such as registers, shift registers,
and counters. These digital components are the basic building blocks from which more complex
digital systems are constructed. HDL descriptions of shift registers and counter are presented.

Chapter 7 deals with random access memory (RAM) and programmable logic devices.
Memory decoding and error correction schemes are discussed. Combinational and sequential
programmable devices are presented such as ROMs, PLAs, PALs, CPLDs, and FPGAs.

Chapter 8 deals with the register transfer level (RTL) representation of digital systems.
The algorithmic state machine (ASM) chart is introduced. A number of examples demonstrate
the use of the ASM chart, ASMD chart, RTL representation, and HDL description in the de-
sign of digital systems. The design of a finite state machine to control a datapath is presented
in detail, including the realistic situation in which status signals from the datapath are used by
the state machine that controls it. This chapter is the most important chapter in the book as it
provides the student with a systematic approach to more advanced design projects.

Chapter 9 presents formal procedures for the analysis and design of asynchronous se-
quential circuits, Methods are outlined to show how an asynchronous sequential circuit can be
implemented as a combinational circuit with feedback. An alternate implementation is also de-
scribed that uses SR latches as the storage elements in asynchronous sequential circuits.

Chapter 10 presents the most common integrated circuit digital logic families. The electronic
circuits of the common gate in each family are analyzed using electrical circuit theory. A basic
knowledge of electronic circuits is necessary to fully understand the material in this chapter,
Examples of Verilog switch-level descriptions demonstrate the ability to simulate circuits con-
structed with MOS and CMOS transistors.

Chapter 11 outlines experiments that can be performed in the laboratory with hardware
that is readily available commercially. The operation of the integrated circuits used in the ex-
periments is explained by referring to diagrams of similar components introduced in previous
chapters. Each experiment is presented informally and the student is expected to produce the
circuit diagram and formulate a procedure for checking the operation of the circuit in the lab-
oratory, The last section supplements the experiments with corresponding HDL experiments.
Instead of. or in addition to, the hardware construction, the student can use the Verilog HDL
software provided on the CD-ROM to simulate and verify the design.

Chapter 12 presents the standard graphic symbols for logic functions recommended by
an ANSI/IEEE Standard. These graphic symbols have been developed for SS1 and MSI



(c) ketabton.com: The Digital Library

Preface XV

components so that the user can recognize each function from the unique graphic symbol
assigned. The chapter shows the standard graphic symbols of the integrated circuits used in
the laboratory experiments, The various digital components that are represented through-
out the book are similar to commercial integrated circuits. However, the text does not men-
tion specific integrated circuits except in Chapters 11 and 12. Doing the suggested
experiments in Chapter 11 while studying the theory presented in the text will enhance the
practical application of digital design.

LAB EXPERIMENTS

The book may be used in a stand-alone course or with a companion lab based on the lab ex-
periments included with the text. The lab experiments can be used in a stund-alone manner too,
and can be accomplished by a traditional approach. with a breadboard and TTL circuits, or with
an HDL/synthesis approach using FPGAs. Today, software for synthesizing an HDL model and
implementing a circuit with an FPGA is available at no cost from vendors of FPGAs. allowing
students to conduct a significant amount of work in their personal environment before using
prototyping boards and other resources in a lab. Circuit boards for rapidly prototyping circuits
with FPGAs are available at nominal cost, and typically include push buttons, switches, and
seven-segment displays, LCDs. keypads and other /O devices. With these resources, students
can work prescribed lab exercises or their own projects and get results immediately.

The operation of the integrated circuits used in the experiments is explained by referring to
diagrams of similar components introduced in previous chapters. Each experiment is present-
ed informally and the student is expected to produce the circuit diagram and formulate a pro-
cedure for verifying the operation of the circuit in the laboratory. The last section supplements
the experiments with corresponding HDL experiments. Instead of, or in addition to, the hard-
ware construction, the student can use the Verilog HDL software provided on the CD-ROM to
simulate and check the design. Synthesis tools can then be used to implement the circuit in an
FPGA on a prototyping board.

Our thanks go to the editorial tleam at Prentice Hall for committing to this timely revision
of the text. Finally, we are grateful 1o our wives, Sandra and Jerilynn, for encouraging our pur-
suit of this project.

M. MoRrRris MANO
Emeritus Professor of Computer Engineering
California State University, Los Angeles

MicHAEL D, CiLETT
Department of Electrical and Computer Engineering
University of Colorado at Colorado Springs



(c) ketabton.com: The Digital Library

Chapter 1
Digital Systems and Binary Numbers

LY

1

DIGITAL SYSTEMS

Digital systems have such a prominent role in everyday life that we refer to the present tech-
nological period as the digital age. Digital systems are used in communication, business trans-
actions, traffic control, space guidance, medical treatment, weather monitoring, the Internet, and
many other commercial, industrial, and scientific enterprises. We have digital telephones, dig-
ital television, digital versatile discs, digital cameras, handheld devices, and, of course, digi-
tal computers. The most striking property of the digital computer is its generality. It can follow
a sequence of instructions, called a program, that operates on given data. The user can specify
and change the program or the data according to the specific need. Because of this flexibility,
general-purpose digital computers can perform a variety of information-processing tasks that
range over a wide spectrum of applications.

One characteristic of digital systems is their ability to represent and manipulate discrete el-
ements of information, Any set that is restricted to a finite number of elements contains dis-
crete information. Examples of discrete sets are the 10 decimal digits, the 26 letters of the
alphabet, the 52 playing cards, and the 64 squares of a chessboard. Early digital computers
were used for numeric computations. In this case, the discrete elements were the digits. From
this application, the term digital computer emerged. Discrete elements of information are rep-
resented in a digital system by physical quantities called signals. Electrical signals such as
voltages and currents are the most common. Electronic devices called transistors predominate
in the circuitry that implements these signals, The signals in most present-day electronic dig-
ital systems use just two discrete values and are therefore said to be binary. A binary digit,
called a bif, has two values: 0 and 1. Discrete elements of information are represented with
groups of bits called binary codes. For example, the decimal digits 0 through 9 are represented

in a digital system with a code of four bits (e.g., the number 7 1s representad by O111).



(c) ketabton.com: The Digital Library

2

Chapter 1 Digital Systems and Binary Numbers

Through various techniques, groups of bits can be made to represent discrete symbols, which
are then used to develop the system in a digital format. Thus, a digital system is a system that
manipulates discrete elements of information represented internally in binary form,

Discrete quantities of information either emerge from the nature of the data being processed
or may be quantized from a continuous process. On the one hand, a payroll schedule is an in-
herently discrete process that contains employee names, social security numbers, weekly
salaries, income taxes, and so on. An employee’s paycheck is processed by means of discrete
data values such as letters of the alphabet (names), digits (salary), and special symbols (such
as $). On the other hand, a research scientist may observe a continuous process, but record
only specific quantities in tabular form. The scientist is thus quantizing continuous data, mak-
ing each number in his or her table a discrete quantity. In many cases, the quantization of a
process can be performed automatically by an analog-to-digital converter.

The general-purpose digital computer is the best-known example of a digital system. The
major parts of a computer are a memory unit, a central processing unit, and input—output units.
The memory unit stores programs as well as input, output, and intermediate data. The central
processing unit performs arithmetic and other data-processing operations as specified by the
program. The program and data prepared by a user are transferred into memory by means of
an input device such as a keyboard. An output device, such as a printer, receives the results of
the computations, and the printed results are presented to the user, A digital computer can ac-
commodate many input and output devices. One very useful device is a communication unit
that provides interaction with other users through the Internet. A digital computer is a power-
ful instrument that can perform not only arithmetic computations, but also logical operations.
In addition, it can be programmed to make decisions based on internal and external conditions.

There are fundamental reasons that commercial products are made with digital circuits.
Like a digital computer, most digital devices are programmable. By changing the program in
a programmable device, the same underlying hardware can be used for many different appli-
cations. Dramatic cost reductions in digital devices have come about because of advances in
digital integrated circuit technology. As the number of transistors that can be put on a piece of
silicon increases to produce complex functions, the cost per unit decreases and digital devices
can be bought at an increasingly reduced price. Equipment built with digital integrated cir-
cuits can perform at a speed of hundreds of millions of operations per second. Digital systems
can be made to operate with extreme reliability by using error-correcting codes. An example
of this strategy is the digital versatile disk (DVD), in which digital information representing
video, audio, and other data is recorded without the loss of a single item. Digital information
on a DVD is recorded in such a way that, by examining the code in each digital sample before
it is played back, any error can be automatically identified and corrected.

A digital system is an interconnection of digital modules. To understand the operation of
each digital module, it is necessary to have a basic knowledge of digital circuits and their logi-
cal function. The first seven chapters of this book present the basic tools of digital design, such
as logic gate structures, combinational and sequential circuits, and programmable logic devices.
Chapter 8 introduces digital design at the register transfer level (RTL). Chapters 9 and 10 deal
with asynchronous sequential circuits and the various integrated digital logic families. Chapters
11 and 12 introduce commercial integrated circuits and show how they can be connected in the
laboratory to perform experiments with digital circuits.



(c) ketabton.com: The Digital Library

Section 1.2 Binary Numbers 3

A major trend in digital design methodology is the use of a hardware description language
(HDL) to describe and simulate the functionality of a digital circuit. An HDL resembles a pro-
gramming language and is suitable for describing digital circuits in textual form. It is used to
simulate a digital system to verify its operation before hardware is built in. It is also used in
conjunction with logic synthesis tools to automate the design process. Because it is important
that students become familiar with an HDL-based design methodology, HDL descriptions of
digital circuits are presented throughout the book. While these examples help illustrate the fea-
tures of an HDL, they also demonstrate the best practices used by industry to exploit HDLs.
Ignorance of these practices will lead to cute, but worthless. HDL models that may simulate a
phenomenon, but that cannot be synthesized by design tools. or to models that waste silicon
area or synthesize to hardware that cannot operate correctly.

As previously stated, digital systems manipulate discrete quantities of information that are
represented in binary form, Operands used for calculations may be expressed in the binary
number system. Other discrete elements, including the decimal digits, are represented in binary
codes. Digital circuits, also referred to as logic circuits, process data by means of binary logic
elements (logic gates) using binary signals. Quantities are stored in binary (two-valued) stor-
age elements (flip-flops). The purpose of this chapter is to introduce the various binary con-
cepts as a frame of reference for further study in the succeeding chapters.

1.2 BINARY NUMBERS

A decimal number such as 7.392 represents a quantity equal to 7 thousands, plus 3 hundreds,
plus 9 tens, plus 2 units. The thousands. hundreds, etc., are powers of 10 implied by the posi-
tion of the coefficients in the number. To be more exact. 7.392 is a shorthand notation for what
should be written as

TXx100+3x100+9x 10" +2x 10°

However. the convention is to write only the coefficients and. from their position. deduce the
necessary powers of 10. In general, a number with a decimal point is represented by a series
of coefficients:

A5A 43620 8o 00203

The coefficients a; are any of the 10 digits (0, 1, 2, ....9). and the subscript value j gives the
place value and. hence, the power of 10 by which the coefficient must be multiplied. Thus. the
preceding decimal number can be expressed as

10%as + 10%y + 10%5 + 10%; + 10'a; + 10% + 10 'a_y + 1072, + 1034,

The decimal number system is said to be of base, or radix, 10 because it uses 10 digits and
the coefficients are multiplied by powers of 10. The binary system is a different number sys-
tem. The coefficients of the binary number system have only two possible values: 0 and 1.
Each coefficient a; is multiplied by 2/, and the results are added to obtain the decimal equiv-
alent of the number. The radix point (e.g., the decimal point when 10 is the radix) distinguishes
positive powers of 10 from negative powers of 10, For example, the decimal equivalent of the



(c) ketabton.com: The Digital Library

4

Chapter 1 Digital Systems and Binary Numbers

binary number 11010.11 is 26.75, as shown from the multiplication of the coefficients by pow-
ers of 2:

IX2 41X 4+0x2+1x2'+0x202+1%x27V+1X%X22%2=2675

In general, a number expressed in a base-r system has coefficients multiplied by powers of r:

A r" F @py "N+ s agert + aper +ag + asyr!

tap A as,r™

The coefficients a; range in value from 0 to » — 1. To distinguish between numbers of differ-
ent bases, we enclose the coefficients in parentheses and write a subscript equal to the base used
(except sometimes for decimal numbers, where the content makes it obvious that the base is
decimal). An example of a base-5 number is

(4021.2)s =4 X 55+ 0x 52 +2%x 5" + 1 x5°+2%x 57" = (511.4)

The coefficient values for base 5 can be only 0, 1, 2, 3, and 4. The octal number system is a
base-8 system that has eight digits: 0, 1, 2, 3, 4, 5, 6, 7. An example of an octal number is
127.4. To determine its equivalent decimal value, we expand the number in a power series with
a base of 8:

(1274)g =1 X 82 +2x 8 + 7x 8 + 4 X 871 = (87.5)y0

Note that the digits 8 and 9 cannot appear in an octal number.

It is customary to borrow the needed r digits for the coefficients from the decimal system
when the base of the number is less than 10. The letters of the alphabet are used to supplement
the 10 decimal digits when the base of the number is greater than 10. For example, in the
hexadecimal (base-16) number system, the first 10 digits are borrowed from the decimal sys-
tem. The letters A, B, C, D, E, and F are used for the digits 10, 11, 12, 13, 14, and 15, respec-
tively. An example of a hexadecimal number is

(B65F)1 = 11 X 16 + 6 X 167 + 5 X 16' + 15 X 16" = (46,687),9

As noted before, the digits in a binary number are called birs. When a bit is equal to 0. it does
not contribute to the sum during the conversion. Therefore, the conversion from binary to dec-
imal can be obtained by adding only the numbers with powers of two corresponding to the bits
that are equal to 1. For example,

(110101) = 32 + 16 + 4 + 1 = (53)y0

There are four 1's in the binary number. The corresponding decimal number is the sum of
the four powers of two. The [irst 24 numbers obtained from 2 to the power of n are listed in
Table 1.1. In computer work, 219 is referred to as K (kilo), 220 a5 M (mega), 2045 G (giga),
and 2% as T (tera). Thus, 4K = 2'2 = 4,096 and 16M = 2** = 16,777,216. Computer ca-
pacity is usually given in bytes. A byre is equal to eight bits and can accommodate (i.e., repre-
sent the code of) one keyboard character. A computer hard disk with four gigabytes of storage
has a capacity of 4G = 2%? bytes (approximately 4 billion bytes).



(c) ketabton.com: The Digital Library

Section 1.3 Number-Base Conversions 5

Table 1.1

Powers of Two
n 27 n 2" n 2"
0 1 8 256 16 65,536
1 2 9 512 I'7 131,072
2 4 10 1.024 18 262144
3 8 11 2,048 19 524,288
4 16 12 4.096 20 1,048,576
- 32 13 8,192 21 2,097,152
6 64 14 16,384 22 4,194,304
{l 128 15 32,768 23 8,388,608

Arithmetic operations with numbers in base r follow the same rules as for decimal num-
bers. When a base other than the familiar base 10 is used, one must be careful 1o use only the
r-allowable digits. Examples of addition, subtraction. and multiplication of two binary num-
bers are as follows:

augend: 101101 minuend: 101101 multiplicand: 1011
addend:  +100111  subtrahend;:  — 100111  multiplier: X 101
sum: 1010100 difference: 000110 1011
0000

1011

product: 110111

The sum of two binary numbers is calculated by the same rules as in decimal, except that
the digits of the sum in any significant position can be only O or 1. Any carry obtained in a given
significant position is used by the pair of digits one significant position higher. Subtraction is
slightly more complicated. The rules are still the same as in decimal, except that the borrow in
a given significant position adds 2 to a minuend digit. (A borrow in the decimal system adds
10 to a minuend digit.) Multiplication is simple: The multiplier digits are always 1 or 0; there-
fore. the partial products are equal either to the multiplicand or to ().

1.3 NUMBER-BASE CONVERSIONS

The conversion of a number in base r to decimal is done by expanding the number in a power
series and adding all the terms as shown previously. We now present a general procedure for
the reverse operation of converting a decimal number to a number in base r. If the number in-
cludes a radix point, it is necessary to separate the number into an integer part and a fraction
part, since each part must be converted differently. The conversion of a decimal integer to a num-
ber in base r is done by dividing the number and all successive quotients by r and accumulat-
ing the remainders. This procedure is best illustrated by example.



(c) ketabton.com: The Digital Library

6 Chapter 1 Digital Systems and Binary Numbers

EXAMPLE 1.1

Convert decimal 41 to binary, First, 41 is divided by 2 to give an integer quotient of 20 and a
remainder of % Then the quotient is again divided by 2 to give a new quotient and remainder.
The process is continued until the integer quotient becomes 0. The coefficients of the desired
binary number are obtained from the remainders as follows:

Integer

Quotient Remainder  CoefTicient
4112 = 20 0 3 ag = 1
2072 = 10 + 0 a =0
102 = 5 + 0 ar=10
512 = 2 i+ ! a3 = 1
22 = 1 + 0 as =0
12 = 0 E ! as =1

Therefore, the answer is (41)19 = (asaqasazaiag)y = (101001),.
The arithmetic process can be manipulated more conveniently as follows:

Integer Remainder

41

20 1

10 0

5 0

2 1

1 0

0 1 101001 = answer

Conversion from decimal integers to any base-r system is similar to this example, except that
division is done by r instead of 2.

EXAMPLE 1.2

Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give an in-
teger quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an integer quotient
of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and a remainder of
2. This process can be conveniently manipulated as follows:

153
19

W -

2 = (231);



(c) ketabton.com: The Digital Library

Section 1.3 Number-Base Conversions 7

The conversion of a decimal fraction to binary is accomplished by a method similar to that
used for integers. However. multiplication is used instead of division, and integers instead of
remainders are accumulated. Again, the method is best explained by example,

L |

EXAMPLE 1.3

Convert (0.6875) ) to binary. First, (.6875 is multiplied by 2 1o give an integer and a fraction.
Then the new fraction is multiplied by 2 1o give a new integer and a new fraction. The process
is continued until the fraction becomes 0 or until the number of digits have sufficient accuracy.
The coefficients of the binary number are obtained from the integers as follows:

Integer Fraction  Coefficient
0.6875 X 2 = | + 0,3750 a =1
0.3750 X 2 = + 0.7500 a3 =10
0.7500 % 2 = I + 0.5000 ay=1
0.5000 X 2 = | L 0.0000 a_y = |

Therefore. the answer is (0.6875) 1y = (0.a_jg—st—3a_4)> = (0.1011),,
To convert a decimal fraction to a number expressed in base 1 a similar procedure is used.
However, multiplication is by rinstead of 2, and the coefficients found from the integers may

range in value from 0 to r — | instead of 0 and 1.
m

EXAMPLE 1.4

Convert (0.513) 5 to octal.
0.513 X 8 = 4.104

0.104 % 8 = 0.832
0.832 X 8 = 6.656
0.656 X 8 = 5248
0.248 X 8 = 1.984
0984 X 8 = 7.872

The answer, to seven significant figures, is obtained from the integer part of the products:
(0.513)y = (0.406517... )



(c) ketabton.com: The Digital Library
8 Chapter 1 Digital Systems and Binary Numbers

The conversion of decimal numbers with both integer and fraction parts is done by con-
verting the integer and the fraction separately and then combining the two answers. Using the
results of Examples 1.1 and 1.3, we obtain

(41.6875) 15 = (101001.1011),
From Examples 1.2 and 1.4, we have
(153.513)1p = (231.406517)3

1.4 OCTAL AND HEXADECIMAL NUMBERS

The conversion from and to binary, octal, and hexadecimal plays an important role in digital
computers. Since 2* = 8 and 2* = 16, each octal digit corresponds to three binary digits and
each hexadecimal digit corresponds to four binary digits. The first 16 numbers in the decimal,
binary, octal, and hexadecimal number systems are listed in Table 1.2.

The conversion from binary to octal is easily accomplished by partitioning the binary num-
ber into groups of three digits each, starting from the binary point and proceeding to the left
and to the right. The corresponding octal digit is then assigned to each group. The following
example illustrates the procedure:

(10 110 001 101 OI1L = 111 100 000 110); = (26153.7406)

2 6 1 5 3 7 4 0 6
Table 1.2
Numbers with Different Bases
Decimal Binary Octal Hexadecimal
(base 10) (base 2) (base 8) (base 16)
00 0000 00 0
0l 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F




(c) ketabton.com: The Digital Library
Section 1.5 Complements 9

Conversion from binary 10 hexadecimal is similar, except that the binary number is divided into
groups of four digits:

(10 1100 0110 1011 - 1111 0010)s = (2C6B.E2),4
% i 6 B F 2

The corresponding hexadecimal (or octal) digit for each group of binary digits is easily re-
membered from the values listed in Table 1.2

Conversion from octal or hexadecimal to binary is done by reversing the preceding proce-
dure. Each octal digit is converted to its three-digit binary equivalent. Similarly, each hexa-
decimal digit is converted to its four-digit binary equivalent, The procedure is illustrated in
the following examples:

(673.124)g = (110 111 011« 001 010 100),
6 7 3 1 2 4

and
(306.D)1 = (0011 0000 0110 - 1101),
3 0 6 D

Binary numbers are difficult to work with because they require three or four times as many
digits as their decimal equivalents. For example. the binary number 111111111111 is equivalent
to decimal 4095. However, digital computers use binary numbers, and it is sometimes necessary
for the human operator or user to communicate directly with the machine by means of such num-
bers. One scheme that retains the binary system in the computer, but reduces the number of dig-
its the human must consider, utilizes the relationship between the binary number system and the
octal or hexadecimal system. By this method. the human thinks in terms of octal or hexadecimal
numbers and performs the required conversion by inspection when direet communication with
the machine is necessary, Thus. the binary number 1LLITLITTTLT has 12 digits and is expressed
in octal as 7777 (4 digits) or in hexadecimal as FFF (3 digits). During communication between
people (about binary numbers in the computer), the octal or hexadecimal representation is more
desirable because it can be expressed more compactly with a third or a quarter of the number of
digits required for the equivalent binary number. Thus, most computer manuals use either octal
or hexadecimal numbers to specify binary quantities, The choice between them is arbitrary,
although hexadecimal tends to win out, since it can represent a byte with two digits.

1.5 COMPLEMENTS

Complements are used in digital computers to simplify the subtraction operation and for log-
ical manipulation. Simplifying operations leads to simpler, less expensive circuits to implement
the operations. There are two types of complements for each base-r system: the radix com-
plement and the diminished radix complement. The first is referred to as the r's complement
and the second as the (r — 1)'s complement. When the value of the base r is substituted in the
name, the two types are referred to as the 2's complement and 1's complement for binary num-
bers and the 10's complement and 9's complement for decimal numbers.



(c) ketabton.com: The Digital Library

10

Chapter 1 Digital Systems and Binary Numbers

Diminished Radix Complement

Given a number N in base r having n digits, the (r — 1)'s complement of N is defined as
(r" — 1) — N. For decimal numbers, r = 10and r — 1 = 9, so the 9's complement of N is
(10" — 1) — N. In this case, 10" represents a number that consists of a single 1 followed by
n0’s. 10" — 1 is a number represented by n 9's. For example. if n = 4. we have 10* = 10,000
and 10* — 1 = 9999. It follows that the 9's complement of a decimal number is obtained by
subtracting each digit from 9. Here are some numerical examples:

The 9's complement of 546700 is 999999 — 546700 = 453299,
The 9's complement of 012398 is 999999 — 012398 = 987601.

For binary numbers, r = 2and r — 1 = 1, sothe I's complementof Nis (2" — 1) — N.
Again, 2" is represented by a binary number that consists of a 1 followed by n 0's. 2" = 1 is
a binary number represented by n 1's. For example, if n = 4, we have 2* = (10000), and
2% — 1 = (1111),. Thus, the 1's complement of a binary number is obtained by subtracting
each digit from 1. However, when subtracting binary digits from 1, we can have either
I —0=1orl — 1 = 0, which causes the bit to change from 0 to | or from | to 0, respec-
tively. Therefore, the 1's complement of a binary number is formed by changing 1's to 0's and
0's to 1's. The following are some numerical examples:

The 1's complement of 1011000 is 0100111.
The 1's complement of 0101101 is 1010010.

The (r — 1)'s complement of octal or hexadecimal numbers is obtained by subtracting
each digit from 7 or F (decimal 15), respectively.

Radix Complement

The r's complement of an n-digit number N in base r is defined as r" — N for N # 0 and as
0 for N = 0. Comparing with the (r — 1)’s complement, we note that the r's complement is
obtained by adding 1 to the (r — 1)’s complement, since r” — N = [(r" — 1) = N] + L.
Thus, the 10's complement of decimal 2389 is 7610 + 1 = 7611 and is obtained by adding 1
to the 9’s-complement value. The 2’s complement of binary 101100 is 010011 + 1 = 010100
and is obtained by adding 1 to the 1's-complement value.

Since 10 is a number represented by a 1 followed by n 0's, 10" — N, which is the 10s com-
plement of N, can be formed also by leaving all least significant 0's unchanged, subtracting
the first nonzero least significant digit from 10, and subtracting all higher significant digits
from 9. Thus,

the 10’s complement of 012398 is 987602
and
the 10's complement of 246700 is 753300



(c) ketabton.com: The Digital Library

Section 1.5 Complements n

The 10's complement of the first number is obtained by subtracting 8 from 10 in the least sig-
nificant position and subtracting all other digits from 9. The 10°s complement of the second
number is obtained by leaving the two least significant 0's unchanged, subtracting 7 from 10,
and subtracting the other three digits from 9.

Similarly, the 2's complement can be formed by leaving all least significant 0's and the first
| unchanged and replacing 1°s with 0's and 0's with 1's in all other higher significant digits.
For example,

the 2's complement of 1101100 1s 0010100
and

the 2's complement of 0110111 is 1001001

The 2’s complement of the first number is obtained by leaving the two least significant 0's and
the first 1 unchanged and then replacing 1's with (s and 0's with 1's in the other four most sig-
nificant digits. The 2's complement of the second number is obtained by leaving the least sig-
nificant | unchanged and complementing all other digits.

In the previous definitions, it was assumed that the numbers did not have a radix point. If
the original number N contains a radix point, the point should be removed temporarily in order
o form the s or (r — 1)'s complement. The radix point is then restored to the complement-
ed number in the same relative position, It is also worth mentioning that the complement of the
complement restores the number to its original value. To see this relationship, note that the r's
complement of N is r" — N. so that the complement of the complement is
r" = (r" = N) = N and is equal to the original number.

Subtraction with Complements

The direct method of subtraction taught in elementary schools uses the borrow concept, In this
method, we borrow a | from a higher significant position when the minuend digit is smaller
than the subtrahend digit. The method works well when people perform subtraction with paper
and pencil. However, when subtraction is implemented with digital hardware, the method is less
efficient than the method that uses complements.

The subtraction of two n-digit unsigned numbers M — N in base r can be done as follows:

1. Add the minuend M to the r's complement of the subtrahend N. Mathematically,
M+ (" —-N)=M-N +r".

2. If M = N, the sum will produce an end carry »", which can be discarded; what is left is
the result M — N,

3, If M < N, the sum does not produce an end carry and is equal to 7" = (N — M),
which is the r's complement of (N — M). To obtain the answer in a familiar form, take
the r's complement of the sum and place a negative sign in front,



(c) ketabton.com: The Digital Library

12

EXAMPLE 1.5

EXAMPLE 1.6

EXAMPLE 1.7

Chapter 1 Digital Systems and Binary Numbers

The following examples illustrate the procedure:

Using 10’s complement, subtract 72532 — 3250,

M= 72532

10's complement of N = + 96750
Sum = 169282

Discard end carry 10° = —100000
Answer = 69282

Note that M has five digits and N has only four digits. Both numbers must have the same num-
ber of digits, so we write N as 03250. Taking the 10’s complement of N produces a 9 in the most
significant position. The occurrence of the end carry signifies that M = N and that the result
is therefore positive.

5]

Using 10’s complement, subtract 3250 — 72532,

M = 03250
10's complement of N = +27468
Sum = 30718

There is no end carry. Therefore, the answer is —( 10’s complement of 30718) = —69282.

Note that since 3250 < 72532, the result is negative. Because we are dealing with unsigned
numbers, there is really no way to get an unsigned result for this case. When subtracting with
complements, we recognize the negative answer from the absence of the end carry and the
complemented result. When working with paper and pencil, we can change the answer to a
signed negative number in order to put it in a familiar form.

Subtraction with complements is done with binary numbers in a similar manner, using the
procedure outlined previously.

Given the two binary numbers X = 1010100 and ¥ = 1000011, perform the subtraction
(a) X — Y and (b) ¥ — X by using 2's complements.



(c) ketabton.com: The Digital Library
Section 1.5 Complements 13

(a) X = 1010100
2's complement of ¥ = + 0111101
Sum = 10010001

Discard end carry 27 = — 10000000
Answer: X — ¥ = 0010001

(b) Y= 1000011
2’s complement of X = + 0101100
Sum = 1ottt
There is no end carry. Therefore, the answeris ¥ — X = —(2's complement of 1101111) =
=0010001.

Subtraction of unsigned numbers can also be done by means of the (r — 1)'s complement.
Remember that the (# = 1)'s complement is one less than the r's complement. Because of
this, the result of adding the minuend 1o the complement of the subtrahend produces a sum that
is one less than the correct difference when an end carry occurs. Removing the end carry and
adding 1 to the sum is referred (o as an end-around carry.

EXAMPLE 1.8

Repeat Example 1.7, but this time using 1's complement.

(a) X — ¥ = 1010100 — 1000011
X = 1010100
1's complement of ¥ = + 0111100
Sum = 10010000
End-around carry = + 1
Answer: X — Y = 0010001
(b) ¥ — X = 1000011 — 1010100
Y= 1000011
I's coml')lemenl of X =+ 0101011
Sum = 1101110
There is no end carry. Therefore. the answeris ¥ — X = —(I's complement of 1101110) =
—0010001.

Note that the negative result is obtained by taking the 1's complement of the sum, since this is
the type of complement used. The procedure with end-around carry is also applicable to sub-
tracting unsigned decimal numbers with 9°s complement.



(c) ketabton.com: The Digital Library

14

1.6

Chapter 1 Digital Systems and Binary Numbers

SIGNED BINARY NUMBERS

Positive integers (including zero) can be represented as unsigned numbers. However, to rep-
resent negative integers, we need a notation for negative values. In ordinary arithmetic, a neg-
ative number is indicated by a minus sign and a positive number by a plus sign. Because of
hardware limitations, computers must represent everything with binary digits. It is customary
to represent the sign with a bit placed in the leftmost position of the number. The convention
is to make the sign bit O for positive and | for negative.

It is important to realize that both signed and unsigned binary numbers consist of a string
of bits when represented in a computer. The user determines whether the number is signed or
unsigned. If the binary number is signed, then the leftmost bit represents the sign and the rest
of the bits represent the number. If the binary number is assumed to be unsigned, then the left-
most bit is the most significant bit of the number. For example, the string of bits 01001 can be
considered as 9 (unsigned binary) or as +9 (signed binary) because the leftmost bit is 0. The
string of bits 11001 represents the binary equivalent of 25 when considered as an unsigned
number and the binary equivalent of —9 when considered as a signed number. This is because
the | that is in the leftmost position designates a negative and the other four bits represent bi-
nary 9. Usually, there is no confusion in identifying the bits if the type of representation for the
number is known in advance.

The representation of the signed numbers in the last example is referred to as the signed-
magnitude convention. In this notation, the number consists of a magnitude and a symbol (+
or —) or a bit (0 or 1) indicating the sign. This is the representation of signed numbers used in
ordinary arithmetic. When arithmetic operations are implemented in a computer, it is more
convenient to use a different system, referred to as the signed-complement system, for repre-
senting negative numbers. In this system, a negative number is indicated by its complement.
Whereas the signed-magnitude system negates a number by changing its sign, the signed-com-
plement system negates a number by taking its complement. Since positive numbers always start
with 0 (plus) in the leftmost position, the complement will always start with a 1, indicating a
negative number. The signed-complement system can use either the 1's or the 2's complement,
but the 2's complement is the most common.,

As an example, consider the number 9, represented in binary with eight bits. +9 is repre-
sented with a sign bit of 0 in the leftmost position, followed by the binary equivalent of 9,
which gives 00001001, Note that all eight bits must have a value: therefore, 0's are inserted fol-
lowing the sign bit up to the first 1. Although there is only one way to represent +9, there are
three different ways to represent —9 with eight bits:

signed-magnitude representation: 10001001
signed-1's-complement representation: 11110110
signed-2"s-complement representation: 11110111

In signed-magnitude. —9 is obtained from +9 by changing the sign bit in the leftmost position
from 0 to 1. In signed-1's complement, —9 is obtained by complementing all the bits of +9,
including the sign bit. The signed-2's-complement representation of —9 is obtained by taking
the 2's complement of the positive number, including the sign bit.



(c) ketabton.com: The Digital Library
Section 1.6 Signed Binary Numbers 15

Table 1.3
Signed Binary Numbers
Signed-2's Signed-1's Signed
Decimal Complement Complement Magnitude

] 0111 o111 o111
+6 0110 0110 0110
+5 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
+2 0010 0010 0010
+1 0001 0001 0001
+0 0000 0000 0000
=0 — L 1000
= | 1111 1110 1001
-1 1110 1101 1010
-3 1101 1100 1011
-4 1100 1011 1100
=35 1011 1010 1101
-6 1010 1001 1110
=T 1001 1000 L
-8 LK) — —

Table 1.3 lists all possible four-bit signed binary numbers in the three representations.
The equivalent decimal number is also shown for reference. Note that the positive numbers
in all three representations are identical and have 0 in the leftmost position. The signed-2's-
complement system has only one representation for (. which is always positive. The other
two systems have either a positive 0 or a negative 0, something not encountered in ordinary
arithmetic. Note that all negative numbers have a | in the lefimost bit position: that is the
way we distinguish them from the positive numbers. With four bits, we can represent 16 binary
numbers, In the signed-magnitude and the 1's-complement representations, there are eight
positive numbers and eight negative numbers, including two zeros. In the 2's-complement
representation, there are eight positive numbers, including one zero, and eight negative
numbers.

The signed-magnitude system is used in ordinary arithmetic, but is awkward when em-
ployed in computer arithmetic because of the separate handling of the sign and the magnitude.
Therefore, the signed-complement system is normally used. The |’s complement imposes some
difficulties and is seldom used for arithmetic operations. It is useful as a logical operation,
since the change of 1 100 or 0 1o 1 is equivalent to a logical complement operation, as will be
shown in the next chapter. The discussion of signed binary arithmetic that follows deals ex-
clusively with the signed-2's-complement representation of negative numbers, The same pro-
cedures can be applied to the signed-1's-complement system by including the end-around carry
as is done with unsigned numbers.



(c) ketabton.com: The Digital Library

16

Chapter 1 Digital Systems and Binary Numbers

Arithmetic Addition

The addition of two numbers in the signed-magnitude system follows the rules of ordinary arith-
metic. If the signs are the same, we add the two magnitudes and give the sum the common sign.
If the signs are different, we subtract the smaller magnitude from the larger and give the differ-
ence the sign of the larger magnitude. For example, (+25) + (—37) = —(37 — 25) = —12
and is done by subtracting the smaller magnitude, 25, from the larger magnitude. 37, and
appending the sign of 37 to the result. This is a process that requires a comparison of the
signs and magnitudes and then performing either addition or subtraction. The same procedure
applies to binary numbers in signed-magnitude representation. In contrast, the rule for
adding numbers in the signed-complement system does not require a comparison or sub-
traction, but only addition. The procedure is very simple and can be stated as follows for
binary numbers:

The addition of two signed binary numbers with negative numbers represented in signed-
2's-complement form is obtained from the addition of the two numbers, including their sign bits.
A carry out of the sign-bit position is discarded.

Numerical examples for addition follow:

+ 6 00000110 ~ 6 11111010
+13 00001101 +13 00001101
+19 00010011 + 7 00000111
+ 6 00000110 —~ 6 11111010
—13 11110011 =13 11110011
~ 7 11111001 ~19 11101101

Note that negative numbers must be initially in 2’s-complement form and that if the sum ob-
tained after the addition is negative, it is in 2’s-complement form.

In each of the four cases, the operation performed is addition with the sign bit included.
Any carry out of the sign-bit position is discarded, and negative results are automatically in 2’s-
complement form.

In order to obtain a correct answer, we must ensure that the result has a sufficient number
of bits to accommodate the sum. If we start with two n-bit numbers and the sum occupies
n + 1 bits, we say that an overflow occurs. When one performs the addition with paper and
pencil, an overflow is not a problem, because we are not limited by the width of the page. We
just add another 0 to a positive number or another | to a negative number in the most signifi-
cant position to extend the number ton + 1 bits and then perform the addition. Overflow is a
problem in computers because the number of bits that hold a number is finite, and a result that
exceeds the finite value by | cannot be accommodated.

The complement form of representing negative numbers is unfamiliar to those used to the
signed-magnitude system. To determine the value of a negative number in signed-2's comple-
ment, it is necessary to convert the number (o a positive number to place it in a more familiar
form. For example, the signed binary number 11111001 is negative because the leftmost bit is
I. Its 2’s complement is 00000111, which is the binary equivalent of +7. We therefore recog-
nize the original negative number to be equal to —7.



(c) ketabton.com: The Digital Library
Section 1.7 Binary Codes "z

Arithmetic Subtraction

Subtraction of two signed binary numbers when negative numbers are in 2's-complement form
is simple and can be stated as follows:

Take the 2's complement of the subtrahend (including the sign bit) and add it to the minuend
(including the sign bit). A carry out of the sign-bit position is discarded,

This procedure is adopted because a subtraction operation can be changed 1o an addition
operation if the sign of the subtrahend is changed. as is demonstrated by the following
relationship:

(£4) = (+B) = (£A) + (—B):
(£A) = (—=B) = (£A) + (+B).

But changing a positive number to a negative number is easily done by taking the 2's comple-
ment of the positive number, The reverse is also true, because the complement of a negative num-
ber in complement form produces the equivalent positive number, To see this, consider the
subtraction (—6) — (=13) = +7. In binary with eight bits, this operation is written as
(11111010 = 11110011}, The subtraction is changed to addition by taking the 2's complement
of the subtrahend (—13), giving (+13). In binary, thisis 11111010 + 00001101 = 100000111,
Removing the end carry. we obtain the correct answer: 00000111 (+7).

It is worth noting that binary numbers in the signed-complement system are added and sub-
tracted by the same basic addition and subtraction rules as unsigned numbers. Therefore, com-
puters need only one common hardware circuit to handle both types of arithmetic. The user or
programmer must interpret the results of such addition or subtraction differently, depending on
whether it is assumed that the numbers are signed or unsigned.

1.7 BINARY CODES

Digital systems use signals that have two distinct values and circuit elements that have two sta-
ble states. There is a direct analogy among binary signals, binary circuit elements, and binary
digits. A binary number of » digits, for example, may be represented by n binary circuit ele-
ments, each having an output signal equivalent to 0 or |. Digital systems represent and ma-
nipulate not only binary numbers, but also many other discrete elements of information. Any
discrete element of information that is distinct among a group of quantities can be represented
with a binary code (i.e., a pattern of 0's and 1's). The codes must be in binary because, in
today's technology, only circuits that represent and manipulate patterns of 0's and 1's can be
manufactured economically for use in computers. However, it must be realized that binary
codes merely change the symbols, not the meaning of the elements of information that they rep-
resent. If we inspect the bits of a computer at random, we will find that most of the time they
represent some type of coded information rather than binary numbers.

An n-bit binary code is a group of n bits that assumes up to 2" distinct combinations of 1's
and O's, with each combination representing one element of the set that is being coded. A set
of four elements can be coded with two bits, with each element assigned one of the following
bit combinations: 00, 01, 10, 11. A set of eight elements requires a three-bit code and a set of



(c) ketabton.com: The Digital Library

18 Chapter 1 Digital Systems and Binary Numbers

BCD Code

16 elements requires a four-bit code. The bit combination of an n-bit code is determined from
the count in binary from 0 to 2" — 1. Each element must be assigned a unique binary bit com-
bination, and no two elements can have the same value; otherwise, the code assignment will
be ambiguous.

Although the minimum number of bits required to code 2" distinct quantities is n, there is
no maximum number of bits that may be used for a binary code. For example, the 10 decimal
digits can be coded with 10 bits, and each decimal digit can be assigned a bit combination of
nine 0's and a 1. In this particular binary code, the digit 6 is assigned the bit combination
0001000000.

Although the binary number system is the most natural system for a computer, most people are
more accustomed to the decimal system. One way to resolve this difference is to convert dec-
imal numbers to binary, perform all arithmetic calculations in binary, and then convert the bi-
nary results back to decimal. This method requires that we store decimal numbers in the
computer so that they can be converted to binary. Since the computer can accept only binary
values, we must represent the decimal digits by means of a code that contains 1's and 0's. It is
also possible to perform the arithmetic operations directly on decimal numbers when they are
stored in the computer in coded form.

A binary code will have some unassigned bit combinations if the number of elements in the
set is not a multiple power of 2. The 10 decimal digits form such a set. A binary code that dis-
tinguishes among 10 elements must contain at least four bits, but 6 out of the 16 possible com-
binations remain unassigned. Different binary codes can be obtained by arranging four bits
into 10 distinct combinations. The code most commonly used for the decimal digits is the
straight binary assignment listed in Table 1.4. This scheme is called binary-coded decimal and
is commonly referred to as BCD. Other decimal codes are possible and a few of them are pre-
sented later in this section.

Table 1.4
Binary-Coded Decimal (BCD)

Decimal BCD
symbol Digit

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

O 00 <l W —= O




(c) ketabton.com: The Digital Library
Section 1.7 Binary Codes 19

Table 1.4 gives the four-bit code for one decimal digit. A number with & decimal digits will
require 44 bits in BCD. Decimal 396 is represented in BCD with 12 bits as 0011 1001 0110,
with each group of 4 bits representing one decimal digit. A decimal number in BCD is the
same as its equivalent binary number only when the number is between 0 and 9. A BCD num-
ber greater than 10 looks different from its equivalent binary number. even though both con-
tain 1's and 0's, Moreover, the binary combinations 1010 through 1111 are not used and have
no meaning in BCD. Consider decimal 185 and its corresponding value in BCD and binary:

(185)30 = (0001 1000 0101 )gep = (10111001)s

The BCD value has 12 bits to encode the characters of the decimal value, but the equivalent
binary number needs only 8 bits. It is obvious that the representation of a BCD number needs
more bits than its equivalent binary value. However. there is an advantage in the use of deci-
mal numbers, because computer input and output data are generated by people who use the dec-
imal system.

It is important to realize that BCD numbers are decimal numbers and not binary numbers,
although they use bits in their representation. The only difference between a decimal number
and BCD is that decimals are written with the symbols 0, 1, 2, ..., 9 and BCD numbers use
the binary code 0000, 0001. 0010, ..., 1001. The decimal value is exactly the same. Decimal
10 is represented in BCD with eight bits as 0001 0000 and decimal 15 as 0001 0101. The cor-
responding binary values are 1010 and 1111 and have only four bits.

BCD Addition

Consider the addition of two decimal digits in BCD, together with a possible carry from a pre-
vious less significant pair of digits. Since each digit does not exceed 9, the sum cannot be
greater than 9 + 9 + | = 19, with the 1 being a previous carry. Suppose we add the BCD dig-
its as if they were binary numbers. Then the binary sum will produce a result in the range
from 0 to 19. In binary, this range will be from 0000 to 10011, but in BCD, it is from 0000 1o
1 1001, with the first (i.e., leftmost) | being a carry and the next four bits being the BCD sum.
When the binary sum is equal to or less than 1001 (without a carry), the corresponding BCD
digit is correct. However. when the binary sum is greater than or equal to 1010, the result is an
invalid BCD digit. The addition of 6 = (0110)5 to the binary sum converts it to the correct digit
and also produces a carry as required. This is because a carry in the most significant bit posi-
tion of the binary sum and a decimal carry differ by 16 — 10 = 6. Consider the following
three BCD additions:

4 0100 4 0100 8 1000
+5 +0101  +8 41000 +9 1001

9 1001 12 100 17 10001
+0110 +0110
10010 10111

In each case, the two BCD digits are added as if they were two binary numbers. If the binary
sum is greater than or equal to 1010, we add 0110 to obtain the correct BCD sum and a carry.
In the first example, the sum is equal to 9 and is the correct BCD sum, In the second example,



(c) ketabton.com: The Digital Library

20

Chapter 1 Digital Systems and Binary Numbers

the binary sum produces an invalid BCD digit. The addition of 0110 produces the correct BCD
sum, 0010 (i.e., the number 2), and a carry. In the third example, the binary sum produces a carry.
This condition occurs when the sum is greater than or equal to 16. Although the other four bits
are less than 1001, the binary sum requires a correction because of the carry. Adding 0110, we
obtain the required BCD sum 0111 (i.e., the number 7) and a BCD carry.

The addition of two n-digit unsigned BCD numbers follows the same procedure. Consider
the addition of 184 + 576 = 760 in BCD:

BCD 1 |
0001 1000 0100 184
+0101 0111 0110 +576
Binary sum 0111 10000 1010
Add 6 0110 0110
BCD sum 0111 0110 0000 760
The first, least significant pair of BCD digits produces a BCD digit sum of 0000 and a carry
for the next pair of digits. The second pair of BCD digits plus a previous carry produces a digit

sum of 0110 and a carry for the next pair of digits. The third pair of digits plus a carry produces
a binary sum of 0111 and does not require a correction.

Decimal Arithmetic

The representation of signed decimal numbers in BCD is similar to the representation of signed
numbers in binary. We can use either the familiar signed-magnitude system or the signed-com-
plement system. The sign of a decimal number is usually represented with four bits to conform
to the four-bit code of the decimal digits. It is customary to designate a plus with four 0’s and
a minus with the BCD equivalent of 9, which is 1001.

The signed-magnitude system is seldom used in computers. The signed-complement system
can be either the 9's or the 10's complement, but the 10’s complement is the one most often
used. To obtain the 10's complement of a BCD number, we first take the 9's complement and
then add 1 to the least significant digit. The 9's complement is calculated from the subtraction
of each digit from 9,

The procedures developed for the signed-2's-complement system in the previous section
also apply to the signed-10"s-complement system for decimal numbers. Addition is done by
summing all digits, including the sign digit, and discarding the end carry. This operation
assumes that all negative numbers are in 10’s-complement form. Consider the addition
(+375) + (—240) = +135, done in the signed-complement system:

0 375
+9 760
0 135

The 9 in the leftmost position of the second number represents a minus, and 9760 is the 10's
complement of 0240, The two numbers are added and the end carry is discarded to obtain
+135. Of course, the decimal numbers inside the computer, including the sign digits, must be
in BCD. The addition is done with BCD digits as described previously.




(c) ketabton.com: The Digital Library
Section 1.7 Binary Codes 21

The subtraction of decimal numbers, either unsigned or in the signed-10’s-complement
system, is the same as in the binary case: Take the 10°s complement of the subtrahend and add
it to the minuend. Many computers have special hardware to perform arithmetic caleulations
directly with decimal numbers in BCD. The user of the computer can specify programmed
instructions to perform the arithmetic operation with decimal numbers directly, without having
to convert them to binary.

Other Decimal Codes

Binary codes for decimal digits require a minimum of four bits per digit. Many different codes
can be formulated by arranging four bits into 10 distinct combinations. BCD and three other
representative codes are shown in Table 1.5. Each code uses only 10 out of a possible 16 bit
combinations that can be arranged with four bits. The other six unused combinations have no
meaning and should be avoided.

BCD and the 2421 code are examples of weighted codes. In a weighted code, each bit position
is assigned a weighting factor in such a way that each digit can be evaluated by adding the weights
of all the 1's in the coded combination. The BCD code has weights of 8. 4, 2. and 1. which corre-
spond to the power-of-twao values of each bit. The bit assignment 0110, for example. is interpreted
by the weights to represent decimal 6 because 8 X 0 + 4 X | + 2 X | + | X 0 = 6, The bit
combination 1101, when weighted by the respective digits 2421, gives the decimal equivalent of
2X 1 +4%x 14 2x0+ 1% 1 =7 Note that some digits can be coded in two possible
ways in the 2421 code. For instance. decimal 4 can be assigned to bit combination 0100 or 1010,
since both combinations add up to a total weight of 4.

Table 1.5
Four Different Binary Codes for the Decimal Digits

Decimal BCD :
Digit 8421 2421 Excess-3 8 4 -2 -1

0 0000 0000 0011 0000

1 0001 0001 0100 0111

2 0010 0010 0101 0110

3 0011 0011 0110 0101

4 0100 0100 0111 0100

5 0101 1011 1000 1011

6 0110 1100 1001 1010

7 0111 1101 1010 1001

8 1000 1110 1011 1000

9 1001 1111 1100 1111
1010 0101 0000 0001

Unused 1011 0110 0001 0010
bit 1100 0111 0010 0011
combi- 1101 1000 1101 1100

nations 110 1001 1110 1101
11 1010 1111 1110




(c) ketabton.com: The Digital Library

22

Gray Code

Chapter 1 Digital Systems and Binary Numbers

The 2421 and the excess-3 codes are examples of self-complementing codes. Such codes
have the property that the 9's complement of a decimal number is obtained directly by chang-
ing 1's to 0's and 0’s to 1's (i.e., by complementing each bit in the pattern). For example, dec-
imal 395 is represented in the excess-3 code as 0110 1100 1000. The 9's complement of 604
is represented as 1001 0011 0111, which is obtained simply by complementing each bit of the
code (as with the 1's complement of binary numbers).

The excess-3 code has been used in some older computers because of its self-complement-
ing property. Excess-3 is an unweighted code in which each coded combination is obtained from
the corresponding binary value plus 3. Note that the BCD code is not self-complementing.

The 8, 4, =2, — 1 code is an example of assigning both positive and negative weights to a
decimal code. In this case, the bit combination 0110 is interpreted as decimal 2 and is calcu-
lated from8 X 0 +4 X 1 + (=2) X 1+ (-1) X0=2.

The output data of many physical systems are quantities that are continuous. These data must
be converted into digital form before they are applied to a digital system. Continuous or analog
information is converted into digital form by means of an analog-to-digital converter. It is some-
times convenient to use the Gray code shown in Table 1.6 to represent digital data that have been
converted from analog data. The advantage of the Gray code over the straight binary number
sequence is that only one bit in the code group changes in going from one number to the next.
For example, in going from 7 to 8, the Gray code changes from 0100 to 1100. Only the first bit
changes, from 0 to 1; the other three bits remain the same. By contrast, with binary numbers the
change from 7 to 8 will be from 0111 to 1000, which causes all four bits to change values.

Table 1.6

Gray Code
Gray Decimal
Code Equivalent
0000 0
0001 |
0011 2
0010 3
0110 4
0111 5
0101 6
0100 7
1100 8
1101 9
1111 10
1110 11
1010 12
1011 13
1001 14

1000 15




(c) ketabton.com: The Digital Library Section 1.7 Binary Codes 23

The Gray code is used in applications in which the normal sequence of binary numbers may
produce an error or ambiguity during the transition from one number to the next. If binary
numbers are used. a change, for example. from 0111 to 1000 may produce an intermediate er-
roneous number 1001 if the value of the rightmost bit takes longer to change than do the val-
ues of the other three bits. The Gray code eliminates this problem, since only one bit changes
its value during any transition berween two numbers,

A typical application of the Gray code is the representation of analog data by a continu-
ous change in the angular position of a shaft. The shaft is partitioned into segments, and
each segment is assigned a number. If adjacent segments are made to correspond with the
Gray-code sequence, ambiguity is eliminated between the angle of the shaft and the value
encoded by the sensor,

ASCH Character Code

Many applications of digital computers require the handling not only of numbers, but also of
other characters or symbols. such as the letters of the alphabet. For instance. an insurance com-
pany with thousands of policyholders will use a computer to process its files. To represent the
names and other pertinent information, it is necessary to formulate a binary code for the let-
ters of the alphabet. In addition. the same binary code must represent numerals and special
characters (such as S). An alphanumeric character set is a set of elements that includes the 10
decimal digits, the 26 letters of the alphabet, and a number of special characters. Such a set con-
tains between 36 and 64 elements if only capital letters are included. or between 64 and 128
elements if both uppercase and lowercase letters are included. In the first case, we need a bi-
nary code of six bits, and in the second. we need a binary code of seven bits.

The standard binary code for the alphanumeric characters is the American Standard Code
for Information Interchange (ASCII). which uses seven bits to code 128 characters. as shown
in Table 1.7. The seven bits of the code are designated by by through b5, with b; the most sig-
nificant bit. The letter A, for example. is represented in ASCII as 1000001 (column 100, row
0001). The ASCII code also contains 94 graphic characters that can be printed and 34 non-
printing characters used for various control functions. The graphic characters consist of the 26
uppercase letters (A through Z), the 26 lowercase letters (a through z). the 10 numerals (0
through 9). and 32 special printable characters, such as %, *, and $.

The 34 control characters are designated in the ASCII table with abbreviated names. They
are listed again below the table with their functional names. The control characters are used for
routing data and arranging the printed text into a prescribed format. There are three types of
control characters: format effectors, information separators. and communication-control char-
acters. Format effectors are characters that control the layout of printing. They include the fa-
miliar word processor and typewriter controls such as backspace (BS), horizontal tabulation
(HT), and carriage return (CR). Information separators are used to separate the data into divi-
sions such as paragraphs and pages. They include characters such as record separator (RS) and
file separator (FS). The communication-control characters are useful during the transmission
of text between remote terminals. Examples of communication-control characters are STX
(start of text) and ETX (end of text). which are used to frame a text message transmitted through
telephone wires.



(c) ketabton.com: The Digital Library
24  Chapter 1 Digital Systems and Binary Numbers

Table 1.7
American Standard Code for information Interchange (ASCII)
bbb

bybsb,b;,; 000 o001 o010 011 100 101 110 1m
0000 NUL DLE SP 0 @ P p
0001 SOH DCI ! | A Q a q
0010 STX DC2 = 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EOT DC4 $ - D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F v f v
0111 BEL ETB 7 G w g w
1000 BS CAN ( 8 H X h x
1001 HT EM ) 9 | Y i y
1010 LF SUB . ! J z ] z
1011 VT ESC + i K [ k {
1100 FF FS : < L \ I I
1101 CR GS = = M ] m }
1110 SO RS . > N A n -
1111 SI uUs / ? 0 = 0 DEL

Control characters

NUL Null DLE Data-link escape

SOH Start of heading DC1 Device control 1

STX Start of text DC2 Device control 2

ETX End of text DC3 Device control 3

EOT End of transmission DC4 Device control 4

ENQ Enquiry NAK Negative acknowledge

ACK Acknowledge SYN Synchronous idle

BEL Bell ETB End-of-transmission block

BS Backspace CAN Cancel

HT Horizontal tab EM End of medium

LF Line feed SUB Substitute

VT Vertical tab ESC Escape

FF Form feed FS File separator

CR Carriage return GS Group separator

SO Shift out RS Record separator

SI Shift in us Unit separator

SP Space DEL Delete

ASCII is a seven-bit code, but most computers manipulate an eight-bit quantity as a single
unit called a byte. Therefore, ASCII characters most often are stored one per byte. The extra
bit is sometimes used for other purposes, depending on the application. For example, some
printers recognize eight-bit ASCII characters with the most significant bit set to 0. An additional



(c) ketabton.com: The Digital Library

Section 1.8 Binary Storage and Registers 25

128 eight-bit characters with the most significant bit set to 1 are used for other symbols, such
as the Greek alphabet or italic type font.

Error-Detecting Code

To detect errors in data communication and processing, an eighth bit is sometimes added to the
ASCII character to indicate its parity. A pariry bir is an extra bit included with a message to make
the total number of 1's either even or odd. Consider the following two characters and their
even and odd parity:

With even parity With odd parity
ASCIT A = 1000001 01000001 11000001
ASCII'T = 1010100 11010100 01010100

In each case, we insert an extra bit in the leftmost position of the code to produce an even
number of I's in the character for even parity or an odd number of 1's in the character for
odd parity. In general, one or the other parity is adopted. with even parity being more
common.

The parity bit is helpful in detecting errors during the transmission of information from one
location to another. This function is handled by generating an even parity bit at the sending end
for each character. The eight-bit characters that include parity bits are transmitted to their des-
tination, The parity of each character is then checked at the receiving end. If the parity of the
received character is not even, then at least one bit has changed value during the transmission.
This method detects one, three, or any odd combination of errors in each character that is trans-
mitted. An even combination of errors, however, goes undetected, and additional error detec-
tion codes may be needed to take care of that possibility.

What is done after an error is detected depends on the particular application. One possi-
bility is to request retransmission of the message on the assumption that the error was ran-
dom and will not occur again. Thus, if the receiver detects a parity error, it sends back the
ASCII NAK (negative acknowledge) control character consisting of an even-parity eight
bits 10010101. If no error is detected, the receiver sends back an ACK (acknowledge) con-
trol character, namely, 00000110, The sending end will respond to an NAK by transmitting
the message again until the correct parity is received. If, after a number of attempts. the
transmission is still in error, a message can be sent to the operator to check for malfunctions
in the transmission path.

1.8 BINARY STORAGE AND REGISTERS

The binary information in a digital computer must have a physical existence in some medium
for storing individual bits. A binary cell is a device that possesses two stable states and is ca-
pable of storing one bit (0 or 1) of information. The input to the cell receives excitation sig-
nals that set it to one of the two states, The output of the cell is a physical quantity that
distinguishes between the two states. The information stored in a cell is | when the cell is in
one stable state and 0 when the cell is in the other stable state.



(c) ketabton.com: The Digital Library

26 Chapter 1 Digital Systems and Binary Numbers

Registers

A register is a group of binary cells. A register with n cells can store any discrete quantity of
information that contains n bits. The state of a register is an n-tuple of 1's and 0's, with each
bit designating the state of one cell in the register. The content of a register is a function of the
interpretation given to the information stored in it. Consider, for example, a 16-bit register
with the following binary content:

1100001111001001

A register with 16 cells can be in one of 2'® possible states. If one assumes that the content
of the register represents a binary integer, then the register can store any binary number from
0to2'® — 1. For the particular example shown, the content of the register is the binary equiv-
alent of the decimal number 50,121. If one assumes instead that the register stores alphanu-
meric characters of an eight-bit code, then the content of the register is any two meaningful
characters. For the ASCII code with an even parity placed in the eighth most significant bit
position, the register contains the two characters C (the leftmost eight bits) and I (the right-
most eight bits). If, however, one interprets the content of the register to be four decimal dig-
its represented by a four-bit code, then the content of the register is a four-digit decimal
number, In the excess-3 code, the register holds the decimal number 9,096. The content of the
register is meaningless in BCD, because the bit combination 1100 is not assigned to any dec-
imal digit. From this example, it is clear that a register can store discrete elements of infor-
mation and that the same bit configuration may be interpreted differently for different types
of data.

Register Transfer

A digital system is characterized by its registers and the components that perform data pro-
cessing. In digital systems, a register transfer operation is a basic operation that consists of
a transfer of binary information from one set of registers into another set of registers. The
transfer may be direct, from one register to another, or may pass through data-processing
circuits to perform an operation. Figure 1.1 illustrates the transfer of information among reg-
isters and demonstrates pictorially the transfer of binary information from a keyboard into
a register in the memory unit. The input unit is assumed to have a keyboard, a control cir-
cuit, and an input register. Each time a key is struck, the control circuit enters an equiva-
lent eight-bit alphanumeric character code into the input register. We shall assume that the
code used is the ASCII code with an odd-parity bit. The information from the input regis-
ter is transferred into the eight least significant cells of a processor register. After every
transfer, the input register is cleared to enable the control to insert a new eight-bit code
when the keyboard is struck again, Each eight-bit character transferred to the processor
register is preceded by a shift of the previous character to the next eight cells on its left. When
a transfer of four characters is completed, the processor register is full, and its contents are
transferred into a memory register. The content stored in the memory register shown in Fig. 1.1
came from the transfer of the characters “J,” “0,"” “H," and “N" after the four appropriate
keys were struck.



(c) ketabton.com: The Digital Library
Section 1.8 Binary Storage and Registers 27

= h' Memory
:!l:.lﬂ'l__ll(ﬁm.llﬁi\_lllil Register

s
|
'i

Processor

Register
: : doput
G0 Beells [ Regisier’

CONTROL

FIGURE 1.1
Transfer of information among registers

To process discrete quantities of information in binary form, a computer must be pro-
vided with devices that hold the data 1o be processed and with circuit elements that manip-
ulate individual bits of information. The device most commonly used for holding data is a
register. Binary variables are manipulated by means of digital logic circuits, Figure 1.2 il-
lustrates the process of adding two 10-bit binary numbers. The memory unit, which nor-
mally consists of millions of registers. is shown with only three of its registers. The part of
the processor unit shown consists of three registers—&/, K2, and R3—together with digital
logic circuits that manipulate the bits of R/ and R2 and transfer into R3 a binary number
equal 1o their arithmetic sum. Memory registers store information and are incapable of pro-
cessing the two operands. However, the information stored in memory can be transferred to
processor registers, and the results obtained in processor registers can be transferred back into
a memory register for storage until needed again. The diagram shows the contents of two
operands transferred from two memory registers into R/ and R2. The digital logic circuits
produce the sum, which is transferred to register R3. The contents of B3 can now be trans-
ferred back 1o one of the memory registers.

The last two examples demonstrated the information-flow capabilities of a digital system
in a simple manner. The registers of the system are the basic elements for storing and holding
the binary information. Digital logic circuits process the binary information stored in the



(c) ketabton.com: The Digital Library

28

Chapter 1 Digital Systems and Binary Numbers

Operand 1 !

MEMORY mm' o

.,.__luunnoooouor-

Operand 2 S e T

-__'{onl 1 loooni[-f;

- T

-.% 0001000010 |R1.

Digital logic
circuits for =
binary addition |

FIGURE 1.2

{0011 wug.u.l_.}l_u_. i

Example of binary information processing

registers. Digital logic circuits and registers are covered in Chapters 2 through 6. The memory
unit is explained in Chapter 7. The description of register operations at the register transfer

(0100100011 |R3

level and the design of digital systems are covered in Chapter 8.

1.9 BINARY LOGIC

Binary logic deals with variables that take on two discrete values and with operations that as-
sume logical meaning. The two values the variables assume may be called by different names
(true and false, yes and no, etc.), but for our purpose, it is convenient to think in terms of bits
and assign the values | and 0. The binary logic introduced in this section is equivalent to an
algebra called Boolean algebra. The formal presentation of Boolean algebra is covered in more
detail in Chapter 2. The purpose of this section is to introduce Boolean algebra in a heuristic

manner and relate it to digital logic circuits and binary signals.




(c) ketabton.com: The Digital Library
Section 1.9 Binary Logic 29

Definition of Binary Logic

Binary logic consists of binary variables and a set of logical operations. The variables are desig-
nated by letters of the alphabet, such as A. B, C. x, v, z. etc.. with each variable having two and only
two distinct possible values: 1 and 0, There are three basic logical operations: AND, OR, and NOT.

1. AND: This operation is represented by a dot or by the absence of an operator. For
example, x*y = zorxy = zisread “xAND yis equal to z." The logical operation AND
is interpreted to mean that z = | if and only if ¥ = 1 and v = 1; otherwise = = 0.
(Remember that x, y, and z are binary variables and can be equal either to | or (), and
nothing else.)

OR: This operation is represented by a plus sign, For example. x + v = zisread “x OR

visequal toz,” meaning that z = 1ifx = lorify = lorifbothx = landy = 1. If

bothx = Qand y = 0, then z = 0.

3. NOT: This operation is represented by a prime (sometimes by an overbar). For example,
x’ = z(or x = z)is read “not x is equal 10 =." meaning that = is what x is not. In other
words, if x = |, then z = 0, but if x = 0. then z = |. The NOT operation is also re-
ferred to as the complement operation, since it changesa I toOand a0 to L.

2

Binary logic resembles binary arithmetic, and the operations AND and OR have similari-
ties to multiplication and addition, respectively. In fact. the symbols used for AND and OR are
the same as those used for multiplication and addition. However, binary logic should not be con-
fused with binary arithmetic. One should realize that an arithmetic variable designates a num-
ber that may consist of many digits. A logic variable is always either 1 or (. For example. in
binary arithmetic. we have | + 1 = 10 (read “one plus one is equal to 2"), whereas in binary
logic, we have 1 + 1 = | (read “one OR one is equal to one").

For each combination of the values of x and y, there isa value of z specified by the defini-
tion of the logical operation. Definitions of logical operations may be listed in a compact form
called truth tables. A truth table is a table of all possible combinations of the variables, show-
ing the relation between the values that the variables may take and the result of the operation.
The truth tables for the operations AND and OR with variables v and y are obtained by listing
all possible values that the variables may have when combined in pairs, For each combination,
the result of the operation is then listed in a separate row. The truth tables for AND, OR, and
NOT are given in Table 1.8. These tables clearly demonstrate the definition of the operations,

Table 1.8
Truth Tables of Logical Operations
AND OR NOT

¥ xpra X | A
00 0 0f1
0 1 ! 1[0
1 0 !
11 1




(c) ketabton.com: The Digital Library

30

Chapter 1 Digital Systems and Binary Numbers

Logic Gates

Logic gates are electronic circuits that operate on one or more input signals to produce an
output signal. Electrical signals such as voltages or currents exist as analog signals having
values over a given range, say, 0 to 3 V, but in a digital system are interpreted to be either of
two recognizable values, 0 or 1. Voltage-operated logic circuits respond to two separate volt-
age levels that represent a binary variable equal to logic 1 or logic 0. For example, a partic-
ular digital system may define logic 0 as a signal equal to 0 volts and logic 1 as a signal
equal to 3 volts. In practice, each voltage level has an acceptable range, as shown in Fig, 1.3.
The input terminals of digital circuits accept binary signals within the allowable range and
respond at the output terminals with binary signals that fall within the specified range. The
intermediate region between the allowed regions is crossed only during a state transition. Any
desired information for computing or control can be operated on by passing binary signals
through various combinations of logic gates, with each signal representing a particular binary
variable.

The graphic symbols used to designate the three types of gates are shown in Fig. 1.4. The
gates are blocks of hardware that produce the equivalent of logic-1 or logic-0 output signals

Volts
b
Signal
range for
logic 1
Transition occurs
between these limits
. Signal
7 range for
; logic 0
o=

FIGURE 1.3
Example of binary signals

] z=x+y
x D x +y xx,
v

(a) Two-input AND gate (b) Two-input OR gate (c) NOT gate or inverter

FIGURE 1.4
Symbols for digital logic circuits




(c) ketabton.com: The Digital Library

Problems 31

AND:x -y a6 L 0 0

OR:x +¥ 0 1 1 1 0

NOT: v* 1 b0 1 1

FIGURE 1.5
Input-output signals for gates

G=A+B+C+D

[o1--F3

TUnwx

(a) Three-input AND gate  (b) Four-input OR gate

FIGURE 1.6
Gates with multiple inputs

if input logic requirements are satisfied. The input signals x and v in the AND and OR gates may
exist in one of four possible states: 00, 10, 11, or 01. These input signals are shown in Fig. 1.5 10-
gether with the corresponding output signal for each gate. The timing diagrams illustrate the re-
sponse of each gate to the four input signal combinations, The horizontal axis of the timing diagram
represents time, and the vertical axis shows the signal as it changes between the two possible volt-
age levels, The low level represents logic 0, the high level logic 1. The AND gate responds with
a logic 1 output signal when both input signals are logic |. The OR gate responds with a logic |
output signal if any input signal is logic 1. The NOT gate is commonly referred to as an inverter.
The reason for this name is apparent from the signal response in the timing diagram, which shows
that the output signal inverts the logic sense of the input signal.

AND and OR gates may have more than two inputs, An AND gate with three inputs and an
OR gate with four inputs are shown in Fig. 1.6. The three-input AND gate responds with logic
1 output if all three inputs are logic 1. The output produces logic 0 if any input is logic 0. The
four-input OR gate responds with logic | if any input is logic 11 its output becomes logic 0 only
when all inputs are logic 0.

PROBLEMS

Answers to problems marked with * appear at the end of the book.

1.1 List the octal and hexadecimal numbers from 16 to 32. Using A, B. and C for the last three
digits, list the numbers from 8 to 28 in base 13,

1.2*  What is the exact number of bytes in a system that contains (i) 32K bytes, (b) 64M bytes, and
() 6.4G bytes?



(c) ketabton.com: The Digital Library

32

Chapter 1

1.3

14

1.5*

1.6"

1.7%
1.8

1.9

1.1
1.12*

1.13

1.14

1.15

1.16

Digital Systems and Binary Numbers

Convert the following numbers with the indicated bases to decimal;
(a)* (4310)5 (b)y* (198))3
(c) (735)g (d) (525)s

What is the largest binary number that can be expressed with 14 bits? What are the equivalent dec-
imal and hexadecimal numbers?

Determine the base of the numbers in each case for the following operations to be correct:
(a) 14/2 =5, (b) 54/4 = 13,
(c) 24 + 17 = 40.

The solutions to the quadratic equation x> — 11x + 22 = Oare x = 3 and x = 6. What is the
base of the numbers?

Convert the hexadecimal number 68BE to binary, and then convert it from binary to octal.

Convert the decimal number 431 to binary in two ways: (a) Convert directly to binary; (b) con-
vert first to hexadecimal and then from hexadecimal to binary. Which method is faster?

Express the following numbers in decimal:

(a)* (10110.0101); (b)* (16.5)5
(c)* (26.24)3 (d) (FAFA)4
(e) (1010.1010),

Convert the following binary numbers to hexadecimal and to decimal: (a) 1.10010, (b) 110.010.
Explain why the decimal answer in (b) is 4 times that in (a).

Perform the following division in binary: 111011 -+ 101,

Add and multiply the following numbers without converting them to decimal.
(a) Binary numbers 1011 and 101.
(b) Hexadecimal numbers 2E and 34.

Do the following conversion problems:

(a) Convert decimal 27.315 to binary.

(b) Calculate the binary equivalent of 2/3 out to eight places. Then convert from binary to dec-
imal. How close is the result to 2/37

(c) Convert the binary result in (b) into hexadecimal. Then convert the result to decimal. Is the
answer the same?

Obtain the 1's and 2's complements of the following binary numbers:

(a) 10000000 (b) 00000000

(¢) 11011010 (d) 01110110

(e) 10000101 (f) 11111111,

Find the 9's and the 10's complement of the following decimal numbers:
(a) 52,784,630 (b) 63,325,600

(c) 25,000,000 (d) 00.000,000.

(a) Find the 16's complement of B2FA.,

(b) Convert B2FA to binary.

(c) Find the 2’s complement of the result in (b).

(d) Convert the answer in (c) to hexadecimal and compare with the answer in (a).



(c) ketabton.com: The Digital Library

1.9

1.1

1.22

1.23

1.24

1.26

1.27

1.28

Problems 33

Perform subtraction on the given unsigned numbers using the 10's complement of the subtra-
hend. Where the result should be negative. find its 10's complement and affix a minus sign. Ver-
ify your answers.

(a) 6428 — 3.409 (b) 125 — 1.R00

(c) 2,043 — 6,152 (d) 1.631 — 745

Perform subtraction on the given unsigned binary numbers using the 2's complement of the sub-
trahend. Where the result should be negative. find its 2's complement and affix a minus sign.
(a) 10011 = 10001 (b) 100010 — 100011

(c) 1001 = 101000 (d) 110000 — 10101

The following decimal numbers are shown in sign-magnitude form: +9,286 and +801, Convert
them to signed- |0°s-complement form and perform the following operations (note that the sum
is +10.627 and requires five digits and a sign).

(a) (+9.286) + (+801) (b) (+9.286) + (—801)

() (-—9.286) + (+801) (d) (—9.286) + (—801)

Convert decimal +46 and +29 to binary. using the signed-2's-complement representation and
enough digits 1o accommodate the numbers. Then perform the binary equivalent of
(+29) + (—49), (—=29) + (+49).and (-29) + (—49). Convert the answers back to decimal
and verify that they are correct.

If the numbers (+9,742)); and (+641), are in signed magnitude format, their sum is
(+10.383) 5 and requires five digits and a sign. Convert the numbers to signed-10's-comple-
ment form and find the following sums:

(a) (+9.742) + (+641) (b) (+9.742) + (—641)

(€) (—9.742) + (+641) (dy (=9.742) + (~641)

Convert decimal 8,723 w both BCD and ASCII codes. For ASCIL, an even parity bit is to be ap-
pended at the left.

Represent the unsigned decimal numbers 842 and 537 in BCD. and then show the steps neces-
sary to form their sum.

Formulate a weighted binary code for the decimal digits, using weights

(@*6.3,1,1

(b) 6.4,2.1

Represent the decimal number 5,137 in (a) BCD, (b) excess-3 code. (c) 2421 code, and (d) a
6311 code.

Find the 9's complement of decimal 5,137 and express it in 2421 code. Show that the result is
the 1's complement of the answer to (¢) in Problem 1.25. This demonstrates that the 2421 code
is self-complementing,

Assign a binary code in some orderly manner to the 52 playing cards. Use the minimum number
of bits.

Write the expression “G. Boole” in ASCIL using an ¢ight-bit code. Include the period and the
space. Treat the lefimost bit of each character as a parity bit. Each eight-bit code should have
even parity. (George Boole was a 19th century mathematician. Boolean algebra, introduced in
the next chapter. bears his name.)



(c) ketabton.com: The Digital Library

Chapter 1 Digital Systems and Binary Numbers

1.29* Decode the following ASCII code:

1000010 1101001 1101100 1101100 1000111 1100001 1110100 1100101 1110011,

1.30 The following is a string of ASCII characters whose bit patterns have been converted into hexa-
decimal for compactness: 73 F4 E5 76 ES 4A EF 62 73. Of the eight bits in each pair of digits,
the leftmost is a parity bit. The remaining bits are the ASCII code.

{a) Convert the string to bit form and decode the ASCIL
(b) Determine the parity used: odd or even?

1.31* How many printing characters are there in ASCII? How many of them are special characters
(not letters or numerals)?

1-32* What bit must be complemented to change an ASCII letter from capital to lowercase and vice
versa?

1.33* The state of a 12-bit register is 100010010111. What is its content if it represents
(a) three decimal digits in BCD?

(b) three decimal digits in the excess-3 code?
(c) three decimal digits in the 84-2-1 code?
(d) a binary number?
1.34  List the ASCII code for the 10 decimal digits with an odd parity bit in the leftmost position.

1.35 By means of a timing diagram similar to Fig. 1.5, show the signals of the outputs f and g in Fig. P1.35
as functions of the three inputs a, b, and c. Use all eight possible combinations of a, b, and c.

abe

FIGURE P1.35

1.36 By means of a timing diagram similar to Fig. 1.5, show the signals of the outputs f and g in Fig.
P1.36 as functions of the two inputs a and b. Use all four possible combinations of a and b.

a b




(c) ketabton.com: The Digital Library

References 35

REFERENCES
1. CavanaGH, 1. J. 1984, Digital Computer Arithmetic. New York: McGraw-Hill.
Z MaNo, M. M. 1988, Computer Engincering: Hardware Design. Englewood Cliffs, NJ: Prentice-
Hall.
3. NELSON, V. P., H. T. NaGLE, . D. Irwin, and B, D, CarroLL, 1997, Digital Logic Circuit Analy-
sis and Design. Upper Saddle River, NJ: Prentice Hall.
4, Scumip, H. 1974, Decimal Computation. New York: John Wiley.



(c) ketabton.com: The Digital Library

Chapter 2
Boolean Algebra and Logic Gates

2.1

INTRODUCTION

Because binary logic is used in all of today's digital computers and devices, the cost of the
circuits that implement it is an important factor addressed by designers. Finding simpler and
cheaper, but equivalent, realizations of a circuit can reap huge payoffs in reducing the over-
all cost of the design. Mathematical methods that simplify circuits rely primarily on Boolean
algebra. Therefore, this chapter provides a basic vocabulary and a brief foundation in
Boolean algebra that will enable you to optimize simple circuits and to understand the pur-
pose of algorithms used by software tools to optimize complex circuits involving millions
of logic gates.

2.2 BASIC DEFINITIONS

36

Boolean algebra, like any other deductive mathematical system, may be defined with a set of
elements, a set of operators, and a number of unproved axioms or postulates. A ser of elements
is any collection of objects, usually having a common property. If § is a set, and x and y are cer-
tain objects, then x € § means that x is a member of the set § and y ¢ S means that y is not an
element of S. A set with a denumerable number of elements is specified by braces:
A = {1, 2,3, 4} indicates that the elements of set A are the numbers 1, 2, 3, and 4. A binary
operator defined on a set § of elements is a rule that assigns, to each pair of elements from S,
a unique element from S. As an example, consider the relation a*bh = ¢. We say that * is a
binary operator if it specifies a rule for finding ¢ from the pair (@, b) and also if a, b, ¢ € S. How-
ever, * is not a binary operatorif a, be S, if cg §.



(c) ketabton.com: The Digital Library
Section 2.2 Basic Definitions 37

The postulates of a mathematical system form the basic assumptions from which it is pos-
sible to deduce the rules, theorems, and properties of the system. The most common postulates
used to formulate various algebraic structures are as follows:

1. Closure. A set § is closed with respect to a binary operator if, for every pair of elements
of §. the binary operator specifies a rule for obtaining a unique element of S. For example,
the set of natural numbers N = {1,2.3,4,... } is closed with respect to the binary
operator + by the rules of arithmetic addition, since, for any a. b e N, there is a unique
ce Nsuchthata + b = c. The set of natural numbers is ner closed with respect to the
binary operator — by the rules of arithmetic subtraction, because 2 — 3 = =] and 2,
JeN.but(~1)eN.

2. Associative law. A binary operator * on a set § is said to be associative whenever

(x*y)*z = x*(v*z) forall x. v, 2.€§

3. Commutarive law. A binary operator * on a set § is said to be commutative whenever
x*y = y*xforallx, ye§
4. [dentity element. A set § is said to have an identity element with respect to a binary op-

eration * on § if there exists an element ¢ € S with the property that
e*x = x*¢ = xforeveryxe§
Example: The element 0 is an identity element with respect to the binary operator + on
the setof integers / = {...,-3.-2,-1.0,1.2.3,... }, since
x+0=0+x=xforanyxel
The set of natural numbers, N, has no identity element, since 0 is excluded from the set.
5. Inverse. A set § having the identity element e with respect to a binary operator * is said
to have an inverse whenever, for every x £ S, there exists an element y € § such that
x*y=e

Example: In the set of integers, /. and the operator +, with ¢ = 0, the inverse of an ele-
mentais (—a).sincea + (—a) = 0.

Distributive law, If * and - are two binary operators on a set S, * is said to be distrib-
utive over + whenever

6

x4(yez) = (x%y)(x*2)
A field is an example of an algebraic structure. A field is a set of elements, together with two
binary operators, each having properties | through 5 and both operators combining to give
property 6. The set of real numbers, together with the binary operators + and -+, forms the
field of real numbers. The field of real numbers is the basis for arithmetic and ordinary alge-
bra. The operators and postulates have the following meanings:

The binary operator + defines addition.
The additive identity is 0.



(c) ketabton.com: The Digital Library

38

Chapter 2 Boolean Algebra and Logic Gates

The additive inverse defines subtraction.

The binary operator + defines multiplication.

The multiplicative identity is 1.

For a # 0, the multiplicative inverse of @ = 1/a defines division (i.e..a*1/a = 1).
The only distributive law applicable is that of - over +:

a*(b+c)=(a*b) + (a-c)

2.3 AXIOMATIC DEFINITION

OF BOOLEAN ALGEBRA

In 1854, George Boole developed an algebraic system now called Boolean algebra. In 1938,
C. E. Shannon introduced a two-valued Boolean algebra called switching algebra that repre-
sented the properties of bistable electrical switching circuits. For the formal definition of
Boolean algebra, we shall employ the postulates formulated by E. V. Huntington in 1904,

Boolean algebra is an algebraic structure defined by a set of elements, B, together with

two binary operators, + and -, provided that the following (Huntington) postulates are
satisfied:

1. (a) The structure is closed with respect to the operator +.
(b) The structure is closed with respect to the operator .

2, (a) Theelement 0 is an identity element with respectto +; thatis, x + 0 =0 + x = x,
(b) The element 1 is an identity element with respect to *; thatis, x+1 = 1-x = x.

3. (a) The structure is commutative with respectto +; thatis, x + y = y + x.
(b) The structure is commutative with respect to «; thatis, x*y = v+ x.

4. (a) The operator * is distributive over +; thatis, x-(y + z) = (x-y) + (x-2).
(b) The operator + is distributive over - thatis,x + (y*z) = (x + ¥)*(x + z).

5. For every element x & B, there exists an element x' € B (called the complement of x)
suchthat(@a)x + x’' = land (b) x+x" = 0.

6. There exist at least two elements x, y € B such that x # v.

Comparing Boolean algebra with arithmetic and ordinary algebra (the field of real num-

bers), we note the following differences:

1. Huntington postulates do not include the associative law. However, this law holds for
Boolean algebra and can be derived (for both operators) from the other postulates.

2. The distributive law of + over * (i.e., x + (y*2) = (x + ¥) - (x + 2)), is valid for
Boolean algebra, but not for ordinary algebra.

3. Boolean algebra does not have additive or multiplicative inverses; therefore, there are no
subtraction or division operations.



(c) ketabton.com: The Digital Library
Section 2.3 Axiomatic Definition of Boolean Algebra 39

4. Postulate 5 defines an operator called the complement that is not available in ordinary
algebra.

5. Ordinary algebra deals with the real numbers, which constitute an infinite set of ele-
ments, Boolean algebra deals with the as yet undefined set of elements, B, but in the
two-valued Boolean algebra defined next (and of interest in our subsequent use of that
algebra), B is defined as a set with only two elements, 0 and 1.

Boolean algebra resembles ordinary algebra in some respects, The choice of the
symbols + and - is intentional, to facilitate Boolean algebraic manipulations by persons
already familiar with ordinary algebra, Although one can use some knowledge from ordinary
algebra to deal with Boolean algebra, the beginner must be careful not to substitute the rules
of ordinary algebra where they are not applicable.

It is important to distinguish between the elements of the set of an algebraic structure and
the variables of an algebraic system. For example. the elements of the field of real numbers are
numbers, whereas variables such as a, b, ¢, etc., used in ordinary algebra, are symbols that
stand for real numbers. Similarly. in Boolean algebra. one defines the elements of the set B, and
variables such as x, y, and : are merely symbols that represent the elements. At this point, it is
important to realize that, in order to have a Boolean algebra, one must show that

1. the elements of the set B.
2. the rules of operation for the two binary operators. and

3. the set of elements, B, together with the two operators. satisfy the six Huntington
postulates,

One can formulate many Boolean algebras, depending on the choice of elements of B and
the rules of operation. In our subsequent work, we deal only with a two-valued Boolean alge-
bra (i.e., a Boolean algebra with only two elements). Two-valued Boolean algebra has appli-
cations in set theory (the algebra of classes) and in propositional logic. Our interest here is in
the application of Boolean algebra to gate-type circuits.

Two-Valued Boolean Algebra

A two-valued Boolean algebra is defined on a set of two elements, B = {0, 1}, with rules for
the two binary operators + and « as shown in the following operator tables (the rule for the
complement operator is for verification of postulate 5):

x y | xey X X+y £ |
0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
10 0 10 1
11 I I | 1




(c) ketabton.com: The Digital Library

40 Chapter 2

Boolean Algebra and Logic Gates

These rules are exactly the same as the AND, OR, and NOT operations, respectively, defined
in Table 1.8. We must now show that the Huntington postulates are valid for the set B = {0, 1}
and the two binary operators + and +.

1.

2.

3

6.

That the structure is closed with respect to the two operators is obvious from the tables,
since the result of each operation is either 1 orOand 1, 0 e B.

From the tables, we see that

(@ 0+0=20 0+1=1+0=1;

(b) 1:1=1 1:0=0-1=0.

This establishes the two identity elements, 0 for + and 1 for -+, as defined by postu-
late 2.

The commutative laws are obvious from the symmetry of the binary operator tables.

. (@) The distributive law x+(y + z) = (x+y) + (x-z) can be shown to hold from the

operator tables by forming a truth table of all possible values of x, y, and z. For each
combination, we derive x* (y + z) and show that the value is the same as the value of

(x+y) + (x-2):

x y z y+z |[x(y+2 x.y | x+z (x-y) + (x-2)
0o 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0o 1 0 1 0 0 0 0
o 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
10 1 1 I 0 | 1
- L 0 1 l 1 0 1
11 1 | 1 I 1 1

(b) The distributive law of + over * can be shown to hold by means of a truth table sim-
ilar to the one in part (a).

. From the complement table, it is easily shown that

() x+x"=1,since0+0'=0+1=landl +1"=1+0= 1.
(b) x*x' = 0,since 00" =0-1=0and1-1"=1-0 = 0.
Thus, postulate 1 is verified.

Postulate 6 is satisfied because the two-valued Boolean algebra has two elements, 1 and
0, with 1 # Q.

We have just established a two-valued Boolean algebra having a set of two elements, 1 and 0,
two binary operators with rules equivalent to the AND and OR operations, and a complement op-
erator equivalent to the NOT operator. Thus, Boolean algebra has been defined in a formal math-
ematical manner and has been shown to be equivalent to the binary logic presented heuristically
in Section 1.9. The heuristic presentation is helpful in understanding the application of Boolean
algebra to gate-type circuits, The formal presentation is necessary for developing the theorems



(c) ketabton.com: The Digital Library

Section 2.4 Basic Theorems and Properties of Boolean Algebra 41

and properties of the algebraic system. The two-valued Boolean algebra defined in this section
is also called “switching algebra™ by engineers. To emphasize the similarities between two-valued
Boolean algebra and other binary systems, that algebra was called “binary logic™ in Section 1.9.
From here on, we shall drop the adjective “two-valued” from Boolean algebra in subsequent
discussions.

2.4 BASIC THEOREMS AND PROPERTIES
OF BOOLEAN ALGEBRA

Duality

In Section 2.3, the Huntington postulates were listed in pairs and designated by part (a) and part
(b). One part may be obtained from the other if the binary operators and the identity elements
are interchanged, This important property of Boolean algebra is called the duality principle
and states that every algebraic expression deducible from the postulates of Boolean algebra re-
mains valid if the operators and identity elements are interchanged. In a two-valued Boolean
algebra. the identity elements and the elements of the set B are the same: | and 0. The duality
principle has many applications. If the dual of an algebraic expression is desired, we simply
interchange OR and AND operators and replace 1's by 0's and 0's by 1's.

Basic Theorems

Table 2.1 lists six theorems of Boolean algebra and four of its postulates. The notation is sim-
plified by omitting the binary operator whenever doing so does not lead to confusion, The the-
orems and postulates listed are the most basic relationships in Boolean algebra. The theorems,
like the postulates, are listed in pairs: each relation is the dual of the one paired with it. The
postulates are basic axioms of the algebraic structure and need no proof, The theorems must
be proven from the postulates. Proofs of the theorems with one variable are presented next,
At the right is listed the number of the postulate which justifies that particular step of the
proof.

Table 2.1

Postulates and Theorems of Boolean Algebra
Postulate 2 () A +0=x {b) xl=x
Postulate 5 (a) x+x =1 (b) xx'=0
Theorem 1 (a) rtx=x (b) X-x=x
Theorem 2 (@) r+1=1 (b) x0=0
Theorem 3. involution (') =x
Postulate 3, commutative (a) X+y=y+x (b) xy = yx
Theorem 4, associative @x+Q+2)=(x+y)+z (b) x(yz) = (xv)z
Postulate 4, distributive (a) Xy + 2)=xy+ xz ) x+yz=(x+y)(x+2)
Theorem 5, DeMorgan (a) (v + ¥) = a'y' (b) (xp)=x"+3"
Theorem 6, absorption (a) X+ xy=x (b) x(x + ) =x




(c) ketabton.com: The Digital Library
42  Chapter 2 Boolean Algebra and Logic Gates

THEOREM 1(a): x + x = x.

Statement Justification
r+x=(x+ x)-1 postulate 2(b)
=(x + x)(x + x') 5(a)

= x + xx' 4(b)
=x+0 5(b)

=X 2(a)

THEOREM 1(b): x-x = x.

Statement Justification
xrx=xx+0 postulate 2(a)
= xx + xx' 5(b)

= x(x + &) @
=x-1 5(a)

=X 2(b)

Note that theorem 1(b) is the dual of theorem 1(a) and that each step of the proof in part (b)
is the dual of its counterpart in part (a). Any dual theorem can be similarly derived from the
proof of its corresponding theorem.

THEOREM 2(a): x + 1 = 1.

Statement Justification
x+1=1(x+1) postulate 2(b)
=(x+x)(x+1) 5(a)
=x+x'1 4(b)
=x+2x 2(h)

= 1 5(a)

THEOREM 2(b): x-0 = 0 by duality.

THEOREM 3: (x')’ = x. From postulate 5, we have x + x' = 1 and x+x' = 0, which
together define the complement of x. The complement of x' is x and is also (x")". Therefore,
since the complement is unique, we have (x')" = x. The theorems involving two or three
variables may be proven algebraically from the postulates and the theorems that have
already been proven. Take, for example, the absorption theorem:



(c) ketabton.com: The Digital Library
Section 2.4 Basic Theorems and Properties of Boolean Algebra 43

THEOREM 6(a): x + xv = x.

Statement Justification

X+ xy=x+1 + xy postulate 2(b)
=x(1 +y) 4a)

=x(y + 1) 3(a)

=x-1 2(a)

=x 2(b)

THEOREM 6(b): x(x + y) = x by duality.

The theorems of Boolean algebra can be proven by means of truth tables. In truth tables,
both sides of the relation are checked to see whether they yield identical results for all
possible combinations of the variables involved. The following truth table verifies the first
absorption theorem:

x |y xr*x-o—xy
0|{o 0 0
0 1 0 0
| 0 o |
I 1 !l 1

The algebraic proofs of the associative law and DeMorgan's theorem are long and will not
be shown here. However, their validity is easily shown with truth tables. For example, the truth
table for the first DeMorgan’s theorem. (x + y)’ = x'y', is as follows:

X y | x+y (x +y) x|y | xy
o o ] 1 1 1 1
0 1 | . 0 1 0 0
10 | 0 0 1 0
| 1 0 0 0 0

Operator Precedence

The operator precedence for evaluating Boolean expressions is (1) parentheses, (2) NOT, (3)
AND, and (4) OR. In other words, expressions inside parentheses must be evaluated before
all other operations. The next operation that holds precedence is the complement, and then fol-
lows the AND and, finally. the OR. As an example, consider the truth table for one of De-
Morgan’s theorems. The left side of the expression is (x + v)’. Therefore, the expression
inside the parentheses is evaluated first and the result then complemented. The right side of



(c) ketabton.com: The Digital Library
44 Chapter 2 Boolean Algebra and Logic Gates

the expression is x'y’, so the complement of x and the complement of y are both evaluated first

and the result is then ANDed. Note that in ordinary arithmetic, the same precedence holds (except
for the complement) when multiplication and addition are replaced by AND and OR, respectively.

2.5 BOOLEAN FUNCTIONS

Boolean algebra is an algebra that deals with binary variables and logic operations. A Boolean
function described by an algebraic expression consists of binary variables, the constants 0 and
1, and the logic operation symbols. For a given value of the binary variables, the function can
be equal to either 1 or 0. As an example, consider the Boolean function
Fr=x+y'z

The function Fj is equal to 1 if x is equal to | or if both y" and z are equal to 1. Fj is equal to
0 otherwise. The complement operation dictates that when y’ = 1, y = 0. Therefore, F; = 1
ifx = lorify = Oand z = 1. A Boolean function expresses the logical relationship between
binary variables and is evaluated by determining the binary value of the expression for all pos-
sible values of the variables.

A Boolean function can be represented in a truth table. The number of rows in the truth
table is 2", where n is the number of variables in the function. The binary combinations for the
truth table are obtained from the binary numbers by counting from O through 2" — 1. Table 2.2
shows the truth table for the function F;. There are eight possible binary combinations for as-
signing bits to the three variables x, y, and z. The column labeled F| contains either 0 or 1 for
each of these combinations. The table shows that the function is equal to 1 when x = 1 or
when yz = 01 and is equal to 0 otherwise.

A Boolean function can be transformed from an algebraic expression into a circuit diagram
composed of logic gates connected in a particular structure. The logic-circuit diagram (also
called a schematic) for F) is shown in Fig. 2.1. There is an inverter for input y to generate its
complement. There is an AND gate for the term y'z and an OR gate that combines x with y'z.
In logic-circuit diagrams, the variables of the function are taken as the inputs of the circuit and
the binary variable F, is taken as the output of the circuit.

There is only one way that a Boolean function can be represented in a truth table. However,
when the function is in algebraic form, it can be expressed in a variety of ways, all of which

Table 2.2

Truth Tables for F, and F;
x Yy z F F
0 0 0 0 0
0 0 | 1 1
0 1 0 0 0
0 1 1 0 1
1 0 0 1 1
1 0 1 1 1
1 1 0 | 0
1 1 | | 0




(c) ketabton.com: The Digital Library
Section 2.5 Boolean Functions 45

A m— i

FIGURE 2.1
Gate implementation of F, = x + y'z

>
v P>

— F
Lo

ey
e
e

(@ F=xvz+xvz+ay

bB)Fi=xy' +x'z

FIGURE 2.2
Implementation of Boolean function F, with gates

have equivalent logic. The particular expression used to represent the function will dictate the
interconnection of gates in the logic-circuit diagram. Here is a key fact that motivates our use
of Boolean algebra: By manipulating a Boolean expression according to the rules of Boolean
algebra, it is sometimes possible to obtain a simpler expression for the same function and thus
reduce the number of gates in the circuit and the number of inputs to the gate. Designers are
motivated to reduce the complexity and number of gates because their effort can significantly
reduce the cost of a circuit. Consider, for example, the following Boolean function:

F=xyz¥xyz +x

A schematic of an implementation of this function with logic gates is shown in Fig. 2.2(a).



(c) ketabton.com: The Digital Library

46

Chapter 2 Boolean Algebra and Logic Gates

Input variables x and y are complemented with inverters to obtain x’ and y'. The three terms
in the expression are implemented with three AND gates. The OR gate forms the logical OR
of the three terms. The truth table for £ is listed in Table 2.2. The function is equal to 1 when
xyz = 001 or 011 or when xy = 10 (irrespective of the value of z) and is equal to 0 otherwise.
This set of conditions produces four 1's and four 0's for F5.

Now consider the possible simplification of the function by applying some of the identities
of Boolean algebra:

BE=xyYe+xyz+xy=x"z(y' +y) + ' =x'z + xy'

The function is reduced to only two terms and can be implemented with gates as shown in
Fig. 2.2(b). It is obvious that the circuit in (b) is simpler than the one in (a), yet both imple-
ment the same function, By means of a truth table, it is possible to verify that the two
expressions are equivalent. The simplified expression is equal to 1 when xz = 01 or when
xy = 10. This produces the same four 1’s in the truth table. Since both expressions produce
the same truth table, they are equivalent. Therefore, the two circuits have the same outputs
for all possible binary combinations of inputs of the three variables. Each circuit implements
the same identical function, but the one with fewer gates and fewer inputs to gates is prefer-
able because it requires fewer wires and components. In general, there are many equivalent
representations of a logic function.

Algebraic Manipulation

EXAMPLE 2.1

When a Boolean expression is implemented with logic gates, each term requires a gate and each
variable within the term designates an input to the gate. We define a literal to be a single vari-
able within a term, in complemented or uncomplemented form. The function of Fig. 2.2(a) has
three terms and eight literals, and the one in Fig. 2.2(b) has two terms and four literals. By re-
ducing the number of terms, the number of literals, or both in a Boolean expression, it is often
possible to obtain a simpler circuit. The manipulation of Boolean algebra consists mostly of re-
ducing an expression for the purpose of obtaining a simpler circuit. Functions of up to five
variables can be simplified by the map method described in the next chapter. For complex
Boolean functions, designers of digital circuits use computer minimization programs that are
capable of producing optimal circuits with millions of logic gates. The concepts introduced in
this chapter provide the framework for those tools. The only manual method available is a cut-
and-try procedure employing the basic relations and other manipulation techniques that be-
come familiar with use, but remain, nevertheless, subject to human error, The examples that
follow illustrate the algebraic manipulation of Boolean algebra.

Simplify the following Boolean functions to a minimum number of literals.
L x(x'+y)=xx"+2xy=0+xy=2ay

2, x+xy=(x+x")x+ty)=1l{x+y)=x+y



(c) ketabton.com: The Digital Library
Section 2.5 Boolean Functions 47

A (r+¥)r+y)=x+xv+xn+w=x(l+y+y)=x
4 xy+xlztyr=xy+ x4+ ya{x+ £)
=xy+ 'z + xvz + x'yz
= xy(l +2)+x'2(1 + )
=xy+ x'z.
5. (x4 y)(a' + 2)(v + 2) = (x + y)(x" + z), by duality from function 4.

Functions 1 and 2 are the dual of each other and vse dual expressions in corresponding steps.
An easier way to simplify function 3 is by means of postulate 4(b) from Table 2.1:
(x + ¥)(x + v') = x + yv' = x. The fourth function illustrates the fact that an increase in
the number of literals sometimes leads to a simpler final expression. Function 5 is not mini-
mized directly, but can be derived from the dual of the steps used to derive function 4. Func-
tions 4 and 5 are together known as the consensus theorem.

Complement of a Function

The complement of a function ' is F' and is obtained from an interchange of 0's for 1's and
1"s for 0's in the value of F. The complement of a function may be derived algebraically through
DeMorgan’s theorems, listed in Table 2.1 for two variables. DeMorgan’s theorems can be ex-
tended to three or more variables. The three-variable form of the first DeMorgan's theorem is
derived as follows, from postulates and theorems listed in Table 2.1:
(A+B+C) =(A+x) letB+C=x

= A"x' by theorem 5(a) (DeMorgan)
A'(B + C)' substitute B+ C = x
= A'(B'C") by theorem 5(a) (DeMorgan)
A'B'C’ by theorem 4(b) (associative)

DeMorgan's theorems for any number of variables resemble the two-variable case in form and
can be derived by successive substitutions similar to the method used in the preceding deriva-
tion. These theorems can be generalized as follows:
(A+B+C+D+ - +F) =ABCD..F
(ABCD...F))=A'"+B +C'"+ D'+ - + F'

The generalized form of DeMorgan's theorems states that the complement of a function is
obtained by interchanging AND and OR operators and complementing each literal,



(c) ketabton.com: The Digital Library
48 Chapter 2 Boolean Algebra and Logic Gates

EXAMPLE 2.2

Find the complement of the functions F; = x'yz' + x'y'zand /i, = x(y'z’ + yz). By ap-
plying DeMorgan’s theorems as many times as necessary, the complements are obtained as
follows:

Il

Fi = (I..-‘r:' + "_l".!z)r (x'}.z!}l(xt}.rz)c = (I & }‘v + Z)(I = )' =% z‘)
Fr= [x(y'2 + y2)]' =x' + (y'Z + y2)'=x" + (y'2')'(b2)'
X+ (y+2)0+2)

X +y’ +y'z

]

A simpler procedure for deriving the complement of a function is to take the dual of the func-
tion and complement each literal. This method follows from the generalized forms of DeMor-
gan's theorems. Remember that the dual of a function is obtained from the interchange of AND
and OR operators and 1's and 0's.

EXAMPLE 2.3

Find the complement of the functions F, and F> of Example 2.2 by taking their duals and com-
plementing each literal.

1. Fy = x'yz' + x'y'z.
The dual of Fyis (x' + y + 2')(x" + y' + 2).
Complement each literal: (x + ¥' + z)(x + vy + 2') = F}.
2. =x(y'z" + yz2).
The dual of Fais x + (y' + 2')(y + 2).
Complement each literal: x' + (y + 2)(y' + 2') = Fb.

2.6 CANONICAL AND STANDARD FORMS

Minterms and Maxterms

A binary variable may appear either in its normal form (x) or in its complement form (x').
Now consider two binary variables x and y combined with an AND operation. Since each vari-
able may appear in either form, there are four possible combinations: x'y’, xy, xy’, and xy.
Each of these four AND terms is called a minterm, or a standard product. In a similar manner,
n variables can be combined to form 2" minterms. The 2" different minterms may be determined
by a method similar to the one shown in Table 2.3 for three variables. The binary numbers
from 0to 2" — 1 are listed under the n variables. Each minterm is obtained from an AND term
of the n variables, with each variable being primed if the corresponding bit of the binary num-
ber is a 0 and unprimed if a 1. A symbol for each minterm is also shown in the table and is of



ketabton.com: The Digital Librar,
(c) ketabton.co eIl Section 2.6 Canonical and Standard Forms 49

Table 2.3
Minterms and Maxterms for Three Binary Variables
Minterms Maxterms
x y z Term Designation Term Designation
0 0 0 x5y mo x+y+z My
0 0 | ' my r+y+3 M,
0 | 0 x'yz’ ma X+ 3+ M,
0 1 1 h15¢ 4 my Tl A M;
1 0 0 xy'e my o s O M,
1 0 1 xy'z s ¥ ty+ Ms
1 1 0 xyz' mg ¥ +y 42 Mg
1 1 1 xyz my x4y 2 M
Table 2.4
Functions of Three Variables

x ¥ z Function f; Function f;

0 0 0 0 0

0 0 1 1 0

1] 1 0 0 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 | 1 1

the form m;, where the subscript j denotes the decimal equivalent of the binary number of the
minterm designated.

In a similar fashion, n variables forming an OR term, with each variable being primed or
unprimed, provide 2" possible combinations, called maxterms, or standard sums. The eight
maxterms for three variables, together with their symbolic designations, are listed in Table 2.3.
Any 2" maxterms for n variables may be determined similarly. It is important to note that
(1) each maxterm is obtained from an OR term of the n variables, with each variable being un-
primed if the corresponding bit is a 0 and primed if a 1, and (2) each maxterm is the comple-
ment of its corresponding minterm and vice versa.

A Boolean function can be expressed algebraically from a given truth table by forming a
minterm for each combination of the variables that produces a 1 in the function and then tak-
ing the OR of all those terms. For example, the function f; in Table 2.4 is determined by ex-
pressing the combinations 001, 100, and 111 as x"y'z, xy'z’, and xyz, respectively. Since each
one of these minterms results in f; = 1, we have

HA=xYe+xy's' +xyz=mp + my + my



(c) ketabton.com: The Digital Library

50 Chapter 2 Boolean Algebra and Logic Gates

Similarly, it may be easily verified that
fH=x"yz + xy'z + xyz' + xyz = m3 + ms + mg + my

These examples demonstrate an important property of Boolean algebra: Any Boolean function
can be expressed as a sum of minterms (with “sum™ meaning the ORing of terms).

Now consider the complement of a Boolean function. It may be read from the truth table by
forming a minterm for each combination that produces a 0 in the function and then ORing
those terms, The complement of f] is read as

fi=xy7 +x'yz' + x'yz + xy'z + xyz'
If we take the complement of f, we obtain the function f;:
fi= @ty + )ty + 0 +y+ ) +y +2)
= My* M3+ My Ms+ M
Similarly, it is possible to read the expression for f; from the table:
L=x+y+)x+y+2)Nx+y +2)(x +y+2)
= MqMM>M,

These examples demonstrate a second property of Boolean algebra: Any Boolean function can
be expressed as a product of maxterms (with “product” meaning the ANDing of terms). The
procedure for obtaining the product of maxterms directly from the truth table is as follows:
Form a maxterm for each combination of the variables that produces a 0 in the function, and
then form the AND of all those maxterms. Boolean functions expressed as a sum of minterms
or product of maxterms are said to be in canonical form.

Sum of Minterms

Previously, we stated that, for n binary variables, one can obtain 2" distinct minterms and that
any Boolean function can be expressed as a sum of minterms. The minterms whose sum de-
fines the Boolean function are those which give the 1's of the function in a truth table. Since
the function can be either 1 or 0 for each minterm, and since there are 2" minterms, one can
calculate all the functions that can be formed with n variables to be 22", It is sometimes con-
venient to express a Boolean function in its sum-of-minterms form. If the function is not in this
form, it can be made so by first expanding the expression into a sum of AND terms, Each term
is then inspected to see if it contains all the variables. If it misses one or more variables, it is
ANDed with an expression such as x + x', where x is one of the missing variables. The next
example clarifies this procedure.

EXAMPLE 2.4

Express the Boolean function F = A + B'C as a sum of minterms. The function has three
variables: A, B, and C. The first term A is missing two variables; therefore,

A= A(B + B') = AB + AB'




(c) ketabton.com: The Digital Library Section 2.6 Canonical and Standard Forms 51
This function is still missing one variable, so
A= AB(C + C') + AB'(C + C")
ABC + ABC' + AB'C + AB'C’

Il

The second term B'C is missing one variable; hence.
B'C=BC(A+A")=AB'C + A'BC
Combining all terms, we have
F=A+B8BC
= ABC + ABC' + AB'C + AB'C' + A'B'C
But AB'C appears twice, and according to theorem 1 (x + x = x), it is possible to remove
one of those occurrences. Rearranging the minterms in ascending order, we finally obtain

F=AB'C+ AB'C + AB'C + ABC' + ABC
my + my + oms + mg + niy

When a Boolean function is in its sum-of-minterms form. it is sometimes convenient (o express
the function in the following brief notation:

F(A,B.C) = Z(1.4.5,6,7)

The summation symbol 3 stands for the ORing of terms; the numbers following it are the
minterms of the function. The letters in parentheses following F form a list of the variables in
the order taken when the minterm is converted to an AND term,

An alternative procedure for deriving the minterms of a Boolean function is to obtain the
truth table of the function directly from the algebraic expression and then read the minterms
from the truth 1able. Consider the Boolean function given in Example 2.4:

F=A+BC

The truth table shown in Table 2.5 can be derived directly from the algebraic expression by list-
ing the eight binary combinations under variables A, B, und C and inserting 1's under F for those

Table 2.5

Truth Table for F = A + B'C
A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 Q 1
1 0 1 |
| 1 0 1
1 1 1 1




(c) ketabton.com: The Digital Library
52 Chapter 2 Boolean Algebra and Logic Gates

combinations for which A = 1 and BC = 01. From the truth table, we can then read the five
minterms of the functiontobe 1,4, 5, 6, and 7.

Product of Maxterms

Each of the 2%" functions of n binary variables can be also expressed as a product of maxterms.
To express a Boolean function as a product of maxterms, it must first be brought into a form
of OR terms. This may be done by using the distributive law, x + yz = (x + y)(x + 2).
Then any missing variable x in each OR term is ORed with xx'. The procedure is clarified in
the following example.

EXAMPLE 2.5

Express the Boolean function F = xy + x'z as a product of maxterms. First, convert the func-
tion into OR terms by using the distributive law:

F=xy+x'z= (xy + x")(xy + z)
=(x+x")(y + ) (x+2)(y + 2)
= (x" +y)(x + 2)(y + 2)

The function has three variables: x, y, and z. Each OR term is missing one variable; therefore,
Xty =x'+y+'=+y+)x' +y+2)
xtz=x+z+y' =(x+y+2)(x+y +2)
ytz=y+tz+xx'=(x+y+z)(x' +y+2)

Combining all the terms and removing those which appear more than once, we finally obtain
F=e{x+y+z2)x+y +2)(x +y+2)(x' +y+2')

= MoM>MMs
A convenient way to express this function is as follows:
F(x,y,z) =I1(0, 2,4, 5)

The product symbol, T, denotes the ANDing of maxterms; the numbers are the maxterms of
the function.

Conversion between Canonical Forms

The complement of a function expressed as the sum of minterms equals the sum of minterms
missing from the original function. This is because the original function is expressed by those
minterms which make the function equal to 1, whereas its complement is a 1 for those minterms
for which the function is a 0. As an example, consider the function

F(A,B,C) = 2(1,4,5,6,7)
This function has a complement that can be expressed as

F'(A,B,C) = 2(0,2,3) = mg + my + ms



(c) ketabton.com: The Digital Library

Section 2.6 Canonical and Standard Forms 53

Now, if we take the complement of £ by DeMorgan's theorem, we obtain Fin a different form:
F = (mg+ my + m3) = mymyms = MoM_My = T1(0, 2, 3)

The last conversion follows from the definition of minterms and maxterms as shown in Table 2.3.
From the table, it is clear that the following relation holds:

m} = Mj
That is, the maxterm with subscript f is a complement of the minterm with the same subscript
J and vice versa.

The last example demonstrates the conversion between a function expressed in sum-of-
minterms form and its equivalent in product-of-maxterms form. A similar argument will show
that the conversion between the product of maxterms and the sum of minterms is similar. We
now state a general conversion procedure: To convert from one canonical form to another, in-
terchange the symbols X and IT and list those numbers missing from the original form. In
order to find the missing terms, one must realize that the total number of minterms or maxterms
is 2", where n is the number of binary variables in the function.

A Boolean function can be converied from an algebraic expression 10 a product of max-
terms by means of a truth table and the canonical conversion procedure. Consider, for exam-
ple, the Boolean expression

F=xy+a'z
First. we derive the truth table of the function, as shown in Table 2.6. The 1's under F in the
table are determined from the combination of the variables for which xy = 11 orxz = 01, The

minterms of the function are read from the truth table to be 1. 3, 6. and 7. The function expressed
as a sum of minterms is

Flx.vz) = 3(1.3.6.7)

Since there is a total of eight minterms or maxterms in a function of three variables. we deter-
mine the missing terms to be 0. 2. 4, and 5. The function expressed as a product of maxterms is

Flx.v,z) = T1(0.2.4. 5)

the same answer as obtained in Example 2.5,

Table 2.6

Truth Table for F = xy + x'z
X Y z F
0 0 0 0
0 0 | 1
0 1 0 0
0 1 1 1
1 0 0 0
| 0 i 0
I 1 0 |
1 1 1 1




(c) ketabton.com: The Digital Library

54

Chapter 2 Boolean Algebra and Logic Gates

Standard Forms

The two canonical forms of Boolean algebra are basic forms that one obtains from reading a
given function from the truth table. These forms are very seldom the ones with the least num-
ber of literals, because each minterm or maxterm must contain, by definition, all the variables,
either complemented or uncomplemented.

Another way to express Boolean functions is in standard form. In this configuration, the
terms that form the function may contain one, two, or any number of literals. There are two types
of standard forms: the sum of products and products of sums.

The sum of products is a Boolean expression containing AND terms, called product terms,
with one or more literals each. The sum denotes the ORing of these terms. An example of a func-
tion expressed as a sum of products is

Fi=y +xy+2'yz

The expression has three product terms, with one, two, and three literals. Their sum is, in ef-
fect, an OR operation.

The logic diagram of a sum-of-products expression consists of a group of AND gates fol-
lowed by a single OR gate. This configuration pattern is shown in Fig. 2.3(a). Each product term
requires an AND gate, except for a term with a single literal. The logic sum is formed with an
OR gate whose inputs are the outputs of the AND gates and the single literal. It is assumed that
the input variables are directly available in their complements, so inverters are not included in
the diagram. This circuit configuration is referred to as a two-level implementation.

A product of sums is a Boolean expression containing OR terms, called sum rerms. Each term
may have any number of literals. The producr denotes the ANDing of these terms. An exam-
ple of a function expressed as a product of sums is

B=x(y +z)(x" +y+2)

This expression has three sum terms, with one, two, and three literals. The product is an AND
operation. The use of the words product and sum stems from the similarity of the AND oper-
ation to the arithmetic product (multiplication) and the similarity of the OR operation to the arith-
metic sum (addition). The gate structure of the product-of-sums expression consists of a group
of OR gates for the sum terms (except for a single literal), followed by an AND gate, as shown
in Fig. 2.3(b). This standard type of expression results in a two-level gating structure.

Lot T

(a) Sum of Products (b) Product of Sums

FIGURE 2.3
Two-level implementation



(c) ketabton.com: The Digital Library
Section 2.7 Other Logic Operations 55

A
A B
f‘ 5 T —D F.
D D -——'—1 Py
E c
E
(a)AB + C(D + E) (b)AB+CD + CE
FIGURE 2.4

Three- and two-level implementation

A Boolean function may be expressed in a nonstandard form. For example, the function
Fy=AB+C(D + E)
is neither in sum-of-products nor in product-of-sums form. The implementation of this ex-
pression is shown in Fig, 2.4(a) and requires two AND gates and two OR gates. There are three
levels of gating in this circuit. [t can be changed to a standard form by using the distributive
law to remove the parentheses:
Fs=AB+C(D+E)=AB+CD + CE

The sum-of-products expression is implemented in Fig. 2.4(b). In general. a two-level imple-
mentation is preferred because it produces the least amount of delay through the gates when

the signal propagates from the inputs to the output. However. the number of inputs to a given
gate might not be practical.

2.7 OTHER LOGIC OPERATIONS

When the binary operators AND and OR are placed between two variables, x and v, they form
two Boolean functions, x+ v and x + v, respectively. Previously we stated that there are g
functions for n binary variables. Thus, for two variables, n = 2. and the number of possible
Boolean functions is 16. Therefore, the AND and OR functions are only 2 of a total of 16 pos-
sible functions formed with two binary vanables. It would be instructive to find the other 14
functions and investigate their properties.

The truth tables for the 16 functions formed with two binary variables are listed in Table 2.7.
Each of the 16 columns, Fj to Fys. represents a truth table of one possible function for the two
variables, x and y. Note that the functions are determined from the 16 binary combinations that
can be assigned to F. The 16 functions can be expressed algebraically by means of Boolean func-
tions. as is shown in the first column of Table 2.8. The Boolean expressions listed are simpli-
fied to their minimum number of literals.

Although each function can be expressed in terms of the Boolean operators AND, OR, and
NOT. there is no reason one cannot assign special operator symbols for expressing the other func-
tions. Such operator symbols are listed in the second column of Table 2.8. However, of all the new
symbols shown, only the exclusive-OR symbol. & , is in common use by digital designers.



(c) ketabton.com: The Digital Library

56  Chapter 2 Boolean Algebra and Logic Gates
Table 2.7
Truth Tables for the 16 Functions of Two Binary Variables

x vy |k R b 5 kg Fs F¢ F; Fg F Fo Fy Fiz Fyz Fi4 Fis

0 0 6o o o 0 0o 0 00 1 1 1 1 1 1 1 1

0 1 g o0 % 1 ¥ 1 @ ®» e X 3 11

1 0 g o @ T @9 ¥ 1.@¢ O L I @ 0 1 1

I | o 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 2.8
Boolean Expressions for the 16 Functions of Two Variables
Operator
Boolean Functions Symbol Name Comments

Fp=0 Null Binary constant 0
Fy = xy x-y AND Xxandy
F =y Xy Inhibition X, but not ¥
B=x Transfer X
Fy=x'"y AVAS Inhibition ¥, but not x
Fs=y Transfer ¥
Fg = xy' + x'y x@y Exclusive-OR x or y, but not both
FR=x+y x+y OR xory
Fg=(x+y) x|y NOR Not-OR
Fy=xy+x'y (x®y) Equivalence Xxequals y
Fig =)' ¥ Complement Not y
Fio=x+y xCy Implication If y, then x
Fi; =x' x' Complement Not x
Fia=x"+y xDy Implication If x, then ¥
Fyy = (.l'y)' X T y NAND Not-AND
Fs=1 Identity Binary constant 1

Each of the functions in Table 2.8 is listed with an accompanying name and a comment that
explains the function in some way. The 16 functions listed can be subdivided into three categories:

1. Two functions that produce a constant 0 or 1.

2. Four functions with unary operations: complement and transfer.

3. Ten functions with binary operators that define eight different operations: AND, OR,
NAND, NOR, exclusive-OR, equivalence, inhibition, and implication.

Constants for binary functions can be equal to only 1 or 0. The complement function pro-
duces the complement of each of the binary variables. A function that is equal to an input vari-
able has been given the name transfer, because the variable x or y is transferred through the gate
that forms the function without changing its value. Of the eight binary operators, two (inhibi-
tion and implication) are used by logicians, but are seldom used in computer logic. The AND
and OR operators have been mentioned in conjunction with Boolean algebra. The other four
functions are used extensively in the design of digital systems.



(c) ketabton.com: The Digital Library
Section 2.8 Digital Logic Gates 57

The NOR function is the complement of the OR function, and its name is an abbreviation
of not-OR. Similarly. NAND is the complement of AND and is an abbreviation of not-AND.
The exclusive-OR., abbreviated XOR. is similar to OR, but excludes the combination of both
xand y being equal to 1: it holds only when x and y differ in value. (It is sometimes referred
to as the binary difference operator.) Equivalence is a function that is 1 when the two binary
variables are equal (i.e.. when both are 0 or both are 1). The exclusive-OR and equivalence func-
tions are the complements of each other. This can be easily verified by inspecting Table 2.7:
The truth table for exclusive-OR is Fg and for equivalence is Fy, and these two functions are
the complements of each other. For this reason, the equivalence function is called exclusive-
NOR, abbreviated XNOR,

Boolean algebra, as defined in Section 2.2, has two binary operators, which we have called
AND and OR, and a unary operator, NOT (complement). From the definitions, we have deduced
a number of properties of these operators and now have defined other binary operators in terms
of them, There is nothing unique about this procedure. We could have just as well started with
the operator NOR ( | ), for example, and later defined AND, OR, and NOT in terms of it. There
are. nevertheless, good reasons for introducing Boolean algebra in the way it has been intro-
duced. The concepts of “and.” “or,” and “not” are familiar and are used by people to express
everyday logical ideas. Moreover, the Huntington postulates reflect the dual nature of the al-
gebra, emphasizing the symmetry of + and - with respect 1o each other.

2.8 DIGITAL LOGIC GATES

Since Boolean functions are expressed in terms of AND, OR, and NOT operations, it is easier
to implement a Boolean function with these type of gates. Still, the possibility of constructing
gates for the other logic operations is of practical interest. Factors to be weighed in consider-
ing the construction of other types of logic gates are (1) the feasibility and economy of producing
the gate with physical components. (2) the possibility of extending the gate 10 more than two
inputs, (3) the basic properties of the binary operator. such as commutativity and associativi-
ty. and (4) the ability of the gate to implement Boolean functions alone or in conjunction with
other gates.

Of the 16 functions defined in Table 2.8, two are equal to a constant and four are repeated.
There are only 10 functions left to be considered as candidates for logic gates. Two—inhibi-
tion and implication—are not commutative or associative and thus are impractical to use as stan-
dard logic gates. The other eight—complement. transfer, AND, OR, NAND, NOR,
exclusive-OR, and equivalence—are used as standard gates in digital design.

The graphic symbols and truth tables of the eight gates are shown in Fig. 2.5, Each gate has
one or two binary input variables, designated by x and y, and one binary output variable, des-
ignated by F. The AND. OR. and inverter circuits were defined in Fig. 1.6. The inverter cir-
cuit inverts the logic sense of a binary variable, producing the NOT, or complement. function.
The small circle in the output of the graphic symbol of an inverter (referred to as a bubble) des-
ignates the logic complement. The triangle symbol by itself designates a buffer circuit. A buffer
produces the transfer function, but does not produce a logic operation. since the binary value
of the output is equal to the binary value of the input. This circuit is used for power amplifi-
cation of the signal and is equivalent to two inverters connected in cascade.



(c) ketabton.com: The Digital Library

58  Chapter 2 Boolean Algebra and Logic Gates

Graphic Algebraic Truth
Name symbol function table
x y| F
i ) " 0 0| 0
1 0] 0
: S O [ ¢
x ¥l E
OR = 0 0f 0
%ﬁ Erity 0 1| 1
1 0] 1
1 3} %
[ F
Hieti —Pe—rF Fex o] 1
11 0
xi F
Buff e e N
er F=x ol o
1l 1
x oy F
F= ' 0 o| 1
NAND (x¥y) 0o 1l 1
I O] 1
1 1] 0
x 3l F
= 4wl 0 0 1
NOR F=(x+y) o il o
1 0, 0
1 1] 0
x y| F
S
Exclusive-OR F=xy' +x'y 0 0 0
(XOR) =5 & y 0 1 1
I D] 1
1 1| 0
x y| F
Exclusg:-NOR F= ,{0, é_ x)’y’ o ol 1
. =(x@y) g 3| 0
equivalence 1 ol o
I ‘L] 1
FIGURE 2.5

Digital logic gates



(c) ketabton.com: The Digital Library
Section 2.8 Digital Logic Gates 59

The NAND function is the complement of the AND function. as indicated by a graphic
symbol that consists of an AND graphic symbol followed by a small circle. The NOR function
is the complement of the OR function and uses an OR graphic symbol followed by a small cir-
cle. NAND and NOR gates are used extensively as standard logic gates and are in fact far more
popular than the AND and OR gates. This is because NAND and NOR gates are easily con-
structed with transistor circuits and because digital circuits can be easily implemented with
them.

The exclusive-OR gate has a graphic symbol similar to that of the OR gate, except for
the additional curved line on the input side. The equivalence. or exclusive-NOR, gate is the
complement of the exclusive-OR, as indicated by the small circle on the output side of the
graphic symbol.

Extension to Multiple Inputs

The gates shown in Fig. 2.5—except for the inverter and buffer—can be extended to have
more than two inputs, A gate can be extended to have multiple inputs if the binary operation it
represents is commutative and associative. The AND and OR operations, defined in Boolean
algebra, possess these two properties. For the OR function, we have

X+ y=y+tx (commutative)
and
(x+¥)+z=x+(y+2)=x+y+: (associative)
which indicates that the gate inputs can be interchanged and that the OR function can be ex-
tended to three or more variables.

The NAND and NOR functions are commutative, and their gates can be extended to have more
than two inputs, provided that the definition of the operation is modified slightly. The difficulty is
that the NAND and NOR operators are not associative (ie., (v | ») | = # x | (v | 2)) as shown
in Fig. 2.6 and the following equations:

(U ba=[x+y) + 2 = (x+ ) = 52’ + 32
slrda) =+ (y+ T = x(y+2) = ¥y + 1
To overcome this difficulty, we define the multiple NOR (or NAND) gate as a complemented
OR (or AND) gate. Thus, by definition, we have
xlylz=(x+y+3z)
xtytz=(xvz)
The graphic symbols for the three-input gates are shown in Fig. 2.7. In writing cascaded NOR
and NAND operations. one must use the correct parentheses to signify the proper sequence of

the gates. To demonstrate this principle, consider the circuit of Fig, 2.7(c). The Boolean func-
tion for the circuit must be written as

F = [(ABC)'(DE)'Y = ABC + DE



(c) ketabton.com: The Digital Library

60  Chapter 2 Boolean Algebra and Logic Gates

xr—3
¥— :

(xdiy)dz=(x+y2z

lyl)=x(+2)

FIGURE 2.6
Demonstrating the nonassociativity of the NOR operator: (x | y) |z # x| (v | 2)

(x+y+2)

(xyz)'

{a) 3-input NOR gate {b) 3-input NAND gate

A —
B —
C —

—
o

F=[(ABC)' - (DE)'] = ABC + DE

(c) Cascaded NAND gates

FIGURE 2.7
Multiple-input and cascaded NOR and NAND gates

The second expression is obtained from one of DeMorgan's theorems. It also shows that an ex-
pression in sum-of-products form can be implemented with NAND gates. (NAND and NOR
gates are discussed further in Section 3.7.)

The exclusive-OR and equivalence gates are both commutative and associative and can be
extended to more than two inputs. However, multiple-input exclusive-OR gates are uncommon
from the hardware standpoint. In fact, even a two-input function is usually constructed with other
types of gates. Moreover, the definition of the function must be modified when extended to more
than two variables, Exclusive-OR is an odd function (i.e., it is equal to 1 if the input variables
have an odd number of 1's). The construction of a three-input exclusive-OR function is shown
in Fig. 2.8. This function is normally implemented by cascading two-input gates, as shown in
(a). Graphically, it can be represented with a single three-input gate, as shown in (b). The truth
table in (c) clearly indicates that the output F is equal to | if only one input is equal to | or if



(c) ketabton.com: The Digital Library
Section 2.8 Digital Logic Gates 61

x
x ¥y 2 F

.‘.
0o 0 0 0
z F=x®y8: 0 0 1 i
g 1 90 1
(a) Using 2-input gates o 90 0
Lo 0 R 1
i @ 3 0
X L 1 0 0
{3D~F=x$y&): I L |

(b) 3-input gate (¢) Truth table
FIGURE 2.8

Three-input exclusive-OR gate

all three inputs are equal to 1 (i.e., when the total number of 1's in the input variables is odd).
(Exclusive-OR gates are discussed further in Section 3.9.)

Positive and Negative Logic

The binary signal at the inputs and outputs of any gate has one of two values, except during
transition. One signal value represents logic | and the other logic 0. Since two signal values
are assigned to two logic values. there exist two different assignments of signal level to logic
value, as shown in Fig. 2.9. The higher signal level is designated by H and the lower signal
level by L. Choosing the high-level H to represent logic | defines a positive logic system,
Choosing the low-level L to represent logic | defines a negative logic system. The terms posi-
tive and negative are somewhat misleading, since both signals may be positive or both may
be negative. It is not the actual values of the signals that determine the type of logic, but rather
the assignment of logic values to the relative amplitudes of the two signal levels.

Hardware digital gates are defined in terms of signal values such as A and L. It is up to
the user to decide on a positive or negative logic polarity. Consider, for example, the elec-
tronic gate shown in Fig. 2.10(b). The truth table for this gate is listed in Fig. 2.10(a). It
specifies the physical behavior of the gate when # is 3 volts and L is 0 volts. The truth table
of Fig. 2.10(c) assumes a positive logic assignment, with H# = 1 and L = (. This truth table
is the same as the one for the AND operation. The graphic symbol for a positive logic AND
gate is shown in Fig. 2.10(d).

Logic Signal Logic Signal
value value value value
1 — H 0 — H
0 L 1 L
(a) Positive logic (b) Negative logic
FIGURE 2.9

Signal assignment and logic polarity



(c) ketabton.com: The Digital Library

62

Chapter 2 Boolean Algebra and Logic Gates

x ¥y z
L L L x
L H ) &
H L L y
H H H
(a) Truth table (b) Gate block diagram
with H and L
x Yy z
0 0 0
0 1 0
1 0 0
2 [ 1
{c) Truth table for (d) Positive logic AND gate
positive logic
x
1 94 1
1 0 1 -
0 1 |1 - ¢
0 0 0 y—p
(e) Truth table for (f) Negative logic OR gate

negative logic

FIGURE 2.10
Demonstration of positive and negative logic

Now consider the negative logic assignment for the same physical gate with L = land H = 0.
The result is the truth table of Fig. 2.10(e). This table represents the OR operation, even though
the entries are reversed. The graphic symbol for the negative-logic OR gate is shown in Fig.
2.10(f). The small triangles in the inputs and output designate a polarity indicator, the presence
of which along a terminal signifies that negative logic is assumed for the signal, Thus, the same
physical gate can operate either as a positive-logic AND gate or as a negative-logic OR gate.

The conversion from positive logic to negative logic and vice versa is essentially an oper-
ation that changes 1's to 0's and 0's to 1's in both the inputs and the output of a gate. Since this
operation produces the dual of a function, the change of all terminals from one polarity to the
other results in taking the dual of the function. The upshot is that all AND operations are con-
verted to OR operations (or graphic symbols) and vice versa. In addition, one must not forget
to include the polarity-indicator triangle in the graphic symbols when negative logic is as-
sumed. In this book, we will not use negative logic gates and will assume that all gates oper-
ate with a positive logic assignment,



(c) ketabton.com: The Digital Library
Section 2.9 Integrated Circuits 63

2.9 INTEGRATED CIRCUITS

An integrated circuit (abbreviated IC) is a silicon semiconductor crystal, called a chip, containing
the electronic components for constructing digital gates. The various gates are interconnected
inside the chip to form the required circuit. The chip is mounted in a ceramic or plastic con-
tainer, and connections are welded to external pins to form the integrated circuit. The number
of pins may range from 14 on a small IC package to several thousand on a larger package.
Each IC has a numeric designation printed on the surface of the package for identification.
Vendors provide data books, catalogs, and Internet websites that contain descriptions and in-
formation about the ICs that they manufacture.

Levels of Integration

Digital ICs are often categorized according to the complexity of their circuits, as measured by
the number of logic gates in a single package. The differentiation between those chips which
have a few internal gates and those having hundreds of thousands of gates is made by cus-
tomary reference to a package as being either a small-. medium-, large-, or very large-scale in-
tegration device.

Small-scale integration (S51) devices contain several independent gates in a single pack-
age. The inputs and outputs of the gates are connected directly to the pins in the package. The
number of gates is usually fewer than 10 and is limited by the number of pins available in
the IC.

Medium-scale integration (MSI) devices have a complexity of approximately 10 to 1,000
gates in a single package. They usually perform specific elementary digital operations. MSI dig-
ital functions are introduced in Chapter 4 as decoders, adders. and multiplexers and in Chapter
6 as registers and counters.

Large-scale integration (LSI) devices contain thousands of gates in a single package. They
include digital systems such as processors, memory chips. and programmable logic devices.
Some LSI components are presented in Chapter 7.

Very large-scale integration (VLSI) devices contain hundred of thousands of gates within
a single package. Examples are large memory arrays and complex microcomputer chips. Be-
cause of their small size and low cost, VLSI devices have revolutionized the computer system
design technology. giving the designer the capability to create structures that were previously
uneconomical to build.

Digital Logic Families

Digital integrated circuits are classified not only by their complexity or logical operation. but
also by the specific circuit technology to which they belong. The circuit technology is referred
1o as a digital logic familv. Each logic family has its own basic electronic circuit upon which
more complex digital circuits and components are developed. The basic circuit in each tech-
nology is a NAND, NOR, or inverter gate. The electronic components employed in the con-
struction of the basic circuit are usually used to name the technology. Many different logic



(c) ketabton.com: The Digital Library

64

Chapter 2 Boolean Algebra and Logic Gates

families of digital integrated circuits have been introduced commercially. The following are the
most popular:

TTL transistor—transistor logic;

ECL emitter-coupled logic;

MOS metal-oxide semiconductor;

CMOS complementary metal-oxide semiconductor.

TTL is a logic family that has been in use for a long time and is considered to be standard.
ECL has an advantage in systems requiring high-speed operation. MOS is suitable for circuits
that need high component density, and CMOS is preferable in systems requiring low power con-
sumption, such as digital cameras and other handheld portable devices. Low power consump-
tion is essential for VLSI design; therefore, CMOS has become the dominant logic family,
while TTL and ECL are declining in use. The basic electronic digital gate circuit in each logic
family is analyzed in Chapter 10. The most important parameters that are evaluated and com-
pared are discussed in Section 10.2 and are listed here for reference:

Fan-out specifies the number of standard loads that the output of a typical gate can drive
without impairing its normal operation. A standard load is usually defined as the amount of cur-
rent needed by an input of another similar gate in the same family.

Fan-in is the number of inputs available in a gate.

Power dissipation is the power consumed by the gate that must be available from the power
supply.

Propagation delay is the average transition delay time for a signal to propagate from input
to output. For example, if the input of an inverter switches from 0 to 1, the output will switch
from 1 to 0, but after a time determined by the propagation delay of the device. The operating
speed is inversely proportional to the propagation delay.

Noise margin is the maximum external noise voltage added to an input signal that does not
cause an undesirable change in the circuit output,

Computer-Aided Design

Integrated circuits having submicron geometric features are manufactured by optically pro-
jecting patterns of light onto silicon wafers. Prior to exposure, the wafers are coated with a
photoresistive material that either hardens or softens when exposed to light. Removing extra-
neous photoresist leaves patterns of exposed silicon. The exposed regions are then implanted with
dopant atoms to create a semiconductor material having the electrical properties of transistors
and the logical properties of gates. The design process translates a functional specification or
description of the circuit (i.e., what it must do) into a physical specification or description (how
it must be implemented in silicon).

The design of digital systems with VLSI circuits containing millions of transistors and
gates is an enormous and formidable task. Systems of this complexity are usually impossi-
ble to develop and verify without the assistance of computer-aided design (CAD) tools,



(c) ketabton.com: The Digital Library
Section 2.9 Integrated Circuits 65

which consist of software programs that support computer-based representations of circuits
and aid in the development of digital hardware by automating the design process. Elec-
tronic design automation (EDA) covers all phases of the design of integrated circuits. A
typical design flow for creating VLSI circuits consists of a sequence of steps beginning
with design entry (e.g.. entering a schematic) and culminating with the generation of the data-
base that contains the photomask used to fabricate the 1C. There are a variety of options
available for creating the physical realization of a digital circuit in silicon. The designer can
choose between an application-specific integrated circuit (ASIC). a field-programmable
gate array (FPGA), a programmable logic device (PLD), and a full-custom IC. With each
of these devices comes a set of CAD tools that provide the necessary software to facilitate
the hardware fabrication of the unit. Each of these technologies has a market niche deter-
mined by the size of the market and the unit cost of the devices that are required to imple-
ment a design.

Some CAD systems include an editing program for creating and modifying schematic dia-
grams on a computer screen. This process is called schematic capture or schematic entry. With
the aid of menus, keyboard commands, and a mouse, a schematic editor can draw circuit dia-
grams of digital circuits on the computer screen. Components can be placed on the screen from
a list in an internal library and can then be connected with lines that represent wires, The
schematic entry software creates and manages a database containing the information produced
with the schematic. Primitive gates and functional blocks have associated models that allow the
functionality (1.e., logical behavior) and timing of the circuit to be verified. Verification is per-
formed by applying inputs to the circuit and using a logic simulator to determine and display
the outputs in text or waveform format.

An important development in the design of digital systems is the use of a hardware de-
scription language (HDL). Such a language resembles a computer programming language,
but is specifically oriented to describing digital hardware. It represents logic diagrams and other
digital information in textual form to describe the functionality and structure of a cireuit.
Moreover, the HDL description of a circuit’s functionality can be abstract, without reference
to specific hardware, thereby freeing a designer to devote attention to higher level functional
detail (e.g.. under certain conditions the circuit must detect a particular pattern of 1's and 0's
in a serial bit stream of data) rather than transistor-level detail. HDL-based models of a cir-
cuit or system are simulated to check and verify its functionality before it is submitted to fab-
rication, thereby reducing the risk and waste of manufacturing a circuit that fails 1o operate
correctly. In tandem with the emergence of HDL-based design languages, tools have been
developed to automatically and optimally synthesize the logic described by an HDL model of
a circuit. These two advances in technology have led to an almost total reliance by industry
on HDL-based synthesis tools and methodologies for the design of the circuits of complex de-
gital systems, Two hardware description languages— Verilog and VHDL—have been ap-
proved as standards by the Institute of Electronics and Electrical Engineers (IEEE) and are in
use by design teams worldwide, The Verilog HDL is introduced in Section 3.10, and because
of its importance, we include several exercises and design problems based on Verilog through-
oul the book.



(c) ketabton.com: The Digital Library

66 Chapter 2

PROBLEMS

Boolean Algebra and Logic Gates

Answers to problems marked with * appear at the end of the book.

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2,10

2.1

212

Demonstrate the validity of the following identities by means of truth tables:

(a) DeMorgan's theorem for three variables: (x + y + z)' = x'y'z"and (xyz)' = x" +y' + 2
(b) The distributive law: x + yz = (x + ¥)(x + 2)

(c) The distributive law; x(y + z) = xy + x2

(d) The associativelaw: x + (y +2) = (x + y¥) + 2

(e) The associative law and x(yz) = (xy)z

Simplify the following Boolean expressions to @ minimum number of literals:

(@* xy + xy' ®)* (x + y)(x + ')

(c)* xyvz + x'y + xyg' (d* (A + B) (A" + B')
(&) xyz' + x'yz + xyz + x'yz' ® (x+y+)x' +y +2)
Simplify the following Boolean expressions to & minimum number of literals:
(2)* ABC + A'B + ABC' (b)* x'yz + xz

@) (x + p)'(x" +¥) (d)y* xy + x(wz + wz')
(e)* (BC' + A'D)(AB' + CD') ) (x+y +2')x" +2')
Reduce the following Boolean expressions to the indicated number of literals:
(ay* A'C" + ABC + AC’ to three literals

m* (x'y' +2) +z+xv+wz to three literals

(c)* A'B(D' + C'D) + B(A + A'CD) to one literal

(@ (A" + C)(A"+C')(A+ B+ C'D) to four literals

(e) ABCD + A'BD + ABC'D to two literals

Draw logic diagrams of the circuits that implement the original and simplified expressions in
Problem 2.2.

Draw logic diagrams of the circuits that implement the original and simplified expressions in
Problem 2.3,

Draw logic diagrams of the circuits that implement the original and simplified expressions in
Problem 2.4.

Find the complement of F' = wx -+ yz; then show that FF' = 0and F + F' = 1.

Find the complement of the following expressions:
(a)* xy' + x'y (b) (A'B+CD)E' + E
(€) (' +y+z20(x+ y)(x+2)

Given the Boolean functions | and F', show that

(a) The Boolean function £ = Fy + Fj contains the sum of the minterms of F, and F.

(b) The Boolean function G = FF, contains only the minterms that are common to F,
and F.

List the truth table of the function:

(ay* F=xy+ xy' +¥'z (b) F=x'z" +yz

We can perform logical operations on strings of bits by considering each pair of corresponding
bits separately (called bitwise operation). Given two eight-bit strings A = 10110001 and
B = 10101100, evaluate the eight-bit result after the following logical operations: (a)* AND,
(b) OR, (c)* XOR, (d)* NOT A, (e) NOT B.



(c) ketabton.com: The Digital Library

213

2.14

2.15*

2.18

Problems 67

Draw logic diagrams to implement the following Boolean expressions:
(a) Y=A+B+B{A+C)
(b) ¥ =A(B& D) + C'
(c) ¥ =A4+CD + ABC
d¥Y¥=(AdC)y+B8
(e) ¥ =(A"+8B')(C+D)
0y ¥Y=1[A+B")(C + D)
Implement the Boolean function
F=xy+x'y'+y:z

(a) with AND, OR, and inverter gates,
(by* with OR and inverter gates,

(c) with AND and inverter gates,

(d) with NAND and inverter gates, and
(e) with NOR and inverter gates.

Simplify the following Boolean functions 7 and 75 to a minimum number of literals:

A B C T T
0 0 0 1 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1

1 0 0 0 l

1 0 1 0 1

| | 0 0 1

1 1 1 0 I

The logical sum of all minterms of a Boolean function of n variables is 1.
(a) Prove the previous statement for # = 3.
(b) Suggest a procedure for a general proof.

Obtain the truth table of the following functions. and express each function in sum-of-minterms
and product-of-maxterms form:
tay* (xy + 2)(y + x2) by (x+ ¥ +2)
(c) x'z+ wx'v 4wy’ +w'y ) (xy + 32"+ x2)(x +2)
For the Boolean function
F=xy'z+ Xy + whay + we'y + way

(a) Obtain the truth table of £,

(b) Draw the logic diagram. using the original Boolean expression,

(¢c)* Use Boolean algebra to simplify the function to a minimum number of literals.

(d) Obtain the truth table of the function from the simplified expression and show that it is the
same as the one in part (a).

(¢) Draw the logic diagram from the simplified expression, and compare the total number of
gates with the diagram of part (b).



(c) ketabton.com: The Digital Library

68 Chapter 2 Boolean Algebra and Logic Gates

2.19% Express the following function as a sum of minterms and as a product of maxterms:
F(A,B,C,D)=B'D+ A'D + BD

2.20 Express the complement of the following functions in sum-of-minterms form:

(@) F(A,B,C,D) = £(3,5,9,11,15) (b) Fx,y,z)=11(2,4,57)
2.21 Convert each of the following to the other canonical form:
(@) F(x,y.z) = 2(2,5,6) ' (b) F(A,B,C,D)=1T1(0,1.2,4,7,9,12)
2.22% Convert each of the following expressions into sum of products and product of sums:
(a) (AB + C)(B + C'D) (®) x' +x(x+y)(y+2')
2.23 Draw the logic diagram corresponding to the following Boolean expressions without simplifying
them:
(a) BC' + AB + ACD (b) (A+ B)(C+ DA+ B+ D)
(c) (AB + A'B')(CD' + C'D) (d A+CD+ (A+ D')(C'+ D)

2.24 Show that the dual of the exclusive-OR is equal to its complement.

2.25 By substituting the Boolean expression equivalent of the binary operations as defined in Table 2.8,
show the following:
(a) The inhibition operation is neither commutative nor associative,
(b) The exclusive-OR operation is commutative and associative.

2.26 Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.

2.27 Write the Boolean equations and draw the logic diagram of the circuit whose outputs are defined

by the following truth table:
fy f; a b c
1 0 0 0 0
0 0 0 0 1
0 1 0 1 0
1 1 0 1 1
0 1 1 0 0
0 1 1 0 1
1 1 1 1 0
1 0 1 1 1

2.28 Write Boolean expressions and construct the truth tables describing the outputs of the circuits
described by the following logic diagrams:

a b Dc (il
b

(a) (b)



(c) ketabton.com: The Digital Library

References 69

REFERENCES

1. BooLe, G. 1854, An Investigation of the Laws of Thought, New York: Dover,

2. DieT™EYER. D, L, 1988. Logic Design of Digital Systems. 3d ed. Boston: Allyn and Bacon.

3, HuxtminGTox. E. V. Sets of independent postulates for the algebra of logic. Trans. Am. Math. Soc..
5 (1904): 288-309.

4. {EEE Standard Hardware Description Language Based on the Verilog Hardware Description
Language, Language Reference Manual (LRM), IEEE Std.1364-1995. 1996, 2001, 2005, The
Institute of Electrical and Electronics Engineers, Piscataway. NJ.

5. {EEE Standard VHDL Language Reference Manual (LRM). IEEE Std., 1076-1987. 1988, The
Institute of Electrical and Electronics Engineers, Piscataway. NJ.

6. Mano, M. M., and C. R. KIvE. 2000. Lagic and Computer Design Fundamentals, 2d ed. Upper
Saddle River. NJ: Prentice Hall.

7. SHanNON, C. E. A symbolic analysis of relay and switching circuits, Trans. AIEE 57 (1938):
713-723.



(c) ketabton.com: The Digital Library

Chapter 3
Gate-Level Minimization

3.1

INTRODUCTION

Gate-level minimization refers to the design task of finding an optimal gate-level imple-
mentation of the Boolean functions describing a digital circuit. This task is well under-
stood, but is difficult to execute by manual methods when the logic has more than a few
inputs. Fortunately, computer-based logic synthesis tools can minimize a large set of Boolean
equations efficiently and quickly. Nevertheless, it is important that a designer understand
the underlying mathematical description and solution of the problem. This chapter serves
as a foundation for your understanding of that important topic and will enable you to exe-
cute a manual design of simple circuits, preparing you for skilled use of modern design
tools. The chapter will also introduce a hardware description language that is used by mod-
ern design tools.

3.2 THE MAP METHOD

70

The complexity of the digital logic gates that implement a Boolean function is directly related
to the complexity of the algebraic expression from which the function is implemented. Al-
though the truth table representation of a function is unique, when it is expressed algebraically
it can appear in many different, but equivalent, forms. Boolean expressions may be simplified
by algebraic means as discussed in Section 2.4. However, this procedure of minimization is awk-
ward because it lacks specific rules to predict each succeeding step in the manipulative process.
The map method presented here provides a simple, straightforward procedure for minimizing
Boolean functions. This method may be regarded as a pictorial form of a truth table. The map
method is also known as the Karnaugh map or K-map.



(c) ketabton.com: The Digital Library
Section 3.2 The Map Method 71

A K-map is a diagram made up of squares, with each square representing one minterm of
the function that is to be minimized. Since any Boolean function can be expressed as a sum of
minterms, it follows that a Boolean function is recognized graphically in the map from the
area enclosed by those squares whose minterms are included in the function. In fact, the map
presents a visual diagram of all possible ways a function may be expressed in standard form.
By recognizing various patterns. the user can derive alternative algebraic expressions for the
same function, from which the simplest can be selected.

The simplified expressions produced by the map are always in one of the two standard
forms: sum of products or product of sums. It will be assumed that the simplest algebraic ex-
pression is an algebraic expression with a minimum number of terms and with the smallest
possible number of literals in each term. This expression produces a circuit diagram with a
minimum number of gates and the minimum number of inputs 10 each gate. We will see sub-
sequently that the simplest expression is not unique: It is sometimes possible to find two or more
expressions that satisfy the minimization criteria. In that case, either solution is satisfactory.

Two-Variable Map

The two-variable map is shown in Fig, 3.1(a). There are four minterms for two variables: hence,
the map consists of four squares, one for each minterm. The map is redrawn in (b) to show the
relationship between the squares and the two variables x and y. The 0 and 1 marked in each row
and column designate the values of variables. Variable x appears primed in row 0 and unprimed
in row 1. Similarly, y appears primed in column 0 and unprimed in column 1.

v

3 —_—
X 0 i
i, "
L my o x'y' X'y
. LN
n; ms X1 oay Xy
(a) (b)

FIGURE 3.1
Two-variable map

If we mark the squares whose minterms belong to a given function, the two-variable map
becomes another useful way to represent any one of the 16 Boolean functions of two variables.
As an example, the function xy is shown in Fig. 3.2(a), Since xy is equal to mj3, a 1 is placed
inside the square that belongs to ms. Similarly, the function x + y is represented in the map
of Fig. 3.2(b) by three squares marked with 1's. These squares are found from the minterms of
the function:

nmyp+my+my=x'y+ay +ay=x+y
The three squares could also have been determined from the intersection of variable x in the

second row and variable y in the second column, which encloses the area belonging to x or y.
In each example, the minterms at which the function is asserted are marked with a 1.



(c) ketabton.com: The Digital Library

72

Chapter 3 Gate-Level Minimization

y y
y —_—— ) ——
x 0 1 N 0 1
my my my
0 0
. my L
xq1 1 X491 1
-
(a) xy (byx+y

FIGURE 3.2
Representation of functions in the map

y
yz e g
A 00 01 1 10
my m; My m,
L "y 13 s 0)x'y'z' | x'y'z | x'yz | x'yz’
my my iy ny
my ms my mg X1 |ay'z' | o'z | xyz | xyz’
—
4

(a) (b)

FIGURE 3.3
Three-variable map

Three-Variable Map

A three-variable map is shown in Fig. 3.3. There are eight minterms for three binary variables;
therefore, the map consists of eight squares. Note that the minterms are arranged. not in a bi-
nary sequence, but in a sequence similar to the Gray code (Table 1.6). The characteristic of this
sequence is that only one bit changes in value from one adjacent column to the next. The map
drawn in part (b) is marked with numbers in each row and each column to show the relation-
ship between the squares and the three variables. For example, the square assigned to ms cor-
responds to row 1 and column 01. When these two numbers are concatenated, they give the
binary number 101, whose decimal equivalent is 5. Each cell of the map corresponds to a
unique minterm, so another way of looking at square ms = xy'z is to consider it to be in the
row marked x and the column belonging to y'z (column 01). Note that there are four squares
in which each variable is equal to 1 and four in which each is equal to 0. The variable appears
unprimed in the former four squares and primed in the latter. For convenience, we write the vari-
able with its letter symbol under the four squares in which it is unprimed.

To understand the usefulness of the map in simplifying Boolean functions, we must recog-
nize the basic property possessed by adjacent squares: Any two adjacent squares in the map dif-
fer by only one variable, which is primed in one square and unprimed in the other, For example,
ms and m lie in two adjacent squares. Variable y is primed in ms and unprimed in m4, where-
as the other two variables are the same in both squares. From the postulates of Boolean algebra,
it follows that the sum of two minterms in adjacent squares can be simplified to a single AND



(c) ketabton.com: The Digital Library

EXAMPLE 3.1

Section 3.2 The Map Method 73

term consisting of only two literals. To clarify this concept, consider the sum of two adjacent
squares such as m< and my:

msg +my = xy's + xyz=xx(y' +y) =z
Here, the two squares differ by the variable y. which can be removed when the sum of the two
minterms is formed. Thus, any two minterms in adjacent squares (vertically or horizontally, but
not diagonally, adjacent) that are ORed together will cause a removal of the dissimilar variable.
The next four examples explain the procedure for minimizing a Boolean function with a map.

Simplify the Boolean function
F(x.y,2) = 2(2.3.4.5)

First, a 1 is marked in each minterm that represents the function. This is shown in Fig. 3.4, in
which the squares for minterms 010, 011, 100, and 101 are marked with 1's. The next step is
to find possible adjacent squares, These are indicated in the map by two rectangles, each en-
closing two 1's, The upper right rectangle represents the area enclosed by x'y. This area is de-
termined by observing that the two-square area is in row (), corresponding to x’, and the last
two columns, corresponding to y. Similarly, the lower left rectangle represents the product
term xyv'. (The second row represents x and the two left columns represent y'.) The logical
sum of these two product terms gives the simplified expression

F=x'v+xy

L m my . /(

FIGURE 3.4
Map for Example 3.1, F(x, y, 2) = X(2,3,4,5) = x'y + ay

In certain cases, two squares in the map are considered to be adjacent even though they do
not touch each other. In Fig. 3.3, my is adjacent to m; and my is adjacent to mg because the
minterms differ by one variable. This difference can be readily verified algebraically:

mo + my = &'y + 'yl = xSy +y) =2

my+mg=xy'z' +xvz'=x+ (¥ +y) =x
Consequently. we must modify the definition of adjacent squares to include this and other sim-
ilar cases. We do so by considering the map as being drawn on a surface in which the right and
left edges touch each other 1o form adjacent squares.



(c) ketabton.com: The Digital Library

74

Chapter 3 Gate-Level Minimization

EXAMPLE 3.2

Simplify the Boolean function
F(x,y.z) = 2(3,4,6,7)

The map for this function is shown in Fig. 3.5. There are four squares marked with 1's, one
for each minterm of the function. Two adjacent squares are combined in the third column to
give a two-literal term yz. The remaining two squares with 1's are also adjacent by the new
definition. These two squares, when combined, give the two-literal term xz'. The simplified
function then becomes

Note: xy'z" + xyz' = xz'

FIGURE 3.5
Map for Example 3.2, F(x, vy, z) = 2(3,4,6,7) = yz + x2'

Consider now any combination of four adjacent squares in the three-variable map. Any such
combination represents the logical sum of four minterms and results in an expression with only
one literal. As an example, the logical sum of the four adjacent minterms 0, 2, 4, and 6 reduces
to the single literal term z':

mg+ my + my + mg=x'y'z" + x'yz' + x3'z" + xyz'
(Y +y) + 2O +y)

=x+x=(x"+x)=2

Il

The number of adjacent squares that may be combined must always represent a number
that is a power of two, such as 1, 2, 4, and 8. As more adjacent squares are combined, we ob-
tain a product term with fewer literals.

One square represents one minterm, giving a term with three literals.
Two adjacent squares represent a term with two literals.
Four adjacent squares represent a term with one literal.

Eight adjacent squares encompass the entire map and produce a function that is always
equal to 1.



(c) ketabton.com: The Digital Library
Section 3.2 The Map Method 75

EXAMPLE 3.3

Simplify the Boolean function

F(x,»z) = Z(0.2,4,5.6)
The map for F is shown in Fig. 3.6. First. we combine the four adjacent squares in the first and
last columns to give the single literal term z'. The remaining single square, representing minterm
5. is combined with an adjacent square that has already been used once. This is not only per-
missible, but rather desirable, because the two adjacent squares give the two-literal term xy’
and the single square represents the three-literal minterm xv'z, The simplified function is

F=:+x

01 11 10
) Ty 0 »
1
a1y m
1

FIGURE 3.6
Map for Example 3.3, Fix, y, 2) = 2(0,2,4,5,6) =2 + xy

If a function is not expressed in sum-of-minterms form. it is possible to use the map to ob-
tain the minterms of the function and then simplify the function to an expression with a mini-
mum number of terms. It is necessary, however, to make sure that the algebraic expression is
in sum-of-products form. Each product term can be plotted in the map in one, two, or more
squares. The minterms of the function are then read directly from the map.

EXAMPLE 3.4

Let the Boolean function
F=AC+ A'B+ AB'C + BC

(a) Express this function as a sum of minterms,
(b) Find the minimal sum-of-products expression.
Three product terms in the expression have two literals and are represented in a three-variable

map by two squares each. The two squares corresponding to the first term, A'C, are found in
Fig. 3.7 from the coincidence of A’ (first row) and C (two middle columns) to give squares 001



(c) ketabton.com: The Digital Library

76

3.3

Chapter 3 Gate-Level Minimization

my

FIGURE 3.7
Map for Example 3.4, A'C + A’'B+ AB'C + BC=C+ A'B

and 011. Note that, in marking 1's in the squares, it is possible to find a 1 already placed there
from a preceding term. This happens with the second term, A’B, which has 1's in squares 011
and 010. Square 011 is common with the first term, A'C, though, so only one 1 is marked in
it. Continuing in this fashion, we determine that the term AB'C belongs in square 101, corre-
sponding to minterm 5, and the term BC has two 1's in squares 011 and 111. The function has
a total of five minterms, as indicated by the five 1's in the map of Fig. 3.7. The minterms are
read directly from the map to be 1, 2, 3, 5, and 7. The function can be expressed in sum-of-
minterms form as

F(A,B,C) = £(1,2,3,5,7)

The sum-of-products expression, as originally given, has too many terms. It can be simplified,
as shown in the map, to an expression with only two terms:

F=C-+ A'B

FOUR-VARIABLE MAP

The map for Boolean functions of four binary variables is shown in Fig. 3.8, In (a) are listed
the 16 minterms and the squares assigned to each. In (b), the map is redrawn to show the re-
lationship between the squares and the four variables. The rows and columns are numbered in
a Gray code sequence. with only one digit changing value between two adjacent rows or
columns. The minterm corresponding to each square can be obtained from the concatenation
of the row number with the column number. For example, the numbers of the third row (11)
and the second column (01), when concatenated, give the binary number 1101, the binary
equivalent of decimal 13. Thus, the square in the third row and second column represents
minterm m; 5.

The map minimization of four-variable Boolean functions is similar to the method used to
minimize three-variable functions. Adjacent squares are defined to be squares next to each
other. In addition, the map is considered to lie on a surface with the top and bottom edges, as
well as the right and left edges, touching each other to form adjacent squares. For example,



(c) ketabton.com: The Digital Library

EXAMPLE 3.5

Section 3.3 Four-Variable Map 77

¥
24
W 00 01 11 10
m m "y m
my my my my 00 [wix'v' 2 wix'yviz | wix've [wix'yz'
", , " my
my my s mg 01 | wixy's' | wiay'z | wixyz | wiayz'
iz myy My my =
my: s mys Mg 1w’z | oway'z [ owaye | weyz’
g my m, my, my,
"y my myy "y 10 wa'y'z" | wa'y'z | wa'ye | wx'ye’
ra——————

(a) (b)
FIGURE 3.8
Four-variable map

g and m; form adjacent squares, as do ms and m ;. The combination of adjacent squares that
is useful during the simplification process is easily determined from inspection of the four-
variable map:

One square represents one minterm, giving a term with four literals.
Two adjacent squares represent a term with three literals.

Four adjacent squares represent a term with two literals.

Eight adjacent squares represent a term with one literal.

Sixteen adjacent squares produce a function that is always equal to 1.

No other combination of squares can simplify the function. The next two examples show
the procedure used to simplify four-variable Boolean functions.

Simplify the Boolean function
F(w,x,y,2) = 2£(0,1,2,4,5,6,8,9, 12, 13, 14)

Since the function has four variables, a four-variable map must be used. The minterms listed
in the sum are marked by 1's in the map of Fig. 3.9. Eight adjacent squares marked with 1's
can be combined to form the one literal term y'. The remaining three 1's on the right cannot
be combined to give a simplified term; they must be combined as two or four adjacent squares.
The larger the number of squares combined, the smaller is the number of literals in the term.
In this example, the top two 1's on the right are combined with the top two 1's on the left to
give the term w'z". Note that it is permissible to use the same square more than once. We are



(c) ketabton.com: The Digital Library
78  Chapter 3 Gate-Level Minimization

N

Pyl

11"‘\".":'

My

xvz'

y, my,

Note: w'y'z' + w'yvz' = w'z’
wz vy =xr

FIGURE 3.9
Map for Example 3.5, F(w, x, ¥, z) = 2(0,1,2,4,5,6,8,9, 12,13, 14) =
y +wz' + xz'

now left with a square marked by | in the third row and fourth column (square 1110). Instead
of taking this square alone (which will give a term with four literals), we combine it with
squares already used to form an area of four adjacent squares. These squares make up the two
middle rows and the two end columns, giving the term xz’. The simplified function is

F=yi+wjzl +xzr

EXAMPLE 3.6

Simplify the Boolean function
F=AB'C' + B'CD'"+ A'BCD’ + AB'C’

The area in the map covered by this function consists of the squares marked with 1's in Fig. 3.10.
The function has four variables and, as expressed, consists of three terms with three literals each
and one term with four literals. Each term with three literals is represented in the map by two
squares. For example, A'B'C" is represented in squares 0000 and 0001. The function can be sim-
plified in the map by taking the 1’s in the four corners to give the term B'D’. This is possible
because these four squares are adjacent when the map is drawn in a surface with top and bot-
tom edges, as well as left and right edges, touching one another. The two left-hand 1’s in the top
row are combined with the two 1°s in the bottom row to give the term B'C’, The remaining 1
may be combined in a two-square area to give the term A'CD’. The simplified function is

F=B'D + BC' + A'CD’



(c) ketabton.com: The Digital Library
Section 3.3 Four-Variable Map 79

A'BCD
A'B'CD’
"y e e iy
01 : Femt A'CD’
R e
s iy s % B
11
A
AB'C'D’

Note: A'B'C'D" + A'B'CDY = A'B'D'
AB'C'D' ~ AB'CD' = AB'D'
A'B'D' - AB'D'= B'D’
A'B'C' = AB'C' = B'C'
FIGURE 3.10
Map for Example 3.6, A’B'C" + B'CD" + A’BCD’ + AB'C' = B'D’ + B’C" + A'CD’

Prime Implicants

In choosing adjacent squares in a map, we must ensure that (1) all the minterms of the func-
tion are covered when we combine the squares, (2) the number of terms in the expression is
minimized, and (3) there are no redundant terms (i.e., minterms already covered by other terms).
Sometimes there may be two or more expressions that satisfy the simplification criteria, The
procedure for combining squares in the map may be made more systematic if we understand
the meaning of two special types of terms. A prime implicant is a product term obtained by com-
bining the maximum possible number of adjacent squares in the map. If a minterm in a square
is covered by only one prime implicant, that prime implicant is said to be essential.

The prime implicants of a function can be obtained from the map by combining all possi-
ble maximum numbers of squares. This means that a single | on a map represents a prime im-
plicant if it is not adjacent 10 any other 1's. Two adjacent 1's form a prime implicant, provided
that they are not within a group of four adjacent squares. Four adjacent 1’s form a prime im-
plicant if they are not within a group of eight adjacent squares, and so on. The essential prime
implicants are found by looking at each square marked with a 1 and checking the number of
prime implicants that cover it. The prime implicant is essential if it is the only prime implicant
that covers the minterm.

Consider the following four-variable Boolean function:

F(A,B,C,D) = £(0,2,3,5,7,8,9,10, 11, 13, 15)

The minterms of the function are marked with 1's in the maps of Fig. 3.11. The partial map (part
(a) of the figure) shows two essential prime implicants, each formed by collapsing four cells into
a term having only two literals, One term is essential because there is only one way to include



(c) ketabton.com: The Digital Library
80  Chapter 3 Gate-Level Minimization

A'B'C'D’
BD

AB'C'D'

Note: A'B'C'D" + A'B'CD' = A'B'D’

%
1 10

B'C

"y y

AB'CD'

AB'C'D' + AB'CD' = AB'D'
A'B'D'+ AB'D' = B'D'

(a) Essential prime implicants (b) Prime implicants CD, B'C,
BD and B'D' AD,and AB'
FIGURE 3.11

Simplification using prime implicants

minterm m within four adjacent squares. These four squares define the term B'D’. Similarly,
there is only one way that minterm m5 can be combined with four adjacent squares, and this gives
the second term BD. The two essential prime implicants cover eight minterms. The three minterms
that were omitted from the partial map (m3, mq, and m; ;) must be considered next.

Figure 3.11(b) shows all possible ways that the three minterms can be covered with prime.
implicants. Minterm m3 can be covered with either prime implicant CD or prime implicant
B'C. Minterm mg can be covered with either AD or AB'. Minterm m, is covered with any one
of the four prime implicants. The simplified expression is obtained from the logical sum of the
two essential prime implicants and any two prime implicants that cover minterms ms, me, and
mj 1. There are four possible ways that the function can be expressed with four product terms
of two literals each:

F=BD+ B'D'"+CD+ AD
= BD + B'D' + CD + AB'
= BD + B'D' + B'C + AD
= BD + B'D' + B'C + AB'

The previous example has demonstrated that the identification of the prime implicants in the map
helps in determining the alternatives that are available for obtaining a simplified expression.

The procedure for finding the simplified expression from the map requires that we first de-
termine all the essential prime implicants. The simplified expression is obtained from the log-
ical sum of all the essential prime implicants, plus other prime implicants that may be needed
to cover any remaining minterms not covered by the essential prime implicants. Occasionally,
there may be more than one way of combining squares, and each combination may produce an
equally simplified expression.



(c) ketabton.com: The Digital Library
Section 3.4 Five-Variable Map 81

3.4 FIVE-VARIABLE MAP

Maps for more than four variables are not as simple to use as maps for four or fewer variables.
A five-variable map needs 32 squares and a six-variable map needs 64 squares. When the num-
ber of variables becomes large, the number of squares becomes excessive and the geometry for
combining adjacent squares becomes more involved.

The five-variable map is shown in Fig. 3.12. It consists of 2 four-variable maps with vari-
ables A, B, C, D. and E. Variable A distinguishes between the two maps, as indicated at the top
of the diagram. The left-hand four-variable map represents the 16 squares in which A = 0,
and the other four-variable map represents the squares in which A = 1. Minterms 0 through
15 belong with A = 0 and minterms 16 through 31 with A = 1. Each four-variable map re-
tains the previously defined adjacency when taken separately. In addition, each square in the
A = 0 map is adjacent to the corresponding square in the A = 1 map. For example, minterm
4 is adjacent to minterm 20 and minterm 15 to 31. The best way to visualize this new rule for
adjacent squares is to consider the two half maps as being one on top of the other. Any two
squares that fall one over the other are considered adjacent.

By following the procedure used for the five-variable map, it is possible to construct a six-
variable map with 4 four-variable maps to obtain the required 64 squares. Maps with six or more
variables need too many squares and are impractical to use. The alternative is to employ com-
puter programs specifically written to facilitate the simplification of Boolean functions with a
large number of variables.

By inspection, and taking into account the new definition of adjacent squares, it is possible
to show that any 2* adjacent squares, for k = (0, 1,2,..., n) in an n-variable map, will rep-
resent an area that gives a term of n — k literals. For this statement to have any meaning, how-
ever, n must be larger than k. When n = £, the entire area of the map is combined to give the

A=0 A=1
DE —_— DE R
BC 00 01 11 10 BC 00 01 11 10
L "y mny "y my, LS my, LT
ol o 1 3 2 | 16| 17 19 | 18
my my my iy, My iy, [ my
o1 4 5 4 6 o 20| 21 23| 2
TS PR PV Y c [T I P T c
1] 12 13 15 14 11 28 | 29 | 1 30
B m, my my my, B s, ) gy mey
10| 8 9 1 10 10 24| 25| 27 | 26
e
E E

FIGURE 3.12
Five-variable map



(c) ketabton.com: The Digital Library
82 Chapter 3 Gate-Level Minimization

Table 3.1
The Relationship between the Number of Adjacent Squares and the
Number of Literals in the Term
Number of
Adjacent Number of Literals
Squares in a Term in an n-variable Map
K 2% n=2 n=3 n=4 n=35
0 1 2 3 4 5
1 2 1 2 3 Rl
2 4 0 1 2 3
3 8 0 1 2
4 16 0 1
5 32 0

identity function. Table 3.1 shows the relationship between the number of adjacent squares
and the number of literals in the term. For example, eight adjacent squares combine an area in
the five-variable map to give a term of two literals.

EXAMPLE 3.7

Simplify the Boolean function

F(A.B,C.D.E) = 3(0,2,4,6,9, 13,21, 23,25, 29, 31)

The five-variable map for this function is shown in Fig. 3.13. There are six minterms from
0 to 15 that belong to the part of the map with A = 0. The other five minterms belong with
A = 1. Four adjacent squares in the A = 0 map are combined to give the three-literal term
A'B'E'. Note that it is necessary to include A" with the term because all the squares are as-
sociated with A = 0. The two squares in column 01 and the last two rows are common to
both parts of the map. Therefore, they constitute four adjacent squares and give the three-
literal term BD'E. Variable A is not included here because the adjacent squares belong to
both A = 0 and A = 1. The term ACE is obtained from the four adjacent squares that are
entirely within the A = 1 map. The simplified function is the logical sum of the three
terms:

F = A'B'E' + BD'E + ACE



(c) ketabton.com: The Digital Library
Section 3.5 Product-of-Sums Simplification 83

A=0

FIGURE 3.13
Map for Example 3.7, F = A'B'E' + BD'E + ACE

3.5 PRODUCT-OF-SUMS SIMPLIFICATION

The minimized Boolean functions derived from the map in all previous examples were ex-
pressed in sum-of-products form. With a minor modification, the product-of-sums form can be
obtained.

The procedure for obtaining a minimized function in product-of-sums form follows from
the basic properties of Boolean functions. The 1's placed in the squares of the map represent
the minterms of the function. The minterms not included in the standard sum-of-products form
of a function denote the complement of the function. From this observation, we see that the
complement of a function is represented in the map by the squares not marked by 1's. If we
mark the empty squares by 0's and combine them into valid adjacent squares, we obtain a
simplified expression of the complement of the function (i.e., of F'). The complement of
F’ gives us back the function F. Because of the generalized DeMorgan’s theorem, the func-
tion so obtained is automatically in product-of-sums form. The best way to show this is by
example.



(c) ketabton.com: The Digital Library
84  Chapter 3 Gate-Level Minimization

c
D —_—
A 0 o 11 10 .
L -y my L —
w|l 1| 1 —1 | , BcD'
BCD —
01 1
B
1 0
A "y my My
o 1 | 1 1 AB
—————

Note: BC'D' + BCD' = BD'

FIGURE 3.14
Map for Example 3.8, F(A, B, C, D) = £(0,1,2,5,8,9,10)= B'D’ + B'C' + AC'D =
(A" + B)(C" + D')(B" + D)

EXAMPLE 3.8

Simplify the following Boolean function into (a) sum-of-products form and (b) product-of-
sums form:

F(A,B,C,D) = 2£(0,1,2,5,8,9,10)

The 1's marked in the map of Fig. 3.14 represent all the minterms of the function. The
squares marked with 0's represent the minterms not included in F and therefore denote the
complement of F. Combining the squares with 1's gives the simplified function in sum-of-
products form:
(a) F=B'D' + B'C'+ A'C'D
If the squares marked with 0's are combined, as shown in the diagram, we obtain the
simplified complemented function:

F'=AB + CD + BD'

Applying DeMorgan's theorem (by taking the dual and complementing each literal as de-
scribed in Section 2.4), we obtain the simplified function in product-of-sums form:

(b) F = (A’ + B')(C' + D')(B' + D)
1

The implementation of the simplified expressions obtained in Example 3.8 is shown in
Fig. 3.15. The sum-of-products expression is implemented in (a) with a group of AND gates,
one for each AND term. The outputs of the AND gates are connected to the inputs of a sin-
gle OR gate. The same function is implemented in (b) in its product-of-sums form with a
group of OR gates, one for each OR term. The outputs of the OR gates are connected to the
inputs of a single AND gate. In each case, it is assumed that the input variables are directly



(c) ketabton.com: The Digital Library

Section 3.5 Product-of-Sums Simplification 85

B A’
Il B

1 c"

FaDy F i } F
o i D —
4
D D
(a) F=B'D +BC +ACD (b)F=(A"+ B')(C + D) (B + D)
FIGURE 3.15

Gate implementations of the function of Example 3.8

Table 3.2

Truth Table of Function F
x ¥y z F
0 0 0 0
0 0 1 1
0 ] 0 0
0 | 1 1
I 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

available in their complement. so inverters are not needed. The configuration pattern estab-
lished in Fig. 3.15 is the general form by which any Boolean function is implemented when
expressed in one of the standard forms. AND gates are connected 1o a single OR gate when
in sum-of-products form: OR gates are connected to a single AND gate when in product-of-
sums form. Either configuration forms two levels of gates. Thus, the implementation of a
function in a standard form is said to be a two-level implementation.

Example 3.8 showed the procedure for obtaining the product-of-sums simplification when
the function is originally expressed in the sum-of-minterms canonical form. The procedure is
also valid when the function is originally expressed in the product-of-maxterms canonical
form. Consider, for example, the truth table that defines the function F in Table 3.2, In sum-
of-minterms form, this function is expressed as

F(x. v, z) = Z(1,3.4,6)
In product-of-maxterms form, it is expressed as
F(x,yz)=T11{0,2.5.7)

In other words, the 1's of the function represent the minterms and the (s represent the max-
terms. The map for this function is shown in Fig. 3.16. One can start simplifying the function
by first marking the 1's for each minterm that the function is a 1. The remaining squares are



(c) ketabton.com: The Digital Library

86

3.6

Chapter 3 Gate-Level Minimization

vz Py et
* 00 01 11 10

my s | .y

0

0 -______._._-.-—-I'Z
x{l

FIGURE 3.16
Map for the function of Table 3.2

marked by 0's. If, instead, the product of maxterms is initially given, one can start marking 0's
in those squares listed in the function; the remaining squares are then marked by 1's. Once the
1's and 0's are marked, the function can be simplified in either one of the standard forms. For
the sum of products, we combine the 1’s to obtain

F=xz¥az
For the product of sums, we combine the 0's to obtain the simplified complemented function
F'=xz+x'7

which shows that the exclusive-OR function is the complement of the equivalence function
(Section 2.6). Taking the complement of F’, we obtain the simplified function in product-of-
sums form:

F=(x'+2)x+2)

To enter a function expressed in product-of-sums form into the map, use the complement of the
function to find the squares that are to be marked by 0's. For example, the function

F=(A"+B +C')B+ D)
can be entered into the map by first taking its complement, namely,
F' = ABC + B'D'

and then marking 0's in the squares representing the minterms of F'. The remaining squares
are marked with 1's.

DON'T-CARE CONDITIONS

The logical sum of the minterms associated with a Boolean function specifies the conditions
under which the function is equal to 1. The function is equal to O for the rest of the minterms.
This pair of conditions assumes that all the combinations of the values for the variables of the
function are valid. In practice, in some applications the function is not specified for certain
combinations of the variables. As an example, the four-bit binary code for the decimal digits
has six combinations that are not used and consequently are considered to be unspecified.



(c) ketabton.com: The Digital Library
Section 3.6 Don’t-Care Conditions 87

Functions that have unspecified outputs for some input combinations are called incompletely
specified functions. In most applications, we simply don’t care what value is assumed by the
function for the unspecified minterms. For this reason, it is customary to call the unspecified
minterms of a function don t-care conditions. These don’t-care conditions can be used on a
map 1o provide further simplification of the Boolean expression,

A don’t-care minterm is a combination of variables whose logical value is not specified. Such
a minterm cannot be marked with a | in the map, because it would require that the function al-
ways be a | for such a combination. Likewise, putting a 0 on the square requires the function
to be 0. To distinguish the don’t-care condition from 1's and 0's, an X is used. Thus, an X in-
side a square in the map indicates that we don’t care whether the value of 0 or 1 is assigned to
F for the particular minterm.

In choosing adjacent squares to simplify the function in a map, the don’t-care minterms
may be assumed to be either 0 or |. When simplifying the function, we can choose to include
each don't-care minterm with either the 1's or the 0s, depending on which combination gives
the simplest expression.

EXAMPLE 3.9

Simplify the Boolean function
F(w,x, 3 2) = (1,3, 7, 11, 15)
which has the don't-care conditions
d(w.x.y.z) = £(0.2,5)

The minterms of F are the variable combinations that make the function equal to 1. The
minterms of  are the don't-care minterms that may be assigned either 0 or 1. The map sim-
plification is shown in Fig. 3.17. The minterms of F" are marked by 1's, those of d are marked

¥z — ¥z
wy 00 01 11 10 WA 00
[ b J— 3 ,
o[ o
w'x' — i i 6 g1
i, e 3 ", w2 iy
01 0 X 1 4] 0l 0
”yy My s My L My
1| o 0 {5 0 1] o
o my my s fmy L my
| o 0 78 0 101 0
B
< o8
(a)F=yz +wx' (b) F=yz+wz
FIGURE 3.17

Example with don't-care conditions



(c) ketabton.com: The Digital Library

88

Chapter 3 Gate-Level Minimization

by X's, and the remaining squares are filled with 0's. To get the simplified expression in sum-
of-products form, we must include all five 1’s in the map, but we may or may not include any
of the X's, depending on the way the function is simplified. The term yz covers the four minterms
in the third column. The remaining minterm, m;, can be combined with minterm mj; to give
the three-literal term w'x’z. However, by including one or two adjacent X's we can combine
four adjacent squares to give a two-literal term. In part (a) of the diagram, don’t-care minterms
0 and 2 are included with the 1's, resulting in the simplified function

F=yz +wkx'
[n part (b), don’t-care minterm 5 is included with the 1's, and the simplified function is now
F —— J.z + w‘z

Either one of the preceding two expressions satisfies the conditions stated for this example.
4

The previous example has shown that the don't-care minterms in the map are initially marked
with X's and are considered as being either 0 or |. The choice between 0 and | is made de-
pending on the way the incompletely specified function is simplified. Once the choice is made,
the simplified function obtained will consist of a sum of minterms that includes those minterms
which were initially unspecified and have been chosen to be included with the 1's. Consider
the two simplified expressions obtained in Example 3.9:

F(w,x,y,2) =yz +w'x' = £(0,1,2,3,7,11. 15)
Fw,x,»,2) = yz + w'z = £(1,3,5,7, 11, 15)

Both expressions include minterms 1, 3, 7, 11, and 15 that make the function F equal to 1. The
don’t-care minterms 0, 2, and 5 are treated differently in each expression. The first expression
includes minterms 0 and 2 with the 1’s and leaves minterm 5 with the 0’s. The second expres-
sion includes minterm 5 with the 1's and leaves minterms 0 and 2 with the 0's. The two ex-
pressions represent two functions that are not algebraically equal. Both cover the specified
minterms of the function, but each covers different don’t-care minterms. As far as the incom-
pletely specified function is concerned, either expression is acceptable because the only dif-
ference is in the value of F for the don’t-care minterms.

It is also possible to obtain a simplified product-of-sums expression for the function of
Fig. 3.17. In this case, the only way to combine the 0's is to include don’t-care minterms 0
and 2 with the 0's to give a simplified complemented function:

F'=z' +wy'
Taking the complement of F' gives the simplified expression in product-of-sums form:
Fiw,x,5,2) = z(w' +y) = £(1,3,5,7,11, 15)
In this case, we include minterms 0 and 2 with the 0's and minterm 5 with the 17s.



(c) ketabton.com: The Digital Library

3.7

Section 3.7 NAND and NOR Implementation 89

NAND AND NOR IMPLEMENTATION

Digital circuits are frequently constructed with NAND or NOR gates rather than with AND and
OR gates. NAND and NOR gates are easier to fabricate with electronic components and are
the basic gates used in all IC digital logic families. Because of the prominence of NAND and
NOR gates in the design of digital circuits, rules and procedures have been developed for the
conversion from Boolean functions given in terms of AND, OR, and NOT into equivalent
NAND and NOR logic diagrams.

NAND Circuits

The NAND gate is said to be a universal gate because any digital system can be implemented
with it. To show that any Boolean function can be implemented with NAND gates. we need
only show that the logical operations of AND, OR, and complement can be obtained with NAND
gates alone. This is indeed shown in Fig. 3.18. The complement operation is obtained from a one-
input NAND gate that behaves exactly like an inverter. The AND operation requires two NAND
gates. The first produces the NAND operation and the second inverts the logical sense of the sig-
nal. The OR operation is achieved through a NAND gate with additional inverters in each input.

A convenient way to implement a Boolean function with NAND gates is to obtain the sim-
plified Boolean function in terms of Boolean operators and then convert the function to NAND
logic. The conversion of an algebraic expression from AND, OR, and complement to NAND
can be done by simple circuit manipulation techniques that change AND-OR diagrams to
NAND diagrams.

To facilitate the conversion to NAND logic, it is convenient to define an alternative graphic
symbol for the gate. Two equivalent graphic symbols for the NAND gate are shown in Fig. 3.19.

Inverter x —Do— X
X
AND o ! b—{ S0—— XV

OR @YY =x+y

FIGURE 3.18
Logic operations with NAND gates

X X
¥ 3 p—— 2y ¥ 3 —— ¥ =y =)
(a) AND-invert (b) Invert-OR
FIGURE 3.19

Two graphic symbols for the NAND gate



(c) ketabton.com: The Digital Library

90

Chapter 3 Gate-Level Minimization

The AND-invert symbol has been defined previously and consists of an AND graphic symbol fol-
lowed by a small circle negation indicator referred to as a bubble. Alternatively, it is possible to
represent a NAND gate by an OR graphic symbol that is preceded by a bubble in each input. The
invert-OR symbol for the NAND gate follows DeMorgan's theorem and the convention that the
negation indicator denotes complementation. The two graphic symbols’ representations are use-
ful in the analysis and design of NAND circuits. When both symbols are mixed in the same
diagram, the circuit is said to be in mixed notation.

Two-Level Implementation

The implementation of Boolean functions with NAND gates requires that the functions be in
sum-of-products form. To see the relationship between a sum-of-product expression and its
equivalent NAND implementation, consider the logic diagrams drawn in Fig. 3.20. All three
diagrams are equivalent and implement the function

F=AB+ CD

The function is implemented in (a) with AND and OR gates. In (b), the AND gates are re-
placed by NAND gates and the OR gate is replaced by a NAND gate with an OR-invert graphic
symbol. Remember that a bubble denotes complementation and two bubbles along the same
line represent double complementation, so both can be removed. Removing the bubbles on the
gates of (b) produces the circuit of (a). Therefore, the two diagrams implement the same func-
tion and are equivalent.

In Fig. 3.20(c), the output NAND gate is redrawn with the AND-invert graphic symbol.
In drawing NAND logic diagrams, the circuit shown in either (b) or (c) is acceptable. The

- T

U O

(a)

W

o 0

(®) (c)

FIGURE 3.20
Three ways to implement F = AB + CD



(c) ketabton.com: The Digital Library
Section 3.7 NAND and NOR Implementation 21
one in (b) is in mixed notation and represents a more direct relationship to the Boolean
expression it implements. The NAND implementation in Fig. 3.20(c) can be verified alge-

braically. The function it implements can easily be converted to sum-of-products form by
DeMorgan’s theorem:

F = ((AB)'(CD)")' = AB + CD

EXAMPLE 3.10

Implement the following Boolean function with NAND gates:
F(x,v.2) = (1,2.3,4,5.7)

The first step is to simplify the function into sum-of-products form. This is done by means of
the map of Fig. 3.21(a), from which the simplified function is obtained:

F=xy' + x'y+:

The two-level NAND implementation is shown in Fig. 3.21(b) in mixed notation. Note that input
z must have a one-input NAND gate (an inverter) to compensate for the bubble in the second-
level gate. An alternative way of drawing the logic diagram is given in Fig. 3.21(c). Here, all
the NAND gates are drawn with the same graphic symbol. The inverter with input z has been
removed, but the input variable is complemented and denoted by z'.

]

F=xy'+x'y+z

FIGURE 3.21
Solution to Example 3.10



(c) ketabton.com: The Digital Library

92

Chapter 3 Gate-Level Minimization

The procedure described in the previous example indicates that a Boolean function can be
implemented with two levels of NAND gates. The procedure for obtaining the logic diagram
from a Boolean function is as follows:

1. Simplify the function and express it in sum-of-products form.

2. Draw a NAND gate for each product term of the expression that has at least two literals.
The inputs to each NAND gate are the literals of the term. This procedure produces a
group of first-level gates.

3. Draw a single gate using the AND-invert or the invert-OR graphic symbol in the second
level, with inputs coming from outputs of first-level gates.

4. Aterm with a single literal requires an inverter in the first level. However, if the single literal
is complemented, it can be connected directly to an input of the second-level NAND gate.

Multilevel NAND Circuits

The standard form of expressing Boolean functions results in a two-level implementation.
There are occasions, however, when the design of digital systems results in gating structures
with three or more levels. The most common procedure in the design of multilevel circuits is
to express the Boolean function in terms of AND, OR, and complement operations. The func-
tion can then be implemented with AND and OR gates. After that, if necessary, it can be con-
verted into an all-NAND circuit. Consider, for example, the Boolean function

F = A(CD + B) + BC'

Although it is possible to remove the parentheses and reduce the expression into a standard sum-
of-products form, we choose to implement it as a multilevel circuit for illustration. The
AND-OR implementation is shown in Fig. 3.22(a). There are four levels of gating in the cir-
cuit. The first level has two AND gates. The second level has an OR gate followed by an AND
gate in the third level and an OR gate in the fourth level. A logic diagram with a pattern of al-
ternating levels of AND and OR gates can easily be converted into a NAND circuit with the
use of mixed notation, shown in Fig. 3.22(b). The procedure is to change every AND gate to
an AND-invert graphic symbol and every OR gate to an invert-OR graphic symbol. The NAND
circuit performs the same logic as the AND-OR diagram as long as there are two bubbles along
the same line. The bubble associated with input B causes an extra complementation, which
must be compensated for by changing the input literal to B'.

The general procedure for converting a multilevel AND—OR diagram into an all-NAND di-
agram using mixed notation is as follows:

1. Convert all AND gates to NAND gates with AND-invert graphic symbols.
2, Convert all OR gates to NAND gates with invert-OR graphic symbols.

3. Check all the bubbles in the diagram. For every bubble that is not compensated by an-
other small circle along the same line, insert an inverter (a one-input NAND gate) or
complement the input literal.

As another example, consider the multilevel Boolean function
F = (AB' + A'B)(C + D')



(c) ketabton.com: The Digital Library
Section 3.7 NAND and NOR Implementation 93

D 2w o oN

(a) AND-OR gates

(b) NAND gates

FIGURE 3.22
Implementing F = A(CD ~ B) + BC’

The AND-OR implementation of this function is shown in Fig. 3.23(a) with three levels of gat-
ing. The conversion to NAND with mixed notation is presented in part (b) of the diagram. The
two additional bubbles associated with inputs C and D' cause these two literals to be comple-
mented to C' and D, The bubble in the output NAND gate complements the output value, so
we need to insert an inverter gate at the output in order to complement the signal again and get
the original value back.

NOR Implementation

The NOR operation is the dual of the NAND operation. Therefore, all procedures and rules for
NOR logic are the duals of the corresponding procedures and rules developed for NAND logic.
The NOR gate is another universal gate that can be used to implement any Boolean function.
The implementation of the complement, OR, and AND operations with NOR gates is shown
in Fig. 3.24. The complement operation is obtained from a one-input NOR gate that behaves
exactly like an inverter. The OR operation requires two NOR gates, and the AND operation is
obtained with a NOR gate that has inverters in each input.

The two graphic symbols for the mixed notation are shown in Fig. 3.25. The OR-invert
symbol defines the NOR operation as an OR followed by a complement. The invert-AND
symbol complements each input and then performs an AND operation. The two symbols
designate the same NOR operation and are logically identical because of DeMorgan's
theorem.



(c) ketabton.com: The Digital Library

94  Chapter 3 Gate-Level Minimization

(a) AND-OR gates

(b) NAND gates

FIGURE 3.23
Implementing F = (AB’ + A’B)(C + D')

Inverter x &c x'
E}c x+y

x'+yY=xy

FIGURE 3.24
Logic operations with NOR gates

y—7F

(x+y+2z) xy''=(x+y+2)

{a) OR-invert (b) Invert-AND

FIGURE 3.25
Two graphic symbols for the NOR gate



(c) ketabton.com: The Digital Library
Section 3.7 NAND and NOR Implementation 95

A two-level implementation with NOR gates requires that the function be simplified into
product-of-sums form, Remember that the simplified product-of-sums expression is obtained
from the map by combining the 0's and complementing. A product-of-sums expression is im-
plemented with a first level of OR gates that produce the sum terms followed by a second-
level AND gate to produce the product. The transformation from the OR-AND diagram to a
NOR diagram is achieved by changing the OR gates to NOR gates with OR-invert graphic
symbols and the AND gate to a NOR gate with an invert-AND graphic symbol. A single literal
term going into the second-level gate must be complemented. Fig. 3.26 shows the NOR im-
plementation of a function expressed as a product of sums:

F = (A+ B)(C + D)E

The OR-AND pattern can easily be detected by the removal of the bubbles along the same line.
Variable E is complemented to compensate for the third bubble at the input of the second-level
gate.

The procedure for converting a multilevel AND-OR diagram to an all-NOR diagram is
similar to the one presented for NAND gates. For the NOR case. we must convert each OR gate
to an OR-invert symbol and each AND gate to an invert-AND symbol, Any bubble that is not
compensated by another bubble along the same line needs an inverter, or the complementation
of the input literal.

The transformation of the AND-OR diagram of Fig. 3.23(a) into a NOR diagram is shown
in Fig, 3.27. The Boolean function for this circuit is

F={(AB' + A'B)(C + D")

FIGURE 3.26
Implementing F = (A + B)(C + D)E

FIGURE 3.27
Implementing F = (AB" + A’B)(C + D) with NOR gates



(c) ketabton.com: The Digital Library

Chapter 3 Gate-Level Minimization

The equivalent AND-OR diagram can be recognized from the NOR diagram by removing all
the bubbles. To compensate for the bubbles in four inputs, it is necessary to complement the
corresponding input literals.

3.8 OTHER TWO-LEVEL IMPLEMENTATIONS

The types of gates most often found in integrated circuits are NAND and NOR gates. For this
reason, NAND and NOR logic implementations are the most important from a practical point
of view. Some (but not all) NAND or NOR gates allow the possibility of a wire connection be-
tween the outputs of two gates to provide a specific logic function. This type of logic is called
wired logic. For example, open-collector TTL NAND gates, when tied together, perform wired-
AND logic. (The open-collector TTL gate is shown in Chapter 10, Fig. 10.11.) The wired-
AND logic performed with two NAND gates is depicted in Fig. 3.28(a). The AND gate is
drawn with the lines going through the center of the gate to distinguish it from a conventional
gate. The wired-AND gate is not a physical gate, but only a symbol to designate the function
obtained from the indicated wired connection. The logic function implemented by the circuit
of Fig. 3.28(a) is

F = (AB)'-+-(CD)' = (AB + CD)' = (A’ + B')(C’ + D')
and is called an AND-OR-INVERT function.

Similarly, the NOR outputs of ECL gates (see Figure 10.17) can be tied together to perform
a wired-OR function. The logic function implemented by the circuit of Fig. 3.28(b) is

F=(A+B) +(C+ D) =[(A+ B)(C+ D)

and is called an OR-AND-INVERT function.

A wired-logic gate does not produce a physical second-level gate, since it is just a wire con-
nection. Nevertheless, for discussion purposes, we will consider the circuits of Fig. 3.28 as
two-level implementations. The first level consists of NAND (or NOR) gates and the second
level has a single AND (or OR) gate. The wired connection in the graphic symbol will be omit-
ted in subsequent discussions.

F=(AB + CD)' F=[(A+B)(C+ D))

(a) Wired-AND in open-collector
TTL NAND gates.

(AND-OR-INVERT)

FIGURE 3.28
Wired logic

(b) Wired-OR in ECL gates

(OR-AND-INVERT)

(a) Wired-AND logic with two NAND gates
(b) Wired-OR in emitter-coupled logic (ECL) gates



(c) ketabton.com: The Digital Library

Section 3.8 Other Two-Level Implementations 97

Nondegenerate Forms

It will be instructive from a theoretical point of view to find out how many two-level combi-
nations of gates are possible. We consider four 1ypes of gates: AND, OR, MAND, and NOR.
If we assign one type of gate for the first level and one type for the second level, we find that
there are 16 possible combinations of two-level forms. (The same type of gate can be in the first
and second levels, as in a NAND-NAND implementation.) Eight of these combinations are said
1o be degenerate forms because they degenerate to a single operation, This can be seen from
a circuit with AND gates in the first level and an AND gate in the second level. The output of
the circuit is merely the AND function of all input variables. The remaining eight nondegenerate
forms produce an implementation in sum-of-products form or product-of-sums form, The eight
nondegenerate forms are as follows:

AND-OR OR-AND
NAND-NAND NOR-NOR
NOR-OR NAND-AND
OR-NAND AND-NOR

The first gate listed in each of the forms constitutes a first level in the implementation. The sec-
ond gate listed is a single gate placed in the second level. Note that any two forms listed on the
same line are duals of each other.

The AND-OR and OR-AND forms are the basic two-level forms discussed in Section 3.4.
The NAND-NAND and NOR-NOR forms were presented in Section 3.6. The remaining four
forms are investigated in this section.

AND-OR-INVERT Implementation

The two forms NAND-AND and AND-NOR are equivalent and can be treated together. Both
perform the AND-OR-INVERT function, as shown in Fig. 3.29. The AND-NOR form re-
sembles the AND-OR form, but with an inversion done by the bubble in the output of the
NOR gate. It implements the function

F=(AB+CD+ E)

(a) AND-NOR (b) AND-NOR (c) NAND-AND

FIGURE 3.29
AND-OR-INVERT circuits, F = (AB + CD + E)*



(c) ketabton.com: The Digital Library

98

Chapter 3 Gate-Level Minimization

By using the alternative graphic symbol for the NOR gate, we obtain the diagram of
Fig. 3.29(b). Note that the single variable £ is nor complemented, because the only change
made is in the graphic symbol of the NOR gate. Now we move the bubble from the input ter-
minal of the second-level gate to the output terminals of the first-level gates. An inverter is need-
ed for the single variable in order to compensate for the bubble. Alternatively, the inverter can
be removed, provided that input E is complemented. The circuit of Fig. 3.29(c) is a
NAND-AND form and was shown in Fig. 3.28 to implement the AND-OR-INVERT function.

An AND-OR implementation requires an expression in sum-of-products form. The
AND-OR-INVERT implementation is similar, except for the inversion. Therefore, if the comp-
lement of the function is simplified into sum-of-products form (by combining the 0's in the map),
it will be possible to implement F' with the AND-OR part of the function. When F’ passes
through the always present output inversion (the INVERT part), it will generate the output F
of the function. An example for the AND-OR-INVERT implementation will be shown
subsequently.

OR-AND-INVERT Iimplementation

The OR-NAND and NOR-OR forms perform the OR-AND-INVERT function, as shown in
Fig. 3.30. The OR-NAND form resembles the OR-AND form, except for the inversion done
by the bubble in the NAND gate. It implements the function

F = [(A + B)(C + D)EY

By using the alternative graphic symbol for the NAND gate, we obtain the diagram of
Fig. 3.30(b). The circuit in (c) is obtained by moving the small circles from the inputs of the
second-level gate to the outputs of the first-level gates. The circuit of Fig. 3.30(c) is a NOR-OR
form and was shown in Fig, 3.28 to implement the OR-AND-INVERT function.

The OR-AND-INVERT implementation requires an expression in product-of-sums form.
If the complement of the function is simplified into that form, we can implement F' with the
OR-AND part of the function. When F* passes through the INVERT part, we obtain the com-
plement of F’, or F, in the output,

(a) OR-NAND (b) OR-NAND (c) NOR-OR

FIGURE 3.30
OR-AND-INVERT circuits, F = [(A + B)(C + D)EY



(c) ketabton.com: The Digital Library

Section 3.8 Other Two-Level Implementations 99

Table 3.3
Implementation with Other Two-Level Forms
Equivalent
Nondegenerate
:gm “ Implements Simplify To Get
the F an Output
(b)* Function into of
NAND-AND AND-OR-INVERT Sum-of-products
form by combining
0's in the map. F
NOR-OR OR-AND-INVERT Product-of-sums

form by combining
1's in the map and
then complementing. iF

*Form (b) requires an inverter for a single literal 1erm,

Tabular Summary and Example

EXAMPLE 3.11

Table 3.3 summarizes the procedures for implementing a Boolean function in any one of the
four 2-level forms. Because of the INVERT part in each case. it is convenient 1o use the sim-
plification of F* (the complement) of the function. When F' is implemented in one of these
forms, we obtain the complement of the function in the AND-OR or OR-AND form. The four
2-level forms invert this function. giving an output that is the complement of F”. This is the
normal output F.

Implement the function of Fig, 3.31(a) with the four 2-level forms listed in Table 3.3,
The complement of the function is simplified into sum-of-products form by combining the 0's
in the map:

Fr=xy+n' +:
The normal output for this function can be expressed as
F={(x'v+xy' +2z)

which is in the AND-OR-INVERT form. The AND-NOR and NAND-AND implementations
are shown in Fig. 3.31(b), Note that a one-input NAND, or inverter. gate is needed in the
NAND-AND implementation, but not in the AND-NOR case. The inverter can be removed
if we apply the input variable z" instead of z.

The OR-AND-INVERT forms require a simplified expression of the complement of the
function in product-of-sums form. To obtain this expression, we first combine the 1's in the map:

F=x'y'z" + avz'



(c) ketabton.com: The Digital Library
100 Chapter 3 Gate-Level Minimization

¥z —_—
X 0 01 1 10
. "'ol ul;u nl;o M'U F:.‘c’}"?_' +xyz’
v —1_ F=x'y+xy' +2
: m, my m. my !
x{1] o 0 0 T

AND-NOR NAND-AND
(b) F=(x'y +xy’ +z)'

OR-NAND NOR-OR
©F=[x+y+z)(+y +2)]
FIGURE 3.31
Other two-level implementations
Then we take the complement of the function:
Fl=(x+y+2)(x'+y +2)
The normal output F can now be expressed in the form
F=[x+y+2) +y +2)
which is the OR-AND-INVERT form. From this expression, we can implement the function

in the OR-NAND and NOR-OR forms, as shown in Fig. 3.31(c).
[ |



(c) ketabton.com: The Digital Library
Section 3.9 Exclusive-OR Function 101

3.9 EXCLUSIVE-OR FUNCTION

The exclusive-OR (XOR), denoted by the symbol & ., is a logical operation that performs the
following Boolean operation:

8y =xy + x'y

The exclusive-OR is equal to 1 if only x is equal to 1 or if only y is equal to 1 (i.c.. x and y dif-
fer in value). but not when both are equal 10 | or when both are equal to 0. The exclusive-
NOR, also known as equivalence, performs the following Boolean operation:

(x®y) = xy + x'y

The exclusive-NOR is equal to 1 if both v and v are equal to | or if both are equal to 0. The ex-
clusive-NOR can be shown to be the complement of the exclusive-OR by means of a truth
table or by algebraic manipulation:

(x@y)" = (xy'" + x'y)" = (' + ¥)(x + ") = xp + Xy

The following identities apply to the exclusive-OR operation:

@0 =x
3l =x
x@&x=0
r@x" =1

8y =x"8y=(x8y)

Any of these identities can be proven with a truth table or by replacing the & operation by its
equivalent Boolean expression. Also, it can be shown that the exclusive-OR operation is both
commutative and associative; that is,

ABB=B®A
and
(ABB)BC = AB(BBC)=AB88C

This means that the two inputs to an exclusive-OR gate can be interchanged without affecting
the operation. It also means that we can evaluate a three-variable exclusive-OR operation in any
order, and for this reason, three or more variables can be expressed without parentheses. This
would imply the possibility of using exclusive-OR gates with three or more inputs. However,
multiple-input exclusive-OR gates are difficult to fabricate with hardware. In fact, even a two-
input function is usually constructed with other types of gates. A two-input exclusive-OR func-
tion is constructed with conventional gates using two inverters, two AND gates, and an OR gate,
as shown in Fig. 3.32(a). Figure 3.32(b) shows the implementation of the exclusive-OR with
four NAND gates. The first NAND gate performs the operation (xy)' = (x' + ¥'). The other
two-level NAND circuit produces the sum of products of its inputs:

(+ ¥+ (X +yly=xy"+x'y=xBy



(c) ketabton.com: The Digital Library

102

Chapter 3 Gate-Level Minimization

x

(b) With NAND gates

FIGURE 3.32
Exclusive-OR implementations

Only a limited number of Boolean functions can be expressed in terms of exclusive-OR
operations, Nevertheless, this function emerges quite often during the design of digital sys-
tems. It is particularly useful in arithmetic operations and error detection and correction circuits.

0Odd Function

The exclusive-OR operation with three or more variables can be converted into an ordinary
Boolean function by replacing the & symbol with its equivalent Boolean expression. In par-
ticular, the three-variable case can be converted to a Boolean expression as follows:

A®B®C = (AB' + A'B)C' + (AB + A'B')C
= AB'C’ + A'BC’ + ABC + A'B'C
= 3(1,2,4,7)

The Boolean expression clearly indicates that the three-variable exclusive-OR function is equal
to 1 if only one variable is equal to 1 or if all three variables are equal to 1. Contrary to the two-
variable case, in which only one variable must be equal to 1, in the case of three or more vari-
ables the requirement is that an odd number of variables be equal to 1. As a consequence, the
multiple-variable exclusive-OR operation is defined as an odd function.

The Boolean function derived from the three-variable exclusive-OR operation is expressed
as the logical sum of four minterms whose binary numerical values are 001, 010, 100, and
111. Each of these binary numbers has an odd number of 1's. The remaining four minterms



(c) ketabton.com: The Digital Library Section 3.9 Exclusive-OR Function 103

not included in the function are 000, 011, 101, and 110. and they have an even number of 1's
in their binary numerical values. In general, an n-variable exclusive-OR function is an odd
function defined as the logical sum of the 2°/2 minterms whose binary numerical values
have an odd number of 1's.

The definition of an odd function can be clarified by plotting it in a map. Figure 3.33(a) shows
the map for the three-variable exclusive-OR function. The four minterms of the function are a
unit distance apart from ecach other. The odd function is identified from the four minterms
whose binary values have an odd number of 1's. The complement of an odd function is an
even function. As shown in Fig. 3.33(b), the three-variable even function is equal to | when
an even number of its variables is equal to 1 (including the condition that none of the variables
is equal to ).

The three-input odd function is implemented by means of two-input exclusive-OR gates, as
shown in Fig. 3.34(a). The complement of an odd function is obtained by replacing the output
gate with an exclusive-NOR gate, as shown in Fig. 3.34(b).

Consider now the four-variable exclusive-OR operation. By algebraic manipulation, we can
obtain the sum of minterms for this function:

ABBBCO®D = (AB' + A'B)@(CD' + C'D)
= (AB' + A'B)(CD + C'D’) + (AB + A'B')(CD' + C'D)
= 5(1.2,4.7.8.11.13, 14)

There are 16 minterms for a four-variable Boolean function. Half of the minterms have binary
numerical values with an odd number of 1's: the other half of the minterms have binary numerical

BC B BC B
A 0 O 11 10 A 0 01 110
m, m, -, m ", g m, m.
0 1 1 of 1 1
™, m m m, ™, ™, . m,
A1 1 1 A1 1 1
o
c c
(a) Odd function F= ASBSC {b) Even function F= (A @ B& C)
FIGURE 3.33

Map for a three-variable exclusive-OR function

—D ;
B I' B
C C

(a) 3-input odd function (b} 3-input even function

FIGURE 3.34
Logic diagram of odd and even functions




(c) ketabton.com: The Digital Library

104  Chapter 3 Gate-Level Minimization

c C
CcD CcD —_—
ABN 00 01 11 10 AB 00 01 1110
my m my my my i my ey
00 1 1 00 1 1
m, g s m, n, g m, i,
01 1 1 01 1 1
B m m m B
iy My My My 1 1 1 LU
11 1 1 11 1 1
4 mg "y gy my, “ s ny nyy my
0] 1 1 10 1 1
—————— e ——
D D
(a) Odd function F= AG B@E2CSE& D (b) Even function F= (A@B&HCH D)’
FIGURE 3.35

Map for a four-variable exclusive-OR function

values with an even number of 1's, In plotting the function in the map, the binary numerical value
for a minterm is determined from the row and column numbers of the square that represents the
minterm. The map of Fig. 3.35(a) is a plot of the four-variable exclusive-OR function. This is
an odd function because the binary values of all the minterms have an odd number of 1’s. The
complement of an odd function is an even function. As shown in Fig. 3.35(b), the four-variable
even function is equal to 1 when an even number of its variables is equal to 1.

Parity Generation and Checking

Exclusive-OR functions are very useful in systems requiring error detection and correction
codes. As discussed in Section 1.7, a parity bit is used for the purpose of detecting errors dur-
ing the transmission of binary information, A parity bit is an extra bit included with a binary
message to make the number of 1's either odd or even. The message, including the parity bit,
is transmitted and then checked at the receiving end for errors. An error is detected if the
checked parity does not correspond with the one transmitted. The circuit that generates the par-
ity bit in the transmitter is called a parity generator. The circuit that checks the parity in the
receiver is called a parity checker.

As an example, consider a three-bit message to be transmitted together with an even parity
bit. Table 3.4 shows the truth table for the parity generator. The three bits—x, v, and z—
constitute the message and are the inputs to the circuit. The parity bit P is the output. For even
parity, the bit P must be generated to make the total number of 1's (including P) even. From
the truth table, we see that P constitutes an odd function because it is equal to 1 for those
minterms whose numerical values have an odd number of 1's. Therefore, P can be expressed
as a three-variable exclusive-OR function:

P=x@®yDz

The logic diagram for the parity generator is shown in Fig. 3.36(a).



(c) ketabton.com: The Digital Library
Section 3.9 Exclusive-OR Function 105

Table 3.4
Even-Parity-Generator Truth Table
Three-Bit Message Parity Bit
X % F P
0 0 0
0 0 1 |
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 | | 1
X
J ¥
v r C
z P
(a) 3-bit even parily gencrator (b) 4-bit even parity checker

FIGURE 3.36
Logic diagram of a parity generator and checker

The three bits in the message. together with the parity bit, are transmitted to their destina-
tion, where they are applied to a parity-checker circuit to check for possible errors in the trans-
mission. Since the information was transmitted with even parity, the four bits received must have
an even number of 1's. An error occurs during the transmission if the four bits received have
an odd number of |'s, indicating that one bit has changed in value during transmission. The out-
put of the parity checker, denoted by C, will be equal to 1 if an error occurs—that is, if the four
bits received have an odd number of 1's. Table 3.5 is the truth table for the even-parity checker.
From it, we see that the function C consists of the eight minterms with binary numerical val-
ues having an odd number of 1's. The table corresponds to the map of Fig. 3.35(a), which
represents an odd function. The parity checker can be implemented with exclusive-OR gates:

C=x@yd:®P

The logic diagram of the parity checker is shown in Fig. 3.36(b).

It is worth noting that the parity generator can be implemented with the circuit of Fig. 3.36(b)
if the input P is connected to logic 0 and the output is marked with P, This is because z @0 = z,
causing the value of z 1o pass through the gate unchanged. The advantage of this strategy is that
the same circuit can be used for both parity generation and checking.



(c) ketabton.com: The Digital Library
106 Chapter 3 Gate-Level Minimization

Table 3.5
Even-Parity-Checker Truth Table
Four Bits Parity Error
Received Check
x y z P C
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 ! 0
0 1 0 0 !
0 1 0 l 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
| 0 I 0 0
! 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 I
1 | 1 l 0

It is obvious from the foregoing example that parity generation and checking circuits always
have an output function that includes half of the minterms whose numerical values have either
an odd or even number of 1's. As a consequence, they can be implemented with exclusive-OR
gates. A function with an even number of 1's is the complement of an odd function. It is im-
plemented with exclusive-OR gates, except that the gate associated with the output must be an
exclusive-NOR to provide the required complementation.

3.10 HARDWARE DESCRIPTION LANGUAGE

Manual methods for designing logic circuits are feasible only when the circuit is small. For any-
thing else (i.e., a practical circuit), designers use computer-based design tools. Coupled with
a correct-by-construction methodology, computer-based design tools leverage the creativity
and effort of a designer and reduce the risk of producing a flawed design. Prototype integrated
circuits are too expensive and time consuming to build, so all modern design tools rely on a
hardware description language to describe, design, and test a circuit in software before it is
ever manufactured.

A hardware description language (HDL) is a computer-based language that describes the
hardware of digital systems in a textual form. It resembles an ordinary computer programming
language, such as C, but is specifically oriented to describing hardware structures and the
behavior of logic circuits. It can be used to represent logic diagrams, truth tables, Boolean



(c) ketabtomee N REIR I e B Section 3.10 Hardware Description Language 107

expressions, and complex abstractions of the behavior of a digital system. One way to view an
HDL is to observe that it describes a relationship between signals that are the inputs to a cir-
cuit and the signals that are outputs of the circuit. For example, an HDL description of an AND
gate describes how the logic value of the gate’s output is determined by the logic values of its
inputs.

As a documeniation language, an HDL is used to represent and document digital systems
in a form that can be read by both humans and computers and is suitable as an exchange lan-
guage between designers. The language content can be stored, retrieved, edited, and transmit-
ted easily and processed by computer software in an efficient manner.

HDLs are used in several major steps in the design flow of an integrated circuit: design
entry, functional simulation or verification, logic synthesis. timing verification, and fault
simulation.

Design entry creates an HDL-based description of the functionality that is to be imple-
mented in hardware, Depending on the HDL, the description can be in a variety of forms:
Boolean logic equations, truth tables, a netlist of interconnected gates, or an abstract behavioral
model. The HDL model may also represent a partition of a larger circuit into smaller inter-
connected and interacting functional units.

Logic sinudarion displays the behavior of a digital system through the use of a computer. A
simulator interprets the HDL description and either produces readable output, such as a time-
ordered sequence of input and output signal values, or displays waveforms of the signals. The
simulation of a circuit predicts how the hardware will behave before it is actually fabricated.
Simulation allows the detection of functional errors in a design without having to physically
create and operate the circuit. Errors that are detected during a simulation can be corrected by
modifying the appropriate HDL statements. The stimulus (i.e., the logic values of the inputs to
a circuit) that tests the functionality of the design is called a tesr bench. Thus, to simulate a dig-
ital system, the design is first described in an HDL and then verified by simulating the design
and checking it with a test bench, which is also written in the HDL. An alternative and more
complex approach relies on formal mathematical methods to prove that a circuit is function-
ally correct. We will focus exclusively on simulation.

Logic synthesis is the process of deriving a list of physical components and their intercon-
nections (called a net/isr) from the model of a digital system described in an HDL. The netlist
can be used to fabricate an integrated circuit or to lay out a printed circuit board with the hard-
ware counterparts of the gates in the list. Logic synthesis is similar to compiling a program in
a conventional high-level language. The difference is that, instead of producing an object code,
logic synthesis produces a database describing the elements and structure of a circuit. The data-
base specifies how to fabricate a physical integrated circuit that implements in silicon the func-
tionality described by statements made in an HDL. Logic synthesis is based on formal exact
procedures that implement digital circuits and addresses that part of a digital design which can
be automated with computer software. The design of today’s large, complex circuits is made
possible by logic synthesis software.

Timing verification confirms that the fabricated integrated circuit will operate at a speci-
fied speed. Because each logic gate in a circuit has a propagation delay, a signal transition at
the input of a circuit cannot immediately cause a change in the logic value of the output of a
circuit. Propagation delays ultimately limit the speed at which a circuit can operate. Timing



(c) ketabton.com: The Digital Library

108

Chapter 3 Gate-Level Minimization

verification checks each signal path to verify that it is not compromised by propagation delay.
This step is done after logic synthesis specifies the actual devices that will compose a circuit
and before the circuit is released for production.

In VLSI circuit design, fault simularion compares the behavior of an ideal circuit with the
behavior of a circuit that contains a process-induced flaw. Dust and other particulates in the
atmosphere of the clean room can cause a circuit to be fabricated with a fault. A circuit with
a fault will not exhibit the same functionality as a fault-free circuit. Fault simulation is used
to identify input stimuli that can be used to reveal the difference between the faulty circuit and
the fault-free circuit. These test patterns will be used to test fabricated devices to ensure that
only good devices are shipped to the customer. Test generation and fault simulation may occur
at different steps in the design process, but they are always done before production in order
to avoid the disaster of producing a circuit whose internal logic cannot be tested.

Companies that design integrated circuits use proprietary and public HDLs. In the public
domain, there are two standard HDLs that are supported by the IEEE: VHDL and Verilog.
VHDL is a Department of Defense-mandated language. (The Vin VHDL stands for the first
letter in VHSIC, an acronym for very high speed integrated circuit.) Verilog began as a
proprietary HDL of Cadence Design Systems, but Cadence transferred control of Verilog to
a consortium of companies and universities known as Open Verilog International (OVI) as a
step leading to its adoption as an IEEE standard. VHDL is more difficult to learn than Verilog.
Because Verilog is an easier language than VHDL to describe, learn, and use, we have cho-
sen it for this book. However, the Verilog HDL descriptions listed throughout the book are not
just about Verilog, but also serve to introduce a design methodology based on the concept of
computer-aided modeling of digital systems by means of a typical hardware description
language. Our emphasis will be on the modeling, verification, and synthesis (both manual
and automated) of Verilog models of circuits having specified behavior. The Verilog HDL
was initially approved as a standard HDL in 1995; revised and enhanced versions of the lan-
guage were approved in 2001 and 2005. We will address only those features of Verilog,
including the latest standard, that support our discussion of HDL-based design methodology
for integrated circuits.

Module Declaration

The language reference manual for the Verilog HDL presents a syntax that describes precisely
the constructs that can be used in the language. In particular, a Verilog model is composed
of text using keywords, of which there are about 100. Keywords are predefined lowercase
identifiers that define the language constructs. Examples of keywords are module, end-
module, input, output, wire, and, or, and not, For clarity, keywords will be displayed in
boldface in the text in all examples of code and wherever it is appropriate to call attention
to their use. Any text between two forward slashes (/) and the end of the line is interpreted
as a comment and will have no effect on a simulation using the model. Multiline comments
begin with /* and terminate with */. Blank spaces are ignored, but they may not appear with-
in the text of a keyword, a user-specified identifier, an operator, or the representation of a num-
ber. Verilog is case sensitive. which means that uppercase and lowercase letters are
distinguishable (e.g., not is not the same as NOT). The term module refers to the text enclosed



(c) ketabton.com: The Digital Library

Section 3.10 Hardware Description Language 109

wl
—1 >

q
o

FIGURE 3.37
Circuit to demonstrate an HDL

by the keyword pair module ... endmodule. A module is the fundamental descriptive unit
in the Verilog language. It is declared by the keyword module and must always be terminated
by the keyword endmodule.

Combinational logic can be described by a schematic connection of gates, by a set of Boolean
equations, or by a truth table. Each type of description can be developed in Verilog. We will
demonstrate each style, beginning with a simple example of a Verilog gate-level description to
illustrate some aspects of the language.

The HDL description of the circuit of Fig. 3.37 is shown in HDL Example 3.1. The first line of
text is a comment (optional) providing useful information to the reader. The second line begins with
the keyword module and starts the declaration (description) of the module; the last line completes
the declaration with the keyword endmodule. The keyword module is followed by a name and a
list of ports. The name (Simple_Circuit in this example) is an identifier. Identifiers are names given
to modules, variables (e.g., a signal), and other elements of the language so that they can be ref-
erenced in the design. In general, we choose meaningful names for modules. Identifiers are com-
posed of alphanumeric characters and the underscore (_), and are case sensitive. Identifiers must
start with an alphabetic character or an underscore, but they cannot start with a number.

HDL Example 3.1 (Combinational logic modeled with primitives)

1/ Verilog model of circuit of Figure 3.37. IEEE 1364-1995 Syntax

module Simple_Circuit (A, B, C, D, E);

output D E;

input A B, C

wire wi;

and G1 (w1, A, B); // Optional gate instance name
not G2 (E, C);

or G3(D, w1, E);

endmodule

The port list of a module is the interface between the module and its environment. In this
example, the ports are the inputs and outputs of the circuit, The logic values of the inputs to
a circuit are determined by the environment; the logic values of the outputs are determined
within the circuit and result from the action of the inputs on the circuit. The port list is en-
closed in parentheses, and commas are used to separate elements of the list. The statement



(c) ketabton.com: The Digital Library

110

Chapter 3 Gate-Level Minimization

is terminated with a semicolon (;). In our examples, all keywords (which must be in lower-
case) are printed in bold for clarity, but that is not a requirement of the language. Next, the
keywords input and output specify which of the ports are inputs and which are outputs. In-
ternal connections are declared as wires. The circuit in this example has one internal con-
nection, at terminal w/, and is declared with the keyword wire. The structure of the circuit
is specified by a list of (predefined) primitive gates, each identified by a descriptive key-
word (and, not, or). The elements of the list are referred to as instantiations of a gate, each
of which is referred to as a gate instance. Each gate instantiation consists of an optional
name (such as G/, G2, etc.) followed by the gate output and inputs separated by commas and
enclosed in parentheses. The output of a primitive gate is always listed first, followed by
the inputs. For example, the OR gate of the schematic is represented by the or primitive, is
named G3, and has output D and inputs w/ and E. (Nore: The output of a primitive must be
listed first, but the inputs and outputs of a module may be listed in any order.) The module
description ends with the keyword endmodule. Each statement must be terminated with a
semicolon, but there is no semicolon after endmodule.

It is important to understand the distinction between the terms declaration and instantiation.
A Verilog module is declared. Its declaration specifies the input—output behavior of the hard-
ware that it represents. Predefined primitives are not declared, because their definition is spec-
ified by the language and is not subject to change by the user. Primitives are used (i.e.,
instantiated), just as gates are used to populate a printed circuit board. We’ll see that once a mod-
ule has been declared. it may be used (instantiated) within a design. Note that Simple_Circuit
is not a computational model like those developed in an ordinary programming language: The
sequential ordering of the statements in the model does not specify a sequence of computations.
A Verilog model is a descriptive model. Simple_Circuit describes what primitives form a cir-
cuit and how they are connected. The input-output behavior of the circuit is implicitly speci-
fied by the description because the behavior of each logic gate is defined. Thus, an HDL-based
model can be used to simulate the circuit that it represents.

Gate Delays

All physical circuits exhibit a propagation delay between the transition of an input and a resulting
transition of an output. When an HDL model of a circuit is simulated, it is sometimes neces-
sary to specify the amount of delay from the input to the output of its gates. In Verilog, the prop-
agation delay of a gate is specified in terms of zime units and is specified by the symbol #. The
numbers associated with time delays in Verilog are dimensionless. The association of a time
unit with physical time is made with the ‘timescale compiler directive. (Compiler directives
start with the (') back quote, or grave accent, symbol.) Such a directive is specified before the
declaration of a module and applies to all numerical values of time in the code that follows. An
example of a timescale directive is

timescale 1ns/100ps

The first number specifies the unit of measurement for time delays. The second number spec-
ifies the precision for which the delays are rounded off, in this case to 0.1 ns. If no timescale
is specified, a simulator may display dimensionless values or default to a certain time unit,
usually 1 ns (= 107 sec). Our examples will use only the default time unit.



(c) ketabton.com: The Digital Library
Section 3.10 Hardware Description Language m

Table 3.6

Qutput of Gates after Delay
Tiene Units Input Qutput
(ns) ABC EwlD
Initial — 000 101
Change — 111 101
10 3 B | 001
20 111 001
30 11X 010
40 111 010
50 111 011

HDL Example 3.2 repeats the description of the simple circuit of Example 3.1, but with
propagation delays specified for each gate. The and, or, and not gates have a time delay of 30,
20, and 10 ns, respectively. If the circuit is simulated and the inputs change from A, B, C = 0
to A, B.C = 1, the outputs change as shown in Table 3.6 (calculated by hand or generated by a
simulator). The output of the inverter at £ changes from 1 o 0 after a 10-ns delay. The output of
the AND gate at w/ changes from 0 to 1 after a 30-ns delay. The output of the OR gate at D
changes from 1 to 0 at r = 30 ns and then changes back to | at 1 = 50 ns. In both cases, the
change in the output of the OR gate results from a change in its inputs 20 ns earlier. It is clear from
this result that although output D eventually returns to a final value of | after the input changes,
the gate delays produce a negative spike that lasts 20 ns before the final value is reached.

HDL Example 3.2 (Gate-level model with propagation delays)
I Verilog model of simple circuit with propagation delay

module Simple_Circuit_prop_delay (A, B, C, D, E);

output D, E;

input A B C;

wire w1,

and #(30) G1 (w1, A, B);
not #(10) G2 (E, C);

or #(20) G3 (D, w1, E);
endmodule

In order to simulate a circuit with an HDL, it is necessary to apply inputs to the circuit so
that the simulator will generate an output response. An HDL description that provides the stim-
ulus to a design is called a test bench. The writing of test benches is explained in more detail
at the end of Section 4.12. Here, we demonstrate the procedure with a simple example with-
out dwelling on too many details. HDL Example 3.3 shows a test bench for simulating the cir-
cuit with delay. (Note the distinguishing name Simple_Circuit_prop_deiay.) In its simplest



(c) ketabton.com: The Digital Library

112

Chapter 3 Gate-Level Minimization

form, a test bench is a module containing a signal generator and an instantiation of the model
that is to be verified. Note that the test bench (t_Simple_Circuit_prop_delay) has no input or
output ports, because it does not interact with its environment. In general, we prefer to name
the test bench with the prefix 7_ concatenated with the name of the module that is to be tested
by the test bench, but that choice is left to the designer. Within the test bench, the inputs to the
circuit are declared with keyword reg and the outputs are declared with the keyword wire. The
module Simple_Circuit_prop_delay is instantiated with the instance name M1. Every instan-
tiation of a module must include a unique instance name. Note that using a test bench is sim-
ilar to testing actual hardware by attaching signal generators to the inputs of a circuit and
attaching probes (wires) to the outputs of the circuit. (The interaction between the signal gen-
erators of the stimulus module and the instantiated circuit module is illustrated in Fig. 4.33.)

HDL Example 3.3
/Il Test bench for Simple_Circuit_prop_delay

module t_Simple_Circuit_prop_delay;
wire Dy &
reg A, B, C;

Simple_Circuit_prop_delay M1 (A, B, C, D, E); // Instance name required

initial
begin
A =1b0; B =1b0; C = 1'b0;
#100 A=1'b1; B=1'b1; C = 1'b1;
end

initial #200 $finish;
endmodule

Hardware signal generators are not used to verify an HDL model: The entire simulation ex-
ercise is done with software models executing on a digital computer. The waveforms of the input
signals are abstractly modeled (generated) by Verilog statements specifying waveform values
and transitions. The initial keyword is used with a set of statements that begin executing when
the simulation is initialized; initial terminates execution when the last statement has finished
executing. initial statements are commonly used to describe waveforms in a test bench. The
set of statements to be executed is called a block statement and consists of several statements
enclosed by the keywords begin and end. The action specified by the statements begins when
the simulation is launched, and the statements are executed in sequence, from top to bottom,
by a simulator in order to provide the input to the circuit. Initially, A, B, C = 0. (A, B, and C
are each set to 1'b0, which signifies one binary digit with a value of 0.) After 100 ns, the in-
puts change to A, B, C = 1, After another 100 ns, the simulation terminates at time 200 ns. A
second initial statement uses the $finish system task to specify termination of the simulation.
If a statement is preceded by a delay value (e.g., #100), the simulator postpones executing the
statement until the specified time delay has elapsed. The timing diagram of waveforms that result



ketabton. : The Digital Lib
(¢) ketabton.com: The Digital Library Section 3.10 Hardware Description Language 113

0.0ns 58.0ns 116.0 ns 1740 ns
Name Fi g g e g T e g P 0l o T O T
A I
B [
I
C
D e | ) |
E 1] [§ 1
FIGURE 3.38

Simulation output of HDL Example 3.3

from the simulation is shown in Figure 3.38. The total simulation takes 200 ns. The inputs A,
B, and C change from 0 to 1 atter 100 ns. Output £ is unknown for the first 10 ns (denoted by
shading), and output £ is unknown for the first 30 ns. Output £ goes from 1 to 0 at 110 ns, Out-
put [ goes from 1 to 0 at 130 ns and back to 1 at 150 ns. just as we predicted in Table 3.6.

Boolean Expressions

Boolean equations describing combinational logic are specified in Verilog with a continuous
assignment statement consisting of the keyword assign followed by a Boolean expression. To
distinguish arithmetic operators from logical operators, Verilog uses the symbaols (&), (/), and
(=) for AND, OR. and NOT (complement), respectively. Thus, to describe the simple circuit
of Fig. 3.37 with a Boolean expression, we use the statement

assign D = (A & B)|~-C;
HDL Example 3.4 describes a circuit that is specified with the following two Boolean expressions:
E =A+BC+B'D
F=B'C+BC'D’
The equations specify how the logic values E and F are determined by the values of A, B, C,
and D.

HDL Example 3.4 (Combinational logic modeled with Boolean equations)

1l Verilog model: Circuit with Boolean expressions

module Circuit_Boolean_CA (E. F, A, B, C, D);
output E.F.
input A B, C D;

assignE=A|(B&C)|(~B&D);
assign F=(~-B&C)| (B &~C &~D);
endmodule




(c) ketabton.com: The Digital Library

114

Chapter 3 Gate-Level Minimization

The circuit has two outputs E and F and four inputs A, B, C, and D. The two assign state-
ments describe the Boolean equations. The values of E and F during simulation are determined
dynamically by the values of A, B, C, and D. The simulator detects when the test bench changes
a value of one or more of the inputs, When this happens, the simulator updates the values of E
and F. The continuous assignment mechanism is so named because the relationship between
the assigned value and the variables is permanent. The mechanism acts just like combination-
al logic, has a gate-level equivalent circuit, and is referred to as implicit combinational logic.

We have shown that a digital circuit can be described with HDL statements, just as it can
be drawn in a circuit diagram or specified with a Boolean expression. A third alternative is to
describe combinational logic with a truth table.

User-Defined Primitives

The logic gates used in Verilog descriptions with keywords and, or, etc., are defined by the sys-
tem and are referred to as system primitives. (Caution: Other languages may use these words
differently.) The user can create additional primitives by defining them in tabular form, These
types of circuits are referred to as user-defined primitives (UDPs). One way of specifying a dig-
ital circuit in tabular form is by means of a truth table. UDP descriptions do not use the key-
word pair module ... endmodule. Instead, they are declared with the keyword pair primitive
... endprimitive. The best way to demonstrate a UDP declaration is by means of an example.

HDL Example 3.5 defines a UDP with a truth table. It proceeds according to the following
general rules:

* Itis declared with the keyword primitive, followed by a name and port list.

* There can be only one output, and it must be listed first in the port list and declared with
keyword output.

* There can be any number of inputs. The order in which they are listed in the input
declaration must conform to the order in which they are given values in the table that
follows.

* The truth table is enclosed within the keywords table and endtable.

* The values of the inputs are listed in order, ending with a colon (:). The output is always
the last entry in a row and is followed by a semicolon ().

* The declaration of a UDP ends with the keyword endprimitive.

Note that the variables listed on top of the table are part of a comment and are shown only
for clarity. The system recognizes the variables by the order in which they are listed in the
input declaration. A user-defined primitive can be instantiated in the construction of other mod-
ules (digital circuits), just as the system primitives are used. For example, the declaration

Circuit_with_UDP_02467 (E, F, A, B, C, D);
will produce a circuit that implements the hardware shown in Figure 3.39.

Although Verilog HDL uses this kind of description for UDPs only, other HDLs and
computer-aided design (CAD) systems use other procedures to specify digital circuits in tab-
ular form. The tables can be processed by CAD software to derive an efficient gate struc-
ture of the design. None of Verilog's predefined primitives describes sequential logic. The



(c) ketabton.com: The Digital Library
Section 3.10 Hardware Description Language

HDL Example 3.5
1i Verilog model: User-defined Primitive

primitive UDP_02467 (D, A, B, C).

output D;

input A B.C:

/i Truth tablefor D=f(A,B,C)=X(0,2,4,6, 7);

table

oA B (o] D /! Column header comment
0 0 0 1
0 0 1 0;
0 1 0 4
0 1 1 0
1 0 0 1
1 0 4 0,
1 1 0 b
1 1 1 L H

endtable

endprimitive

I Instantiate primitive
1l Verilog model: Circuit instantiation of Circuit_UDP_02467

module Circuit_with_UDP_02467 (e. f, a, b, ¢. d);

output e.f,

input abcd

UDP_02467 (e,a, b, c)

and (f. e, d). /I Option gate instance name omitted
endmodule

FIGURE 3.39
Schematic for Circuit with_UDP_02467



(c) ketabton.com: The Digital Library
116  Chapter 3 Gate-Level Minimization

model of a sequential UDP requires that its output be declared as a reg data type, and that
a column be added to the truth table to describe the next state. So the columns are organ-
izes as inputs : state : next state.

In this section, we introduced the Verilog HDL and presented simple examples to illustrate
alternatives for modeling combinational logic. A more detailed presentation of Verilog HDL
can be found in the next chapter. The reader familiar with combinational circuits can go directly
to Section 4.12 to continue with this subject.

PROBLEMS

Answers to problems marked with * appear at the end of the book,
3.1*  Simplify the following Boolean functions, using three-variable maps:

(a) F(x,y,2)= 2(0,26,7) (b) F(x,y,z) = £(0,2,3,4,6)

(c) F(x,y.z)=2(0,1,2,3,7) d) F(x,y2) = 2(3,5,6,7)
3.2 Simplify the following Boolean functions, using three-variable maps:

(@)* F(x,y.2) = £(0,1,5,7) (b)* F(x,y,z) = £(1.2,3,6,7)

(©) F(x.y,z) = £(0.1,6,7) (d) F(x,y.z) = £(0,1,3,4,5)

(e) F(x.y,2) = 2(1,3,5,7) () F(x,y.z) = £(1,4,5.6,7)
3.3%*  Simplify the following Boolean expressions, using three-variable maps:

(@ F(x,y,2) = xy + x'y'z' + x'yz' () F(x,y2) = x'y' + yz + x'yz’

@) Flx,»z) =xy +yi' +y'¢ d) Fx,y,2) =xyz +x'y'z+ xy'z
3.4 Simplify the following Boolean functions, using Karnaugh maps;

@* F(x, y,2) = £(2.3,6,7) (b)* F(A, B,C, D) = £(4,6,7,15)

(¢)* F(A.B,C,D) = 3(3,7,11,13,14,15)  (d)* F(w, x, y.2) = (2.3, 12,13, 14, 15)

(e) F(w.x,y»,z) = £(1.4,5,6,7,13) O F(w,x,»2)=2(0,1,58,9)

3.5  Simplify the following Boolean functions, using four-variable maps:
(@) F(w, x,y2) = £(1,4,5,6, 12, 14, 15)
(b) F(A, B.C,D) = 2(1,5,9, 10,11, 14, 15)
(¢) F(w.x,y.2) = £(0,1,4,5,6,7,8,9)
(dy* F(A,B,C, D) = £(0,2,4,5,6,7,8, 10,13, 15)

3.6  Simplify the following Boolean expressions, using four-variable maps:
(a)* A'B'C'D’ + AC'D' + B'CD' + A'BCD + BC'D
(by*x'z + w'xy’ + w(x'y + xy')
(c) A'B'C'D' + A'CD' + AB'D’ + ABCD + A’'BD
(d) A'B'C'D' + AB'C + B'CD' + ABCD' + BC'D
3.7  Simplify the following Boolean expressions, using four-variable maps:
(a)* w'z + xz2 + x'y + wx'z
(b) C'D + A'B'C + ABC' + AB'C
(c)* AB'C + B'C'D' + BCD + ACD' + A'B'C + A'BC'D
(d) xyz + wy + wxy' + x'y
3.8  Find the minterms of the following Boolean expressions by first plotting each function in a map:
(@) xy + yz + xy'z (b)*C’'D + ABC' + ABD' + A'B'D
() wyz + wx' + wxz' (d) A'B+ A'CD + B'CD + BC'D'



ketabton.com: The Digital Li
(c) ketabton.com: The Digital Library Problems 117

3.9  Find all the prime implicants for the following Boolean functions, and determine which are es-

sential:

(@) F(w,x, v, 2) = £(0,2,4,5,6,7. 8,10, 13. 15)

(b)* F(A,B,C,D) = £(0,2.3.5,7,8,10, 11. 14, 15)
(c) F(A,B,C,D) = Z(1,3,4,5,10,11, 12, 13, 14, 15)
(d) F{w,x,»z2)=2(1,3,6,7,8,9,12, 13, 14.15)
(e) F(A.BC D) = 2(0,2,3,5,7,8.10,11,13,15)

() Flw.xy.2) = £(0,2,7.8,9, 10,12, 13, 14, 15)

3.10 Simplify the following Boolean functions by first finding the essential prime implicants:
(a) F(w,x,¥.2) = X(0,2,4,56,7,8.10,13,15)
(b) F(A,B,C,D) = £(0,2,3,5,7.8,10, 11, 14, 15)
(€)* F(A,B,C,D) = £(1,3.4,5,10,11,12, 13, 14, 15)
(d) Fw, x.y.2)= 2(1.3,6.7.8 9.12,13. 14, 15)
(¢) F(A.B,C.D) = (0,2,3,5,7,8.10,11,13,15)
f) F(w.x,y.z) = Z(0,2,7,8.9.10, 12, 13, 14, 15)

3.11 Simplify the following Boolean functions, using five-variable maps:
(a)* F(A.B,.C.D,E) = Z£(0,1,4,5, 16, 17, 21. 25, 29)
(b) F(A.B.C.D) = A'B'CE' + BC'D'E' + A'B'D' + B'CD' + A'CD + A'BD
3.12 Simplify the following Boolean functions to product-of-sums form:
(@) F(w,xy2)=X(0,1.2,58,10,13)
(b)*F(A,B,C.D) =TI(1,3,5,7,13,15)
(¢) F(A.B.C.D)=T1(1.3.6.9.11.12,14)
3.13  Simplify the following expressions to (1) sum-of-products and (2) products-of-sums:
@Fazh+ ¥z v+ xy
(b) ACD' + C'D + AB' + ABCD
€ (A+C' +D')A +B +D')A +B+D)A+B+C)
(d) ABC' + AB'D + BCD

3.14  Give three possible ways to express the following Boolean function with eight or fewer literals:
F = B'C'D' + AB'CD' + BC'D + A'BCD

3.15 Simplify the following Boolean function F, together with the don't-care conditions ¢, and then
express the simplified function in sum-of-minterms form:

(a) F{x,y.2) = 2(2.3,4,6,7) (b)* F(A,B.C.D) = £(0.6,8, 13, 14)
d(x, v, z) = Z(0,1,5) d(A, B.C.D) = 2(2,4, 10)

(c) F(A,B,C,D) = 2(4,5.7,12,13.14) (d) F(A, B.C.D) = 2(1,3.8,10, 15)
d(A.B.C,D) = Z£(1,9,11,15) d(A,B.C.D) = £(0,2,9)

3.16  Simplify the following functions, and implement them with two-level NAND gate circuits:
(a) F(A,B,C.D) = A'B'C + AC' + ACD + ACD' + A'B'D'
(b) F(A.B.C.D) = AB + A'BC + A'B'C'D
(©) F(A.B.C)=(A'+ B' +C')(4’' + B)A' +C")
(d) F(A,B.C.D)=A'B+A+C +D

3.17% Draw a NAND logic diagram that implements the complement of the following function:

F(A,B.C,D) = £(0,1,2.3,4,8,9,12)



(c) ketabton.com: The Digital Library

118

Chapter 3 Gate-Level Minimization

3.18

3.19

3.20

3.21

3.22
3.23

3.24

3.25

3.26

3.27
3.28

3.29

Draw a logic diagram using only two-input NOR gates to implement the following function:
F(A,B,C,D) = (A®B) (C®D)

Simplify the following functions, and implement them with two-level NOR gate circuits:

(@*F = wx' + y'z' + w'yt'

(b) F(w,x,y.2) = 2(1,2,13, 14)

(© F(xy.z) = [(x +y)x" + 2

Draw the multi-level NOR and multi-level NAND circuits for the following expression:

(AB' + CD')E + BC(A + B)

Draw the multi-level NAND circuit for the following expression:
wix +y+2z) + xyz

Convert the logic diagram of the circuit shown in Fig. 4.4 into a multiple-level NAND circuit.

Implement the following Boolean function F, together with the don't-care conditions d, using no
more than two NOR gates:

F(A,B.C.D) = 2(2,4,6,10, 12)
d(A,B,C, D) = £(0,8,9,13)
Assume that both the normal and complement inputs are available.

Implement the following Boolean function F, using the two-level forms of logic (a) NAND-
AND, (b) AND-NOR, (¢) OR-NAND, and (d) NOR-OR:

F(A, B ,C,D) = 2(0,4,8,9,10,11, 12, 14)
List the eight degenerate two-level forms and show that they reduce to a single operation, Explain
how the degenerate two-level forms can be used to extend the number of inputs to a gate.
With the use of maps, find the simplest sum-of-products form of the function F = fg, where
f=abc" +c'd+ a'cd + b'cd’
and

g=(a+b+c +d')b +¢ +d)a +c+d)

Show that the dual of the exclusive-OR is also its complement.

Derive the circuits for a three-bit parity generator and four-bit parity checker using an odd
parity bit.

Implement the following four Boolean expressions with three half adders
D=A®BBC
E = A'BC + AB'C
F = ABC' + (A' + B')C
G = ABC

3.30* Implement the following Boolean expression with exclusive-OR and AND gates:

F = AB'CD' + A'BCD' + AB'C'D + A'BC'D



(c) ketabton.com: The Digital Library

.n

3.33

3.34

3.35*

3.36

Problems 119

Write a Verilog gate-level description of the circuit shown in

(a) Fig.3.22(a) (b) Fig. 3.22(b) (e) Fig. 3,23(a)

(d) Fig.3.23(b) (e) Fig.3.26 (f) Fig.3.27

Using continuous assignment statements, write a Verilog description of the circuit shown in
(a) Fig. 3.22(a) (b) Fig. 3.22(b) (c) Fig. 3.23(a)

(d) Fig.3.23(b) (e) Fig.3.26 () Fig.3.27

The exclusive-OR circuit of Fig. 3.32(a) has gates with a delay of 4 ns for an inverter, a 8 ns

delay for an AND gate. and a 10 ns delay for an OR gate, The input of the circuit goes from

xy =00t xy = 01,

(a) Determine the signals at the output of each gate from 1 = Otor = 50 ns.

(b) Write a Verilog gate-level description of the circuit. including the delays.

(e} Write a stimulus module (i.e.. a test bench similar to HDL Example 3.3). and simulate the cir-
cuit to verify the answer in part (a).

Using continuous assignments, write a Verilog description of the circuit specified by the follow-
ing Boolean functions:

Out | = (C + B)(A' + D)B'

Ow 2= (CB' + ABC + C'B)(A + D')

Ow 3 = C(AD + B) + BA’
Write a test bench and simulate the circuit’s behavior.

Find the syntax errors in the following declarations (note that names for primitive gates are
optional):

module Exmpl-3(A, B, C. D, F) /I Line 1
inputs A, B, C, Output D, F, //Line 2
output B i/ Line 3
and g1(A, B, D). I/ Line 4
not (D, A, C). Il Line 5
OR (F,B: C); Il Line &

endofmodule; Il Line 7

Draw the logic diagram of the digital circuit specified by the following Verilog description:

(a) module Circuit_A (A, B, C, D, F);
input A B ,C D;
output ot
wire w,x. vy, z ad,
and (x, B, C, d);

and (y.a,C),
and (w, z.B);
or (z. vy, A)
or (F. x, w);
not (a, A);
not (d, D);

endmodule



(c) ketabton.com: The Digital Library

120 Chapter 3 Gate-Level Minimization

(b) module Circuit_B (A_gtB, A_ItB, A_eqB, A0, A1, BO, B1);

output A_gtB, A_ItB, A_eqB;
input A0, A1, BO, B1;

nor (A_gtB, A_ItB, A_eqB);

or (A_ItB, w1, w2, w3),

and (A_eqB, w4, w5);

and (w1, w6, B1),

and (w2, wb, w7, BO);

and (w3, w7, BO, B1);

not (wB, A1),

not (w7, AD);

xnor (w4, A1, B1);

xnor (w5, A0, BO);
endmodule

(¢) module Circuit_C (output y1, input a, b, output y2);

assignyl=ad&hb;
or (y2, a, b);
endmodule

3.37 A majority logic function is a Boolean function that is equal to 1 if the majority of the variables
are equal to 1, equal to 0 otherwise. Write a Verilog user-defined primitive for a four-bit majori-

ty function.
3.38 Simulate the behavior of Circuit_with_UDP_02467, using the stimulus waveforms shown in

Fig. P3.38.

A
T T T | T T IL,ns
10 20 30 40 60 70 80

B
T 1 T T Lns
10 20 30 40 60 70 80

C

T t.ns

10 20 30 40 60 70 80

FIGURE P3.38
Stimulus waveforms for Problem 3.38



(c) ketabton.com: The Digital Library

REFERENCES

References 121

1.

BHASKER, 1. 1997. A Verilog HDL Primer. Allentown. PA: Star Galaxy Press.

Cuern. M.D. 1999. Modeling, Synthesis and Rapid Prototyping with the Verilog HDL. Upper
Saddle River, NJ: Prentice Hall.

HuL, F J.. and G. R. PETERSON. 1981. Introduction to Switching Theory and Logical Design, 3d
ed. New York: John Wiley.

IEEE Standard Hardware Description Language Based on the Verilog Hardware Description
Language (IEEE Std 1364-1995). 1995. New York: The Institute of Electrical and Electronics
Engineers.

KARNAUGH, M. A Map Method for Synthesis of Combinational Logic Circuits. Transactions of
AIEE, Communication and Electronics, 72. part | (Nov. 1953): 593-99.

KoHavL, Z. 1978, Switching and Automata Theory, 2d ed. New York: McGraw-Hill.

Mano, M. M., and C. R. KIME. 2004. Logic and Comy Design Fundamentals, 3rd ed, Upper
Saddle River, NJ: Prentice Hall,

McCLUskEY, E. J. 1986, Logic Design Principles. Englewood Cliffs, NJ: Prentice-Hall.
PALNITKAR, S. 1996, Verilog HDL: A Guide to Digital Design and Synthesis. Mountain View,
CA: SunSoft Press (a Prentice Hall title).




(c) ketabton.com: The Digital Library

Chapter 4

Combinational Logic

4.1

INTRODUCTION

Logic circuits for digital systems may be combinational or sequential. A combinational circuit
consists of logic gates whose outputs at any time are determined from only the present combi-
nation of inputs. A combinational circuit performs an operation that can be specified logically
by a set of Boolean functions. In contrast, sequential circuits employ storage elements in addi-
tion to logic gates. Their outputs are a function of the inputs and the state of the storage elements.
Because the state of the storage elements is a function of previous inputs, the outputs of a se-
quential circuit depend not only on present values of inputs, but also on past inputs, and the cir-
cuit behavior must be specified by a time sequence of inputs and internal states, Sequential
circuits are the building blocks of digital systems and are discussed in Chapters 5, 8, and 9.

4,2 COMBINATIONAL CIRCUITS

122

A combinational circuit consists of input variables, logic gates, and output variables. Combina-
tional logic gates react to the values of the signals at their inputs and produce the value of the out-
put signal, transforming binary information from the given input data to a required output data.
A block diagram of a combinational circuit is shown in Fig. 4.1. The n input binary variables
come from an external source; the m output variables are produced by the internal combinational
logic circuit and go to an external destination. Each input and output variable exists physically
as an analog signal whose values are interpreted to be a binary signal that represents logic 1 and
logic 0. (Note: Logic simulators show only 0's and 1's, not the actual analog signals.) In many
applications, the source and destination are storage registers. If the registers are included with the
combinational gates, then the total circuit must be considered to be a sequential circuit.



(c) ketabton.com: The Digital Library
Section 4.3 Analysis Procedure 123

—_— . e s s —
ninputs — f s 'l“"" ; —* m outputs

FIGURE 4.1
Block diagram of combinational circuit

For n input variables, there are 2” possible binary input combinations. For each possible input
combination, there is one possible output value. Thus, a combinational circuit can be specified
with a truth table that lists the output values for each combination of input variables. A com-
binational circuit also can be described by m Boolean functions, one for each output vanable.
Each output function is expressed in terms of the n input variables.

In Chapter 1, we leamned about binary numbers and binary codes that represent discrete
quantities of information. The binary variables are represented physically by electric voltages
or some other type of signal. The signals can be manipulated in digital logic gates to perform
required functions. In Chapter 2, we introduced Boolean algebra as a way to express logic
functions algebraically. In Chapter 3. we learned how to simplify Boolean functions to achieve
economical (simpler) gate implementations, The purpose of the current chapter is to use the
knowledge acquired in previous chapters to formulate systematic analysis and design proce-
dures for combinational circuits. The solution of some typical examples will provide a useful
catalog of elementary functions that are important for the understanding of digital systems,
We'll address three tasks: (1) Analyze the behavior of a given logic circuit, (2) synthesize a cir-
cuit that will have a given behavior. and (3) write HDL models for some common circuits.

There are several combinational circuits that are employed extensively in the design of dig-
ital systems. These circuits are available in integrated circuits and are classified as standard com-
ponents. They perform specific digital functions commonly needed in the design of digital
systems. In this chapter. we introduce the most important standard combinational circuits, such
as adders, subtractors, comparators, decoders. encoders, and multiplexers. These components are
available in integrated circuits as medium-scale integration (MSI) circuits. They are also used
as standard cells in complex very large-scale integrated (VLSI) circuits such as application-
specific integrated circuits (ASICs). The standard cell functions are interconnected within the
VLSI circuit in the same way that they are used in multiple-1C MS] design.

4.3 ANALYSIS PROCEDURE

The analysis of a combinational circuit requires that we determine the function that the circuit
implements. This task starts with a given logic diagram and culminates with a set of Boolean
functions. a truth table, or. possibly, an explanation of the circuit operation. If the logic diagram
to be analyzed is accompanied by a function name or an explanation of what it is assumed to
accomplish, then the analysis problem reduces to a verification of the stated function. The
analysis can be performed manually by finding the Boolean functions or truth table or by using
a computer simulation program.



(c) ketabton.com: The Digital Library
124  Chapter 4 Combinational Logic

The first step in the analysis is to make sure that the given circuit is combinational and not
sequential. The diagram of a combinational circuit has logic gates with no feedback paths or
memory elements. A feedback path is a connection from the output of one gate to the input of
a second gate that forms part of the input to the first gate. Feedback paths in a digital circuit de-
fine a sequential circuit and must be analyzed according to procedures outlined in Chapter 9.

Once the logic diagram is verified to be that of a combinational circuit, one can proceed to
obtain the output Boolean functions or the truth table. If the function of the circuit is under in-
vestigation, then it is necessary to interpret the operation of the circuit from the derived Boolean
functions or truth table. The success of such an investigation is enhanced if one has previous
experience and familiarity with a wide variety of digital circuits.

To obtain the output Boolean functions from a logic diagram, we proceed as follows:

1. Label all gate outputs that are a function of input variables with arbitrary symbols—but
with meaningful names. Determine the Boolean functions for each gate output.

2, Label the gates that are a function of input variables and previously labeled gates with
other arbitrary symbols. Find the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.

4. By repeated substitution of previously defined functions, obtain the output Boolean func-
tions in terms of input variables.

The analysis of the combinational circuit of Fig. 4.2 illustrates the proposed procedure. We
note that the circuit has three binary inputs—A, B, and C—and two binary outputs—F; and F>.

[ =1

F,

FIGURE 4.2
Logic diagram for analysis example



(c) ketabton.com: The Digital Library
Section 4.3 Analysis Procedure 125

The outputs of various gates are labeled with intermediate symbols. The outputs of gates that
are a function only of input variables are Ty and 75. Output F> can easily be derived from the
input variables. The Boolean functions for these three outputs are

F = AB + AC + BC
H=A+B+C
T, = ABC
Next, we consider outputs of gates that are a function of already defined symbols:
Ty = F3T;
A=T+T
To obtain F; as a function of A, B, and C, we form a series of substitutions as follows:
Fy=T3+T,=F5T, + ABC = (AB + AC + BC)'(A + B + C) + ABC
(A" + B')A' +C')YB' +C')A+B+C)+ ABC
= (A" + B'C')(AB" + AC' + BC' + B'C) + ABC
= A'BC' + A'B'C + AB'C' + ABC

If we want to pursue the investigation and determine the information transformation task
achieved by this circuit, we can draw the circuit from the derived Boolean expressions and try
to recognize a familiar operation. The Boolean functions for F; and F> implement a circuit dis-
cussed in Section 4.5. Merely finding a Boolean representation of a circuit doesn’t provide in-
sight into its behavior, but in this example we will observe that the Boolean equations and truth
table for F; and F> match those describing the functionality of what we call a full adder.

The derivation of the truth table for a circuit is a straightforward process once the output
Boolean functions are known. To obtain the truth table directly from the logic diagram with-
out going through the derivations of the Boolean functions, we proceed as follows:

1. Determine the number of input variables in the circuit. For n inputs. form the 2" possible
input combinations and list the binary numbers from 010 2" = 1 in a table,

2. Label the outputs of selected gates with arbitrary symbols.

3. Obtain the truth table for the outputs of those gates which are a function of the input
variables only.

4. Proceed to obtain the truth table for the outputs of those gates which are a function of pre-
viously defined values until the columns for all outputs are determined,

This process is illustrated with the circuit of Fig. 4.2, In Table 4.1, we form the eight possi-
ble combinations for the three input variables, The truth table for F; is determined directly from
the values of A, B, and C, with F3 equal to 1 for any combination that has two or three inputs
equal to 1. The truth table for 4 is the complement of that of F5. The truth tables for 7} and T
are the OR and AND functions of the input variables, respectively. The values for T are derived
from 7, and F5: Ty is equal to 1 when both T and F are equal to 1, and T3 is equal to 0 other-
wise. Finally, F; is equal to | for those combinations in which either 75 or T or both are equal



(c) ketabton.com: The Digital Library

126

Chapter 4 Combinational Logic

Table 4.1

Truth Table for the Logic Diagram of Fig. 4.2
A B C Fa F3 T T2 T3 F
0 0 0 0 1 0 0 0 0
0 0 I 0 1 1 0 1 1
0 1 0 0 1 1 0 1 1
0 1 1 1 0 1 0 0 0
1 0 0 0 1 1 0 1 1
1 0 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0
1 1 1 1 0 1 1 0 1

to 1. Inspection of the truth table combinations for A, B, C, F}, and F> shows that it is identical
to the truth table of the full adder given in Section 4.5 for x, y, z, §, and C, respectively.
Another way of analyzing a combinational circuit is by means of logic simulation, This is
not practical, however, because the number of input patterns that might be needed to generate
meaningful outputs could be very large. But simulation has a very practical application in ver-
ifying that the functionality of a circuit actually matches its specification. In Section 4.12, we
demonstrate the logic simulation and verification of the circuit of Fig. 4.2, using Verilog HDL.

4.4 DESIGN PROCEDURE

The design of combinational circuits starts from the specification of the design objective and
culminates in a logic circuit diagram or a set of Boolean functions from which the logic dia-
gram can be obtained. The procedure involves the following steps:

1. From the specifications of the circuit, determine the required number of inputs and outputs
and assign a symbol to each.

2. Derive the truth table that defines the required relationship between inputs and outputs.
3. Obtain the simplified Boolean functions for each output as a function of the input variables.
4. Draw the logic diagram and verify the correctness of the design (manually or by simulation).

A truth table for a combinational circuit consists of input columns and output columns, The
input columns are obtained from the 2" binary numbers for the n input variables. The binary
values for the outputs are determined from the stated specifications. The output functions spec-
ified in the truth table give the exact definition of the combinational circuit. It is important that
the verbal specifications be interpreted correctly in the truth table, as they are often incom-
plete, and any wrong interpretation may result in an incorrect truth table.

The output binary functions listed in the truth table are simplified by any available method,
such as algebraic manipulation, the map method, or a computer-based simplification program.
Frequently, there is a variety of simplified expressions from which to choose. In a particular



(c) ketabton.com: The Digital Library
Section 4.4 Design Procedure 127

application, certain criteria will serve as a guide in the process of choosing an implementation.
A practical design must consider such constraints as the number of gates, number of inputs to
a gate, propagation time of the signal through the gates. number of interconnections. limitations
of the driving capability of each gate (i.e., the number of gates to which the output of the cir-
cuit may be connected). and various other criteria that must be taken into consideration when
designing integrated circuits. Since the importance of each constraint is dictated by the particular
application. it is difficult to make a general statement about what constitutes an acceptable im-
plementation. In most cases, the simplification begins by satisfying an elementary objective,
such as producing the simplified Boolean functions in a standard form. Then the simplification
proceeds with further steps to meet other performance criteria.

Code Conversion Example

The availability of a large variety of codes for the same discrete elements of information re-
sults in the use of different codes by different digital systems. It is sometimes necessary to use
the output of one system as the input to another. A conversion circuit must be inserted between
the two systems if each uses different codes for the same information. Thus. a code converter
is a circuit that makes the two systems compatible even though each uses a different binary code.

To convert from binary code A to binary code B, the input lines must supply the bit combi-
nation of elements as specified by code A and the output fines must generate the corresponding
bit combination of code B. A combinational circuit performs this transformation by means of
logic gates. The design procedure will be illustrated by an example that converts binary coded
decimal (BCD) to the excess-3 code for the decimal digits.

The bit combinations assigned to the BCD and excess-3 codes are listed in Table 1.5 (Section
1.7). Since each code uses four bits to represent a decimal digit, there must be four input vari-
ables and four output vanables. We designate the four input binary variables by the symbols
A, B. C. and D, and the four output variables by w. x. v. and . The truth table relating the input
and output variables is shown in Table 4.2, The bit combinations for the inputs and their

Table 4.2
Truth Table for Code-Conversion Example
Input BCD Output Excess-3 Code

A B C D w x y z
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 I 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0




(c) ketabton.com: The Digital Library

128

Chapter 4 Combinational Logic

corresponding outputs are obtained directly from Section 1.7. Note that four binary variables
may have 16 bit combinations, but only 10 are listed in the truth table. The six bit combina-
tions not listed for the input variables are don't-care combinations. These values have no mean-
ing in BCD and we assume that they will never occur. Therefore, we are at liberty to assign to
the output variables either a | or a 0, whichever gives a simpler circuit.

The maps in Fig. 4.3 are plotted to obtain simplified Boolean functions for the outputs.
Each one of the four maps represents one of the four outputs of the circuit as a function of
the four input variables. The 1's marked inside the squares are obtained from the minterms
that make the output equal to 1. The 1's are obtained from the truth table by going over the
output columns one at a time, For example, the column under output z has five 1's; therefore,
the map for z has five 1's, each being in a square corresponding to the minterm that makes
z equal to 1. The six don't-care minterms 10 through 15 are marked with an X. One possi-
ble way to simplify the functions into sum-of-products form is listed under the map of each
variable. (See Chapter 3.)

B
y=CD+CD'
c
cD - TS
ABN\_00__ 01l __11__ 10
my my my my
00
”'-l
01
B
1
A
10
—
D
x=B'C+BD+BCD’ w=A+ BC+ BD

FIGURE 4.3
Maps for BCD-to-excess-3 code converter



(c) ketabton.com: The Digital Library
Section 4.4 Design Procedure 129

Atwo-level logic diagram may be obtained directly from the Boolean expressions derived from
the maps. There are various other possibilities for a logic diagram that implements this circuit.
The expressions obtained in Fig. 4.3 may be manipulated algebraically for the purpose of using
common gates for two or more outputs. This manipulation, shown next. illustrates the flexibility
obtained with multiple-output systems when implemented with three or more levels of gates:

y=CD+C'D' =CD+ (C+ D)
x=B'C+BD+ BC'D' =B(C+ D)+ BC'D'
= B'(C + D) + B(C + D)
w=A+BC+BD=A+B(C+D)
The logic diagram that implements these expressions is shown in Fig. 4.4, Note that the OR
gate whose output is C + D has been used to implement partially each of three outputs,

Not counting input inverters, the implementation in sum-of-products form requires seven
AND gates and three OR gates. The implementation of Fig. 4.4 requires four AND gates, four
OR gates, and one inverter. If only the normal inputs are available, the first implementation will
require inverters for variables B, C, and D, and the second implementation will require in-
verters for variables B and D. Thus, the three-level logic circuil requires fewer gates, all of
which in turn require no more than two inputs.

P
e y
__D—--a—bo—< (C+D)

C+D

ra

A

FIGURE 4.4
Logic diagram for BCD-to-excess-3 code converter



(c) ketabton.com: The Digital Library

130

4.5

Chapter 4 Combinational Logic

BINARY ADDER-SUBTRACTOR

Digital computers perform a variety of information-processing tasks. Among the functions en-
countered are the various arithmetic operations. The most basic arithmetic operation is the ad-
dition of two binary digits. This simple addition consists of four possible elementary operations:
0+0=00+1=1,1+0=1,and 1 + 1 = 10. The first three operations produce a
sum of one digit, but when both augend and addend bits are equal to 1, the binary sum con-
sists of two digits. The higher significant bit of this result is called a carry. When the augend
and addend numbers contain more significant digits, the carry obtained from the addition of two
bits is added to the next higher order pair of significant bits. A combinational circuit that per-
forms the addition of two bits is called a half adder. One that performs the addition of three
bits (two significant bits and a previous carry) is a full adder. The names of the circuits stem
from the fact that two half adders can be employed to implement a full adder.

A binary adder—subtractor is a combinational circuit that performs the arithmetic operations
of addition and subtraction with binary numbers. We will develop this circuit by means of a hi-
erarchical design. The half adder design is carried out first, from which we develop the full
adder. Connecting n full adders in cascade produces a binary adder for two n-bit numbers. The
subtraction circuit is included in a complementing circuit.

Half Adder

From the verbal explanation of a half adder, we find that this circuit needs two binary inputs
and two binary outputs. The input variables designate the augend and addend bits; the output
variables produce the sum and carry. We assign symbols x and y to the two inputs and S (for
sum) and C (for carry) to the outputs. The truth table for the half adder is listed in Table 4.3.
The C output is | only when both inputs are 1. The § output represents the least significant bit
of the sum.

The simplified Boolean functions for the two outputs can be obtained directly from the truth
table. The simplified sum-of-products expressions are

§=x'y+ xy
C = xy
The logic diagram of the half adder implemented in sum of products is shown in Fig. 4.5(a).

It can be also implemented with an exclusive-OR and an AND gate as shown in Fig. 4.5(b).
This form is used to show that two half adders can be used to construct a full adder.

Table 4.3
Half Adder

X 14

—-_——c o
=l = =

— o000 |
o= =0 L]




(c) ketabton.com: The Digital Library

Full Adder

Section 4.5 Binary Adder-Subtractor 131

X
W
D s
v T
- ; —5
¥ ) i
i o~
¥ C | C

(a)§ = xy" + x'y (b)S=xSy
C=uxy C=xy

FIGURE 4.5
Implementation of half adder

A full adder is a combinational circuit that forms the arithmetic sum of three bits. It consists of three
inputs and two outputs. Two of the input variables. denoted by x and v, represent the two signifi-
cant bits to be added. The third input, z, represents the carry from the previous lower significant
position. Two outputs are necessary because the arithmetic sum of three binary digits ranges in value
from O to 3., and binary 2 or 3 needs two digits. The two outputs are designated by the symbols §
for sum and € for carry. The binary variable S gives the value of the least significant bit of the sum.
The binary variable C gives the output carry. The truth table of the full adder is listed in Table 4.4,
The eight rows under the input variables designate all possible combinations of the three vari-
ables. The output variables are determined from the arithmetic sum of the input bits. When all
input bits are 0, the output is 0. The S output is equal to | when only one input is equal to 1 or when
all three inputs are equal to 1. The C output has a carry of 1 if two or three inputs are equal to 1.

The input and output bits of the combinational circuit have different interpretations at var-
ious stages of the problem. On the one hand, physically, the binary signals of the inputs are con-
sidered binary digits to be added arithmetically to form a two-digit sum at the output, On the
other hand. the same binary values are considered as variables of Boolean functions when ex-
pressed in the truth table or when the circuit is implemented with logic gates. The maps for the
outputs of the full adder are shown in Fig. 4.6. The simplified expressions are

Table 4.4

Full Adder

x y x [ 5
0 0 0 0 0
0 0 1 0 1
0 1 1] 0 1
0 I 1 I 0
1 0 0 0 1
1 0 | 1 0
1 I 0 | 0
1 1 | 1 1




(c) ketabton.com: The Digital Library

132 Chapter 4 Combinational Logic

v 00 ol 11 10 e 00
"y m, my my my
0 1 1 0
"y my my Iy my

xi1] 1 1 x41

—
Z
FIGURE 4.6

Maps for full adder

S=x'y'z+ x'yz' + xy'2' + xyz
C=xy+axz+yz
The logic diagram for the full adder implemented in sum-of-products form is shown in Fig. 4.7.

It can also be implemented with two half adders and one OR gate, as shown in Fig. 4.8. The S output
from the second half adder is the exclusive-OR of z and the output of the first half adder,

giving
S=z8(xBy)
=2'(xy" + x'y) +2(xy' + x'y)’
=2'(xy" + x'y) + z2(xy + x'y')
=xy'z + x'yz' + xyz + x'y'z
The carry output is

C=z(xy +x'y) +xy=xy'z+ x'yz + xy

FIGURE 4.7
Implementation of full adder in sum-of-products form

rate



(c) ketabton.com: The Digital Library
Section 4.5 Binary Adder-Subtractor 133

r x3y _ﬁ\(xﬂéy)@z
y : ) > s

7

(x@y 2

(x@y)z+xy

z

FIGURE 4.8
Implementation of full adder with two half adders and an OR gate

Binary Adder

A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers. It can
be constructed with full adders connected in cascade, with the output carry from each full adder
connected to the input carry of the next full adder in the chain, Figure 4.9 shows the interconnection
of four full-adder (FA) circuits to provide a four-bit binary ripple carry adder. The augend bits of
A and the addend bits of B are designated by subscript numbers from right to left, with subseript
0 denoting the least significant bit. The carries are connected in a chain through the full adders.
The input carry to the adder is Cy. and it ripples through the full adders to the output carry Cy.
The S outputs generate the required sum bits. An n-bit adder requires » full adders, with each out-
put carry connected to the input carry of the next higher order full adder.

To demonstrate with a specific example, consider the two binary numbers A = 1011 and
B = (0011. Their sum § = 1110 is formed with the four-bit adder as follows:

Subscript k: 3 2 1 0
Input carry 0o 1 1 0 C;
Augend 1 @ 1 7 A
Addend of | | B;
Sum T 1 1 @ 8;
Output carry 0o 0 1 1 Ci41

The bits are added with full adders, starting from the least significant position (subscript 0), to
form the sum bit and carry bit. The input carry C in the least significant position must be 0.
The value of C;4 | in a given significant position is the output carry of the full adder. This value
is transferred into the input carry of the full adder that adds the bits one higher significant po-
sition to the left. The sum bits are thus generated starting from the rightmost position and are
available as soon as the corresponding previous carry bit is generated. All the carries must be
generated for the correct sum bits to appear at the outputs.

The four-bit adder is a typical example of a standard component. It can be used in many ap-
plications involving arithmetic operations. Observe that the design of this circuit by the clas-
sical method would require a truth table with 2° = 512 entries, since there are nine inputs to



(c) ketabton.com: The Digital Library

134

Chapter 4 Combinational Logic

B) A;

G

G, AN

FIGURE 4.9
Four-bit adder

the circuit. By using an iterative method of cascading a standard function, it is possible to ob-
tain a simple and straightforward implementation,

Carry Propagation

The addition of two binary numbers in parallel implies that all the bits of the augend and addend
are available for computation at the same time. As in any combinational circuit, the signal must
propagate through the gates before the correct output sum is available in the output terminals. The
total propagation time is equal to the propagation delay of a typical gate, times the number of gate
levels in the circuit. The longest propagation delay time in an adder is the time it takes the carry
to propagate through the full adders. Since each bit of the sum output depends on the value of the
input carry, the value of S; at any given stage in the adder will be in its steady-state final value
only after the input carry to that stage has been propagated. In this regard, consider output §; in
Fig. 4.9. Inputs A3 and B, are available as soon as input signals are applied to the adder. How-
ever, input carry C5 does not settle to its final value until C; is available from the previous stage.
Similarly, C; has to wait for C; and so on down to Cy. Thus, only after the carry propagates and
ripples through all stages will the last output 5; and carry C; settle to their final correct value.
The number of gate levels for the carry propagation can be found from the circuit of the full
adder. The circuit is redrawn with different labels in Fig. 4.10 for convenience. The input and

B

G

FIGURE 4.10
Full adder with P and G shown



(c) ketabton.com: The Digital Library
Section 4.5 Binary Adder-Subtractor 135

output variables use the subscript 7 to denote a typical stage of the adder. The signals at £, and
G, settle to their steady-state values after they propagate through their respective gates. These
two signals are common to all full adders and depend only on the input augend and addend bits.
The signal from the input carry C; to the output carry C; - propagates through an AND gate
and an OR gate. which constitute two gate levels. If there are four full adders in the adder, the
output carry Cy would have 2 X 4 = 8 gate levels from Cjy 1o Cy. For an n-bit adder, there are
2n gate levels for the carry to propagate from input to output.

The carry propagation time is an important attribute of the adder because it limits the speed
with which two numbers are added. Although the adder—or, for that matter, any combina-
tional circuit—will always have some value at its output terminals. the outputs will not be cor-
rect unless the signals are given enough time to propagate through the gates connected from
the inputs to the outputs. Since all other arithmetic operations are implemented by successive
additions, the time consumed during the addition process is critical. An obvious solution for
reducing the carry propagation delay time is to employ faster gates with reduced delays. How-
ever, physical circuits have a limit to their capability. Another solution is to increase the com-
plexity of the equipment in such a way that the carry delay time is reduced. There are several
techniques for reducing the carry propagation time in a parallel adder. The most widely used
technique employs the principle of carry lookahead logic.

Consider the circuit of the full adder shown in Fig. 4.10. If we define two new binary variables

Pi=AB®E
G; = AiB;

the output sum and carry can respectively be expressed as
S,- = P,' GC.

Cis1 =G + PC;

G, is called a carry generate, and it produces a carry of | when both A, and B; are 1, regard-
less of the input carry C,. P, is called a carry propagate, because it determines whether a carry
into stage § will propagate into stage i + 1 (i.e., whether an assertion of C; will propagate to
an assertion of C,— ).

We now write the Boolean functions for the carry outputs of each stage and substitute the
value of each C; from the previous equations:

€y = input carry
Cy =Gy + PyCy
C2 =G, + P\C) = Gy + P\(Gy + PyCq) = Gy + P\Gy + P\ PeCy

Gy

Since the Boolean function for cach output carry is expressed in sum-of-products form, each func-
tion can be implemented with one level of AND gates followed by an OR gate (or by a two-level
NAND). The three Boolean functions for Cy, €5, and C are implemented in the carry lookahead
generator shown in Fig. 4.11. Note that this circuit can add in less time because C5 does not have
1o wait for C, and C o propagate: in fact. C; is propagated at the same time as C and Cs. This
gain in speed of operation is achieved at the expense of additional complexity (hardware).

Gy + PoCy = Gy + PaG| + PP Gy = P2P\PoCy



(c) ketabton.com: The Digital Library

136

Chapter 4 Combinational Logic

G,

Gy

Py

Gy

Co

FIGURE 4.11
Logic diagram of carry lookahead generator

The construction of a four-bit adder with a carry lookahead scheme is shown in Fig. 4.12.
Each sum output requires two exclusive-OR gates. The output of the first exclusive-OR gate
generates the F; variable, and the AND gate generates the G; variable. The carries are propa-
gated through the carry lookahead generator (similar to that in Fig. 4.11) and applied as inputs
to the second exclusive-OR gate. All output carries are generated after a delay through two
levels of gates. Thus, outputs S; through §3 have equal propagation delay times. The two-level
circuit for the output carry Cy is not shown. This circuit can easily be derived by the equation-
substitution method.

Binary Subtractor

The subtraction of unsigned binary numbers can be done most conveniently by means of com-
plements, as discussed in Section 1.5, Remember that the subtraction A — B can be done by
taking the 2's complement of B and adding it to A. The 2's complement can be obtained by tak-
ing the 1's complement and adding 1 to the least significant pair of bits. The 1's complement
can be implemented with inverters, and a 1 can be added to the sum through the input carry.



(c) ketabton.com: The Digital Library

Section 4.5 Binary Adder-Subtractor

By
As 4
B, 3 : :
Az 7 .
B, ——“’:/ :
A } _
By —
A j,! >
Gy

FIGURE 4.12

Py

i

Py

Gy

£y

Gy

2

P

6
i Cany
- Eookahead

- Generator

.C;

LoA

G

G

9 9§

3

:

Four-bit adder with carry lookahead

<

5

5

5

137

The circuit for subtracting A — B consists of an adder with inverters placed between each
data input B and the corresponding input of the full adder. The input carry Cy must be equal to
| when subtraction is performed. The operation thus performed becomes A, plus the 1's com-
plement of B, plus 1. This is equal to A plus the 2's complement of B. For unsigned numbers,
that gives A — Bif A = Borthe 2's complementof (B — A) if A < B. For signed numbers,
the result is A — B, provided that there is no overflow. (See Section 1.6.)

The addition and subtraction operations can be combined into one circuit with one common
binary adder by including an exclusive-OR gate with each full adder. A four-bit adder-subtractor
circuit is shown in Fig. 4.13. The mode input M controls the operation. When M = 0, the cir-
cuit is an adder, and when M = 1, the circuit becomes a subtractor. Each exclusive-OR gate
receives input M and one of the inputs of B. When M = 0, we have B@® 0 = B. The full adders
receive the value of B, the input carry is 0, and the circuit performs A plus B. When M = 1,



(c) ketabton.com: The Digital Library

138 Chapter 4 Combinational Logic

B“g A3 Bz A"l B| A 1 Bﬂ Aﬂ

Overflow

FIGURE 4.13
Four-bit adder-subtractor

we have B | = B’ and Cy = 1. The B inputs are all complemented and a 1 is added through
the input carry. The circuit performs the operation A plus the 2’s complement of B. (The ex-
clusive-OR with output V is for detecting an overflow.)

It is worth noting that binary numbers in the signed-complement system are added and sub-
tracted by the same basic addition and subtraction rules as are unsigned numbers. Therefore,
computers need only one common hardware circuit to handle both types of arithmetic. The
user or programmer must interpret the results of such addition or subtraction differently, de-
pending on whether it is assumed that the numbers are signed or unsigned.

When two numbers with n digits each are added and the sum is a number occupying n + 1 dig-
its, we say that an overflow occurred. This is true for binary or decimal numbers, signed or un-
signed. When the addition is performed with paper and pencil, an overflow is not a problem,
since there is no limit by the width of the page to write down the sum. Overflow is a problem
in digital computers because the number of bits that hold the number is finite and a result that
contains n + 1 bits cannot be accommodated by an n-bit word. For this reason, many computers
detect the occurrence of an overflow, and when it occurs, a corresponding flip-flop is set that
can then be checked by the user.

The detection of an overflow after the addition of two binary numbers depends on whether the
numbers are considered to be signed or unsigned. When two unsigned numbers are added, an
overflow is detected from the end carry out of the most significant position. In the case of signed
numbers, two details are important: the leftmost bit always represents the sign, and negative



(c) ketabton.com: The Digital Library
Section 4.6 Decimal Adder 139

numbers are in 2's-complement form. When two signed numbers are added, the sign bit is
treated as part of the number and the end carry does not indicate an overflow.

An overflow cannot occur after an addition if one number is positive and the other is neg-
ative, since adding a positive number to a negative number produces a result whose magnitude
is smaller than the larger of the two original numbers. An overflow may occur if the two num-
bers added are both positive or both negative. To see how this can happen, consider the following
example: Two signed binary numbers, +70 and +80, are stored in two eight-bit registers. The
range of numbers that each register can accommodate is from binary +127 1o binary —128.
Since the sum of the two numbers is +150, it exceeds the capacity of an eight-bit register. This
is also true for —70 and —80, The two additions in binary are shown nexl, together with the
last two carries:

carries: 0 1 carries: 1 0
+70 0 1000110 -70 1 0111010
_+80 0 1010000 ~80 1 0110000
+150 1 0010110 150 0 1101010

Note that the eight-bit result that should have been positive has a negative sign bit (i.e., the
8-th bit) and the eight-bit result that should have been negative has a positive sign bit. If, how-
ever, the carry out of the sign bit position is taken as the sign bit of the result, then the nine-bit
answer so obtained will be correct. But since the answer cannot be accommodated within eight
bits, we say that an overflow has occurred.

An overflow condition can be detected by observing the carry into the sign bit position and
the carry out of the sign bit position. If these two carries are not equal, an overflow has occurred,
This is indicated in the examples in which the two carries are explicitly shown. If the two car-
ries are applied to an exclusive-OR gate, an overflow is detected when the output of the gate
is equal to 1. For this method to work correctly, the 2's complement of a negative number must
be computed by taking the |'s complement and adding 1. This takes care of the condition when
the maximum negative number is complemented.

The binary adder—subtractor circuit with outputs C and V is shown in Fig. 4.13. If the two
binary numbers are considered to be unsigned, then the € bit detects a carry after addition or
a borrow after subtraction. If the numbers are considered to be signed, then the V bit detects
an overflow. If V = 0 after an addition or subtraction, then no overflow occurred and the n-
bit result is correct. If V. = 1, then the result of the operation contains r + 1 bits, but only the
rightmost n bits of the number fit in the space available, so an overflow has occurred. The
(n -+ 1)th bit is the actual sign and has been shifted out of position.

4.6 DECIMAL ADDER

Computers or caleulators that perform arithmetic operations directly in the decimal number sys-
tem represent decimal numbers in binary coded form. An adder for such a computer must em-
ploy arithmetic circuits that accept coded decimal numbers and present results in the same code.
For binary addition, it is sufficient to consider a pair of significant bits together with a previous
carry. A decimal adder requires a minimum of nine inputs and five outputs, since four bits are
required to code each decimal digit and the circuit must have an input and output carry. There



(c) ketabton.com: The Digital Library
140 Chapter 4 Combinational Logic

is a wide variety of possible decimal adder circuits, depending upon the code used to represent
the decimal digits. Here we examine a decimal adder for the BCD code. (See Section 1.7.)

BCD Adder

Consider the arithmetic addition of two decimal digits in BCD, together with an input carry from
a previous stage. Since each input digit does not exceed 9, the output sum cannot be greater than
9 + 9 + 1 =19, the | in the sum being an input carry. Suppose we apply two BCD digits to
a four-bit binary adder. The adder will form the sum in binary and produce a result that ranges
from O through 19. These binary numbers are listed in Table 4.5 and are labeled by symbols
K, Zg, Z4, Z>, and Z,. K is the carry, and the subscripts under the letter Z represent the weights
8,4, 2. and 1 that can be assigned to the four bits in the BCD code. The columns under the bi-
nary sum list the binary value that appears in the outputs of the four-bit binary adder. The out-
put sum of two decimal digits must be represented in BCD and should appear in the form listed
in the columns under “BCD Sum.” The problem is to find a rule by which the binary sum is
converted to the correct BCD digit representation of the number in the BCD sum.

In examining the contents of the table, it becomes apparent that when the binary sum is
equal to or less than 1001, the corresponding BCD number is identical, and therefore no conversion
is needed. When the binary sum is greater than 1001, we obtain an invalid BCD representation.

Table 4.5
Derivation of BCD Adder
Binary Sum BCD Sum Decimal

K Zyg 2 L I C Sg 54 52 5

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 2
0 0 0 1 1 0 0 0 1 1 3
0 0 1 0 0 0 0 1 0 0 -
0 0 1 0 1 0 0 1 0 1 5
0 0 ] 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 1 0 0 0 0 | 0 0 0 8
0 1 0 0 1 0 1 0 0 1 9
0 1 0 1 0 1 0 0 0 0 10
0 1 0 1 1 1 0 0 0 1 11
0 1 1 0 0 1 0 0 1 0 12
0 1 1 0 1 1 0 0 1 1 13
0 1 1 1 0 1 0 1 0 0 14
0 1 1 1 1 1 0 1 0 1 15
1 0 0 0 0 1 0 1 1 0 16
1 0 0 0 1 1 0 1 1 1 17
I 0 0 ] 0 I 1 0 0 0 18
1 0 0 1 1 1 1 0 0 1 19




(c) ketabton.com: The Digital Library

Section 4.6 Decimal Adder 141

The addition of binary 6 (0110) 10 the binary sum converts it to the correct BCD representa-
tion and also produces an output carry as required.

The logic circuit that detects the necessary correction can be derived from the entries in the
table. It is obvious that a correction is needed when the binary sum has an output carry K = 1.
The other six combinations from 1010 through 1111 that need a correction have a | in position
Zg. To distinguish them from binary 1000 and 1001, which also have a | in position Zg, we spec-
ify further that either Z; or Z> must have a |, The condition for a correction and an output
carry can be expressed by the Boolean function

C =K+ ZgZy + ZzZ;
When € = 1. itis necessary to add 0110 to the binary sum and provide an output carry for the
next stage.
A BCD adder that adds two BCD digits and produces a sum digit in BCD is shown in Fig. 4.14.
The two decimal digits, together with the input carry, are first added in the top four-bit adder to
produce the binary sum. When the output carry is equal to 0, nothing is added to the binary sum.

Addend Augend
Cany K - - dbit bisary adder — Carmy
& -t &4
Output
B 1
0
Pitd
5 5N B 5
FIGURE 4.14

Block diagram of a BCD adder



(c) ketabton.com: The Digital Library

142

Chapter 4 Combinational Logic

When it is equal to 1, binary 0110 is added to the binary sum through the bottom four-bit adder.
The output carry generated from the bottom adder can be ignored. since it supplies information
already available at the output carry terminal. A decimal parallel adder that adds n decimal dig-
its needs n BCD adder stages. The output carry from one stage must be connected to the input
carry of the next higher order stage.

4.7 BINARY MULTIPLIER

Multiplication of binary numbers is performed in the same way as multiplication of decimal num-
bers. The multiplicand is multiplied by each bit of the multiplier, starting from the least signifi-
cant bit. Each such multiplication forms a partial product. Successive partial products are shifted
one position to the left. The final product is obtained from the sum of the partial products.

To see how a binary multiplier can be implemented with a combinational circuit, consider
the multiplication of two 2-bit numbers as shown in Fig. 4.15. The multiplicand bits are By and
By, the multiplier bits are A} and A, and the product is C3C5CCy. The first partial product is
formed by multiplying BBy by Ag. The multiplication of two bits such as Ay and By produces
a | if both bits are 1; otherwise, it produces a 0. This is identical to an AND operation. There-
fore, the partial product can be implemented with AND gates as shown in the diagram. The sec-
ond partial product is formed by multiplying BBy by A and shifting one position to the left.
The two partial products are added with two half-adder (HA) circuits. Usually, there are more
bits in the partial products and it is necessary to use full adders to produce the sum of the partial

B, B, Ay
Ay Ay
AyB, AoBy
A I.Bl A 1 Bn
C3 G C‘ Co Ay

FIGURE 4.15
Two-bit by two-bit binary multiplier



(c) ketabton.com: The Digital Library Section 4.7 Binary Multiplier 143

products. Note that the least significant bit of the product does not have to go through an adder,
since it is formed by the output of the first AND gate.

A combinational circuit binary multiplier with more bits can be constructed in a similar
fashion. A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels
as there are bits in the multiplier. The binary output in each level of AND gates is added with
the partial product of the previous level to form a new partial product. The last level produces
the product. For J multiplier bits and K multiplicand bits, we need (J X K) AND gates and
(J = 1) K-bit adders to produce a product of J + K bits.

As a second example, consider a multiplier circuit that multiplies a binary number represented
by four bits by a number represented by three bits. Let the multiplicand be represented by B3 B, B, B,
and the multiplier by A,A A, Since K = 4 and J = 3, we need 12 AND gates and 2 four-bit
adders to produce a product of seven bits. The logic diagram of the multiplier is shown in Fig. 4.16.

Ay -
1
A
' B | B ’
CAddend - : Auaund- e
4-bnadder i
Su:_nand oltputeany =
Apa : .
By B, By B,
S
G
FIGURE 4.16

Four-bit by three-bit binary multiplier



(c) ketabton.com: The Digital Library

144

Chapter 4 Combinational Logic

4.8 MAGNITUDE COMPARATOR

The comparison of two numbers is an operation that determines whether one number is greater
than, less than, or equal to the other number. A magnitude comparator is a combinational cir-
cuit that compares two numbers A and B and determines their relative magnitudes. The outcome
of the comparison is specified by three binary variables that indicate whether A > B, A = B,
orA < B.

On the one hand, the circuit for comparing two n-bit numbers has 2*" entries in the truth
table and becomes too cumbersome, even with n = 3. On the other hand, as one may sus-
pect, a comparator circuit possesses a certain amount of regularity. Digital functions that
possess an inherent well-defined regularity can usually be designed by means of an algo-
rithm—a procedure which specifies a finite set of steps that, if followed, give the solution
to a problem. We illustrate this method here by deriving an algorithm for the design of a
four-bit magnitude comparator.

The algorithm is a direct application of the procedure a person uses to compare the relative
magnitudes of two numbers. Consider two numbers, A and B, with four digits each, Write the
coefficients of the numbers in descending order of significance:

A = Az3AA 1A
B = B3BzB|B{}

Each subscripted letter represents one of the digits in the number. The two numbers are equal
if all pairs of significant digits are equal: A3 = B3, Ay = By, A| = By, and Ag = By. When
the numbers are binary, the digits are either | or 0, and the equality of each pair of bits can be
expressed logically with an exclusive-NOR function as

X; = A;B; + AlB| fori =0,1,2,3

where x; = 1 only if the pair of bits in position  are equal (i.e., if both are 1 or both are 0).

The equality of the two numbers A and B is displayed in a combinational circuit by an
output binary variable that we designate by the symbol (A = B). This binary variable is
equal to 1 if the input numbers, A and B, are equal, and is equal to 0 otherwise. For equal-
ity to exist, all x; variables must be equal to 1, a condition that dictates an AND operation
of all variables:

(A = B) = x3xx1Xg

The binary variable (A = B) is equal to 1 only if all pairs of digits of the two numbers are equal.

To determine whether A is greater or less than B, we inspect the relative magnitudes of pairs
of significant digits, starting from the most significant position. If the two digits of a pair are
equal, we compare the next lower significant pair of digits, The comparison continues until a
pair of unequal digits is reached. If the corresponding digit of A is 1 and that of B is 0, we con-
clude that A > B. If the corresponding digit of A is 0 and that of B is 1, we have A < B. The
sequential comparison can be expressed logically by the two Boolean functions

(A > B) = A3B3 + x3A;B5 + x30A | B] + x3x2x1A0Bp
(A < B) = AiBy + x3A58; + x3x2A1B] + x3v:x1A08)



(c) ketabton.com: The Digital Library
Section 4.8 Magnitude Comparator 145

The symbols (A > B) and (A < B) are binary output variables that are equal to | when
A > Band A < B, respectively.

The gate implementation of the three output variables just derived is simpler than it seems
because it involves a certain amount of repetition. The unequal outputs can use the same
gates that are needed to generate the equal output. The logic diagram of the four-bit magni-
tude comparator is shown in Fig. 4.17, The four x outputs are generated with exclusive-NOR
circuits and are applied to an AND gate to give the output binary variable (A = B). The
other two outputs use the x variables to generate the Boolean functions listed previously.
This is a multilevel implementation and has a regular pattern. The procedure for obtaining
magnitude comparator circuits for binary numbers with more than four bits is obvious from
this example.

(A< 8)

(A = B)

(A=8)

FIGURE 4.17
Four-bit magnitude comparator



(c) ketabton.com: The Digital Library

146

Chapter 4 Combinational Logic

4.9 DECODERS

Discrete quantities of information are represented in digital systems by binary codes. A binary
code of n bits is capable of representing up to 2" distinct elements of coded information. A dec-
oder is a combinational circuit that converts binary information from # input lines to a maxi-
mum of 2" unique output lines. If the n-bit coded information has unused combinations, the
decoder may have fewer than 2" outputs.

The decoders presented here are called n-to-m-line decoders, where m < 2", Their purpose
is 10 generate the 2" (or fewer) minterms of n input variables, The name decoder is also used
in conjunction with other code converters, such as a BCD-to-seven-segment decoder.

As an example, consider the three-to-eight-line decoder circuit of Fig. 4.18. The three inputs
are decoded into eight outputs, each representing one of the minterms of the three input variables.
The three inverters provide the complement of the inputs, and each one of the eight AND gates
generates one of the minterms. A particular application of this decoder is binary-to-octal

J

Dy = .\"_\"l"

D>

D; - I')"i

(2]

D: = I.}':'

D;=x'yz

Ds=xy'z

Dy = xyz'

daogogog@uo U

FIGURE 4.18
Three-to-eight-line decoder



(c) ketabton.com: The Digital Library
Section 4.9 Decoders 147

Table 4.6

Truth Table of a Three-to-Eight-Line Decoder

__ Inputs Outputs
X y z Dy Dy D, D; Dq Ds ”ﬁ Dy
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 | 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
| 0 1 0 0 1] 0 0 I 0 0
1 1 0 0 0 0 0 0 0 1 0
I 1 1 0 0 0 0 0 0 0 1

conversion. The input variables represent a binary number, and the outputs represent the eight
digits of a number in the octal number system. However, a three-to-eight-line decoder can be
used for decoding any three-bit code to provide eight outputs, one for each element of the code,

The operation of the decoder may be clarified by the truth table listed in Table 4.6. For each
possible input combination, there are seven outputs that are equal to 0 and only one that is
equal to 1. The output whose value is equal to 1 represents the minterm equivalent of the bi-
nary number currently available in the input lines.

Some decoders are constructed with NAND gates. Since a NAND gate produces the AND op-
eration with an inverted output, it becomes more economical to generate the decoder minterms
in their complemented form. Furthermore, decoders include one or more enable inputs to con-
trol the circuit operation. A two-to-four-line decoder with an enable input constructed with NAND
gates is shown in Fig. 4,19, The circuit operates with complemented outputs and a complement

E A B Dy Dy Dy Dy
ST S 1 1 1 1
A -T—{>o— 0 0 o0 0 1 1 1
0o 0 1 @ 1 1
0 1 0 1 1 0 1
B 1] 1 1 1 1 1 0
(a) Logic diagram (b) Truth table

FIGURE 4.19
Two-to-four-line decoder with enable input



(c) ketabton.com: The Digital Library

148

Chapter 4 Combinational Logic

enable input. The decoder is enabled when E is equal to 0 (i.e., active-low enable). As indicated
by the truth table, only one output can be equal to 0 at any given time; all other outputs are equal
to 1. The output whose value is equal to 0 represents the minterm selected by inputs A and B. The
circuit is disabled when E is equal to 1, regardless of the values of the other two inputs, When
the circuit is disabled. none of the outputs are equal to 0 and none of the minterms are selected.
In general, a decoder may operate with complemented or uncomplemented outputs. The enable
input may be activated with a O or with a 1 signal. Some decoders have two or more enable in-
puts that must satisfy a given logic condition in order to enable the circuit.

A decoder with enable input can function as a demultiplexer—a circuit that receives infor-
mation from a single line and directs it to one of 2" possible output lines. The selection of a spe-
cific output is controlled by the bit combination of n selection lines. The decoder of Fig. 4.19
can function as a one-to-four-line demultiplexer when E is taken as a data input line and A and
B are taken as the selection inputs. The single input variable £ has a path to all four outputs,
but the input information is directed to only one of the output lines, as specified by the binary
combination of the two selection lines A and B, This feature can be verified from the truth
table of the circuit, For example, if the selection lines AB = 10, output D, will be the same as
the input value E, while all other outputs are maintained at 1. Because decoder and demulti-
plexer operations are obtained from the same circuit, a decoder with an enable input is referred
to as a decoder—demultiplexer,

Decoders with enable inputs can be connected together to form a larger decoder circuit.
Figure 4.20 shows two 3-to-8-line decoders with enable inputs connected to form a 4-to-16-
line decoder. When w = 0, the top decoder is enabled and the other is disabled. The bottom
decoder outputs are all 0's. and the top eight outputs generate minterms 0000 to 0111. When
w = |, the enable conditions are reversed: The bottom decoder outputs generate minterms
1000 to 1111, while the outputs of the top decoder are all 0’s. This example demonstrates the
usefulness of enable inputs in decoders and other combinational logic components. In general,
enable inputs are a convenient feature for interconnecting two or more standard components
for the purpose of combining them into a similar function with more inputs and outputs,

i iang [ —
: “decoder DotoD;

2 E
W Dc '

S
- -decoder -
E‘. i .

FIGURE 4.20
4 % 16 decoder constructed with two 3 X 8 decoders

Dgto Dys




(c) ketabton.com: The Digital Library
Section 4.9 Decoders 149

Combinational Logic Implementation

A decoder provides the 2" minterms of n input variables. Each asserted output of the decoder
is associated with a unique pattern of input bits. Since any Boolean function can be expressed
in sum-of-minterms form, a decoder that generates the minterms of the function, together with
an external OR gate that forms their logical sum, provides a hardware implementation of the
function. In this way, any combinational circuit with » inputs and n outputs can be imple-
mented with an n-to-2"-line decoder and m OR gates.

The procedure for implementing a combinational circuit by means of a decoder and OR
gates requires that the Boolean function for the circuit be expressed as a sum of minterms. A
decoder is then chosen that generates all the minterms of the input variables. The inputs to each
OR gate are selected from the decoder outputs according to the list of minterms of each func-
tion. This procedure will be illustrated by an example that implements a full-adder circuit.

From the truth table of the full adder (see Table 4.4), we obtain the functions for the com-
binational circuit in sum-of-minterms form:

S{x,y,z) = £(1.2,4,7)
Cx, y.z) = £(3,5,6,7)

Since there are three inputs and a total of eight minterms, we need a three-to-eight-line de-
coder. The implementation is shown in Fig. 4.21. The decoder generates the eight minterms for
x, v, and z, The OR gate for output § forms the logical sum of minterms 1, 2, 4, and 7. The OR
gate for output C forms the logical sum of minterms 3. 5, 6. and 7.

A function with a long list of minterms requires an OR gate with a large number of inputs.
A function having a list of k& minterms can be expressed in its complemented form F' with
2" — k minterms. If the number of minterms in the function is greater than 2"/2. then F’ can
be expressed with fewer minterms. In such a case, it is advantageous to use a NOR gate to
sum the minterms of F'. The output of the NOR gate complements this sum and generates the
normal output £, If NAND gates are used for the decoder. as in Fig. 4.19, then the external gates
must be NAND gates instead of OR gates. This is because a two-level NAND gate circuit im-
plements a sum-of-minterms function and is equivalent to a two-level AND-OR circuil.

FIGURE 4.21
Implementation of a full adder with a decoder



(c) ketabton.com: The Digital Library

150

4.10

Chapter 4 Combinational Logic

ENCODERS

An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has
2" (or fewer) input lines and # output lines. The output lines, as an aggregate, generate the bi-
nary code corresponding to the input value. An example of an encoder is the octal-to-binary
encoder whose truth table is given in Table 4.7. It has eight inputs (one for each of the octal
digits) and three outputs that generate the corresponding binary number. It is assumed that only
one input has a value of | at any given time.

The encoder can be implemented with OR gates whose inputs are determined directly from
the truth table. Output : is equal to 1 when the input octal digitis 1, 3, 5, or 7. Output y is | for
octal digits 2, 3, 6, or 7, and output x is 1 for digits 4, 5, 6, or 7. These conditions can be ex-
pressed by the following Boolean output functions:

z=Dy+ D3+ Ds+ Dy
y =Dy + D3+ Dg + Dy
Dy + Ds + Dg + Dq

X

The encoder can be implemented with three OR gates.

The encoder defined in Table 4.7 has the limitation that only one input can be active at any
given time. If two inputs are active simultaneously, the output produces an undefined combi-
nation. For example, if D; and Dg are 1 simultaneously. the output of the encoder will be 111
because all three outputs are equal to 1. The output 111 does not represent either binary 3 or
binary 6. To resolve this ambiguity, encoder circuits must establish an input priority to ensure
that only one input is encoded. If we establish a higher priority for inputs with higher subscript
numbers, and if both D5 and Dj are 1 at the same time, the output will be 110 because Dy has
higher priority than Ds.

Another ambiguity in the octal-to-binary encoder is that an output with all 0's is generated
when all the inputs are 0; but this output is the same as when Dy is equal to 1. The discrep-
ancy can be resolved by providing one more output to indicate whether at least one input is
equal to 1.

Table 4.7
Truth Table of an Octal-to-Binary Encoder

Inputs Outputs
Do Dy D;

4
g
4
&

cocoocooc—
cccococo—0o
ccocooc—-co
cococo—ococcoc
co—ccoo
co—~ocoocoC
c—ocooccocoo
—~cocoococecco |P
—_————ccco |x
——oco—-~co |w
=

—
=




(c) ketabton.com: The Digital Library
Section 4.10 Encoders 151

Table 4.8
Truth Table of a Priority Encoder
Inputs Outputs

Do D] Dz D; X y v
0 0 0 0 X X 0
al 0 (¢} 0 0 0 1
X 1 0 0 0 1 1
X X | 0 1 0 1
X X X 1 | 1 1

Priority Encoder

A priority encoder is an encoder circuit that includes the priority function. The operation of the
priority encoder is such that if two or more inputs are equal to 1 at the same time, the input hav-
ing the highest priority will take precedence. The truth table of a four-input priority encoder is
given in Table 4.8. In addition to the two outputs x and y, the circuit has a third output desig-
nated by V: this is a valid bit indicator that is set to | when one or more inputs are equal to 1.
If all inputs are 0. there is no valid input and V is equal to 0. The other two outputs are not in-
spected when V equals 0 and are specified as don’t-care conditions. Note that whereas X's in
output columns represent don't-care conditions, the X's in the input columns are useful for
representing a truth table in condensed form. Instead of listing all 16 minterms of four variables,
the truth table uses an X to represent either 1 or 0. For exumple, X100 represents the two
minterms 0100 and 1100.

According to Table 4.8, the higher the subscript number, the higher the priority of the input,
Input Dy has the highest priority. so, regardless of the values of the other inputs, when this

D;
D,D; LD —_—
DN, 00 DON"0 o 11 10
m, T, g fr ]
00] X
my
01
o D,
11
Dy m
10
x=D,+ Dy y=Dy+ DD’y
FIGURE 4.22

Maps for a priority encoder



(c) ketabton.com: The Digital Library

152

4.11

Chapter 4 Combinational Logic

D,
D, DO—Lﬁ '
D, —
i ;; X
g, >
Dy i
FIGURE 4.23

Four-input priority encoder

input is 1, the output for xy is 11 (binary 3). D, has the next priority level. The output is 10 if
D, = 1, provided that Dy = (), regardless of the values of the other two lower priority inputs.
The output for Dy is generated only if higher priority inputs are 0, and so on down the priority
levels.

The maps for simplifying outputs x and y are shown in Fig. 4.22. The minterms for the
two functions are derived from Table 4.8, Although the table has only five rows, when each
X in a row is replaced first by 0 and then by 1, we obtain all 16 possible input combinations.
For example, the fourth row in the table, with inputs XX10, represents the four minterms
0010, 0110, 1010, and 1110. The simplified Boolean expressions for the priority encoder
are obtained from the maps. The condition for output V'is an OR function of all the input vari-
ables. The priority encoder is implemented in Fig. 4.23 according to the following Boolean
functions:

.\'=D2+Ds
y = D3+ D\Dj
V=Dy+ D+ Dy + Dy

MULTIPLEXERS

A multiplexer is a combinational circuit that selects binary information from one of many input
lines and directs it to a single output line. The selection of a particular input line is controlled
by a set of selection lines. Normally, there are 2" input lines and n selection lines whose bit com-
binations determine which input is selected.

A two-to-one-line multiplexer connects one of two 1-bit sources to a common destination,
as shown in Fig. 4.24. The circuit has two data input lines, one output line, and one selection
line §. When § = 0, the upper AND gate is enabled and /, has a path to the output. When
S = 1, the lower AND gate is enabled and /| has a path to the output. The multiplexer acts like



(c) ketabton.com: The Digital Library
Section 4.11 Multiplexers 153

’ll

Iy 0
Y MUX Y

I 11

h

5 > s

(a) Logic diagram (b) Block diagram
FIGURE 4.24

Two-to-one-line multiplexer

an electronic switch that selects one of two sources. The block diagram of a multiplexer is
sometimes depicted by a wedge-shaped symbol, as shown in Fig. 4.24(b). It suggests visually
how a selected one of multiple data sources is directed into a single destination. The multiplexer
is often labeled “MUX" in block diagrams.

A four-to-one-line multiplexer is shown in Fig. 4.25. Each of the four inputs, /y through
I;. is applied to one input of an AND gate. Selection lines S; and $; are decoded to select a

h—————fom
1 —l' \
¥
! |
I \
| S
S S| ¥
_0 0 I
0 1|4
5 — 1 0| &
1
% 1 1{ 3
(a) Logic diagram (b) Function table
FIGURE 4.25

Four-to-one-line multiplexer



(c) ketabton.com: The Digital Library

154

Chapter 4 Combinational Logic

particular AND gate. The outputs of the AND gates are applied to a single OR gate that pro-
vides the one-line output. The function table lists the input that is passed to the output for
each combination of the binary selection values. To demonstrate the operation of the circuit,
consider the case when §,5; = 10. The AND gate associated with input I, has two of its in-
puts equal to | and the third input connected to /5. The other three AND gates have at least
one input equal to (. which makes their outputs equal to 0. The output of the OR gate is now
equal to the value of /5, providing a path from the selected input to the output. A multiplexer
is also called a data selector, since it selects one of many inputs and steers the binary infor-
mation to the output line.

The AND gates and inverters in the multiplexer resemble a decoder circuit, and indeed,
they decode the selection input lines. In general, a 2"-to-1-line multiplexer is constructed from
an n-10-2" decoder by adding 2" input lines to it, one to each AND gate. The outputs of the AND
gates are applied to a single OR gate. The size of a multiplexer is specified by the number 2"
of its data input lines and the single output line. The n selection lines are implied from the 2"
data lines. As in decoders, multiplexers may have an enable input to control the operation of
the unit. When the enable input is in the inactive state, the outputs are disabled, and when it is
in the active state, the circuit functions as a normal multiplexer.

Multiplexer circuits can be combined with common selection inputs to provide multiple-bit
selection logic. As an illustration, a quadruple 2-to-1-line multiplexer is shown in Fig. 4.26. The
circuit has four multiplexers, each capable of selecting one of two input lines. Output ¥; can be
selected to come from either input Ag or input By. Similarly, output ¥; may have the value of
A, or By, and so on. Input selection line § selects one of the lines in each of the four multi-
plexers. The enable input E must be active (i.e., asserted) for normal operation. Although the cir-
cuit contains four 2-to-1-line multiplexers, we are more likely to view it as a circuit that selects
one of two 4-bit sets of data lines. As shown in the function table, the unit is enabled when
E = 0. Then, if § = 0, the four A inputs have a path to the four outputs. If, by contrast, § = 1,
the four B inputs are applied to the outputs. The outputs have all 0's when £ = 1, regardless of
the value of S.

Boolean Function implementation

In Section 4.9, it was shown that a decoder can be used to implement Boolean functions by em-
ploying external OR gates. An examination of the logic diagram of a multiplexer reveals that
it is essentially a decoder that includes the OR gate within the unit. The minterms of a func-
tion are generated in a multiplexer by the circuit associated with the selection inputs. The in-
dividual minterms can be selected by the data inputs, thereby providing a method of
implementing a Boolean function of n variables with a multiplexer that has n selection inputs
and 2" data inputs, one for each minterm.

We will now show a more efficient method for implementing a Boolean function of n vari-
ables with a multiplexer that has n — | selection inputs. The first n — 1 variables of the func-
tion are connected to the selection inputs of the multiplexer. The remaining single variable of the
function is used for the data inputs. If the single variable is denoted by z. each data input of the

multiplexer will be z, =*, 1, or 0. To demonstrate this procedure, consider the Boolean function
F(x,v.2) = 2(1,2,6,7)



(c) ketabton.com: The Digital Library
Section 4.11 Multiplexers 155

i — Y,

A

A

JU

¥y

i—

Az

Az

By

m
=

Output Y
B, L

all0's
select A
select B

oo
—_—

B,

By

Fn)

—t

__i_) " Function table
P

—

s ot >o]

(select)

; >
(enable)

FIGURE 4.26
Quadruple two-to-one-line multiplexer

This function of three variables can be implemented with a four-to-one-line multiplexer as
shown in Fig. 4.27. The two variables x and y are applied to the selection lines in that order; x
is connected to the §; input and y to the Sq input. The values for the data input lines are deter-
mined from the truth table of the function. When xy = 00, output F is equal to z because
F = 0whenz = 0and F = | when z = 1. This requires that variable z be applied to data
input 0. The operation of the multiplexer is such that when xy = 00, data input 0 has a path to
the output, and that makes F equal to z. In a similar fashion, we can determine the required input
to data lines 1, 2. and 3 from the value of F when xy = 01, 10, and 11, respectively. This
particular example shows all four possibilities that can be obtained for the data inputs.



(c) ketabton.com: The Digital Library

156

Chapter 4 Combinational Logic

| 4XTMUX

¥ —S. . ; i
(R F 7 y

x —18;
00 0f0 g= : :
0 0 1]1 :
01 0f1 p=p — e 6
0o 1 1o 2 i
1 0 00 gap
10 1|0 0 2

I —13
t 1 0 _
| R (f | Eal

(a) Truth table (b) Multiplexer implementation
FIGURE 4.27

Implementing a Boolean function with a multiplexer

The general procedure for implementing any Boolean function of n variables with a multi-
plexer with n — 1 selection inputs and 2"~ data inputs follows from the previous example.
To begin with, Boolean function is listed in a truth table. Then first # — 1 variables in the table
are applied to the selection inputs of the multiplexer. For each combination of the selection vari-
ables, we evaluate the output as a function of the last variable. This function can be 0, 1, the
variable, or the complement of the variable, These values are then applied to the data inputs in
the proper order.

As a second example, consider the implementation of the Boolean function

F(A,B.C.D) = Z(1,3.4.11,12, 13, 14, 15)

This function is implemented with a multiplexer with three selection inputs as shown in -
Fig. 4.28. Note that the first variable A must be connected to selection input S5 so that A, B,
and C correspond to selection inputs S5, Sy, and S, respectively. The values for the data inputs
are determined from the truth table listed in the figure. The corresponding data line number is
determined from the binary combination of ABC. For example, the table shows that when
ABC = 101, F = D, so the input variable D is applied to data input 5. The binary constants
0 and 1 correspond to two fixed signal values. When integrated circuits are used, logic 0 cor-
responds to signal ground and logic 1 is equivalent to the power signal, depending on the tech-
nology (e.g., 5 volts).

Three-State Gates

A multiplexer can be constructed with three-state gates—digital circuits that exhibit three states.
Two of the states are signals equivalent to logic [ and logic 0 as in a conventional gate, The
third state is a high-impedance siate in which (1) the logic behaves like an open circuit, which
means that the output appears to be disconnected, (2) the circuit has no logic significance, and



ketabton.com: The Digital Li
(¢) ketabton.com: The Digital Library Section 4.11 Multiplexers 157

A B C D|F
0 0 0 0(0 F=p
2w ol 8% 1 MUX
C Sy
0o 1 0|0 F=p v
00 1 11 B 8,
6 1 0 0L p=p A 51
01 0 10
D - 0
01 00 gy LL'
1 1 1]0 Dc b F
§ 5
L0 0 00 pop 0 A
g oo X0 5
|0 0o ,_ 3
¥ o F 1|1 TP 1 P
X D0 Sah I—"r
T ]
I TS N 1
i 4 1 alg £
FIGURE 4.28

Implementing a four-input function with a multiplexer

(3) the circuit connected to the output of the three-state gate is not affected by the inputs to the
gate. Three-state gates may perform any conventional logic, such as AND or NAND. However,
the one most commonly used is the buffer gate.

The graphic symbol for a three-state buffer gate is shown in Fig. 4.29. It is distinguished
from a normal buffer by an input control line entering the bottom of the symbol. The buffer
has a normal input. an output. and a control input that determines the state of the output.
When the control input is equal to I, the output is enabled and the gate behaves like a con-
ventional buffer, with the output equal to the normal input. When the control input is 0, the
output is disabled and the gate goes to a high-impedance state, regardless of the value in
the normal input. The high-impedance state of a three-state gate provides a special feature
not available in other gates. Because of this feature, a large number of three-state gate out-
puts can be connected with wires to form a common line without endangering loading

effects.
Normal input A Output Y =AifC=1
High-impedance if C =0
Control input C
FIGURE 4.29

Graphic symbol for a three-state buffer



(c) ketabton.com: The Digital Library

158

Select

Chapter 4 Combinational Logic

The construction of multiplexers with three-state buffers is demonstrated in Fig. 4.30. Part
(a) of the figure shows the construction of a two-to-one-line multiplexer with 2 three-state
buffers and an inverter. The two outputs are connected together to form a single output line.
(Note that this type of connection cannot be made with gates that do not have three-state out-
puts.) When the select input is 0, the upper buffer is enabled by its control input and the lower
buffer is disabled. Output Y is then equal to input A. When the select input is 1, the lower buffer
is enabled and Y is equal to B.

The construction of a four-to-one-line multiplexer is shown in Fig. 4.30(b). The outputs of
4 three-state buffers are connected together to form a single output line. The control inputs to
the buffers determine which one of the four normal inputs J through /5 will be connected to
the output line. No more than one buffer may be in the active state at any given time. The con-
nected buffers must be controlled so that only 1 three-state buffer has access to the output while
all other buffers are maintained in a high-impedance state. One way to ensure that no more than
one control input is active at any given time is to use a decoder, as shown in the diagram. When
the enable input of the decoder is 0, all of its four outputs are 0 and the bus line is in a high-
impedance state because all four buffers are disabled. When the enable input is active, one of
the three-state buffers will be active, depending on the binary value in the select inputs of the
decoder. Careful investigation reveals that this circuit is another way of constructing a four-to-
one-line multiplexer.

) B
,, 8
o
—Y 5 D_
i )
- — N i .'1
[‘\ elect (5 iy ;
b % docoder 3
Enable EN S I
PSS s
(a) 2-to-1-line mux (b) 4-10-1-line mux

FIGURE 4.30
Muitiplexers with three-state gates



(c) ketabton.com: The Digital Library
Section 4.12 HDL Models of Combinational Circuits 159

4.12 HDL MODELS OF COMBINATIONAL
CIRCUITS

The Verilog hardware description language (HDL) was introduced in Section 3.10. In the cur-
rent section, we present more elaborate examples and compare alternative descriptions of com-
binational circuits in Verilog. Sequential circuits are presented in the next chapter. As mentioned
previously. the module is the basic building block for modeling hardware with the Verilog
HDL. The logic of a module can be described in any one (or a combination) of the following
modeling styles:

+ Gate-level modeling using instantiations of predefined and user-defined primitive gates.
*+ Dataflow modeling using continuous assignment statements with the keyword assign.
+ Behavioral modeling using procedural assignment statements with the keyword always.

Gate-level (structural) modeling describes a circuit by specifying its gates and how they are con-
nected with each other. Dataflow modeling is used mostly for describing the Boolean equations
of combinational logic. We'll also consider here behavioral modeling that is used to describe
combinational and sequential circuits at a higher level of abstraction. There is one other mod-
eling style, called switch-level modeling. 1t is sometimes used in the simulation of MOS tran-
sistor circuit models, but not in logic synthesis. We consider switch-level modeling briefly in
Section 10.10.

Gate-Level Modeling

Gate-level modeling was introduced in Section 3.10 with a simple example. In this type of
representation. a circuit is specified by its logic gates and their interconnections. Gate-level mod-
eling provides a textual description of a schematic diagram. The Verilog HDL includes 12 basic
gates as predefined primitives. Four of these primitive gates are of the three-state type. The other
eight are the same as the ones listed in Section 2.8. They are all declared with the lowercase
keywords and, nand, or, nor. xor. xnor, not, and buf. Primitives such as and are n-input
primitives. They can have any number of scalar inputs (e.g.. a three-input and primitive). The
buf and not primitives are n-output primitives. A single input can drive multiple output lines
distinguished by their identifiers.

The Verilog language includes a functional description of each type of gate, too. The logic
of each gate is based on a four-valued system. When the gates are simulated, the simulator
assigns one value to the output of each gate at any instant. In addition to the two logic val-
ues of 0 and 1, there are two other values: unknown and high impedance. An unknown value
is denoted by x and a high impedance by z. An unknown value is assigned during simula-
tion when the logic value of a signal is ambiguous—for instance, if it cannot be determined
whether its value is 0 or 1 (e.g.. a flip-flop without a reset condition). A high-impedance
condition occurs at the output of three-state gates that are not enabled or if a wire is inad-
vertently left unconnected. The four-valued logic truth tables for the and. or. xor, and not
primitives are shown in Table 4.9. The truth table for the other four gates is the same, except
that the outputs are complemented. Note that for the and gate, the output is 1 only when
both inputs are 1 and the output is 0 if any input is 0. Otherwise, if one input is X or z. the



(c) ketabton.com: The Digital Library

160

Chapter 4 Combinational Logic

Table 4.9

Truth Table for Predefined Primitive Gates

and ([0 | x z or [ 0 1 x z
0 [0 0 0 0 0 0 1 x x
1 |0 1 x x 1 L 1 E 4
X |0 £ x % X x | x x
|0 x ® X% z x ] x x

xor [0 1 x z nol | input output
0]j0 1 x x 0 1
L 6 % x 1 0
X |x x x % X X
Z |X X X Xx z

output is X. The output of the or gate is 0 if both inputs are 0, is 1 if any inputis 1, and is x
otherwise.

When a primitive gate is listed in a module, we say that it is instantiated in the module. In
general, component instantiations are statements that reference lower level components in the
design, essentially creating unique copies (or instances) of those components in the higher
level module. Thus, a module that uses a gate in its description is said to instantiate the gate.
Think of instantiation as the HDL counterpart of placing and connecting parts on a circuit
board.

We now present two examples of gate-level modeling. Both examples use identifiers having
multiple bit widths, called vecrors. The syntax specifying a vector includes within square brack-
ets two numbers separated with a colon. The following Verilog statements specify two vectors:

output [0: 3] D;
wire [7:0] SUM;

The first statement declares an output vector D with four bits, 0 through 3. The second de-
clares a wire vector SUM with eight bits numbered 7 through 0. (Note: The first (leftmost)
number (array index) listed is always the most significant bit of the vector.) The individual
bits are specified within square brackets, so D/2] specifies bit 2 of D. It is also possible to ad-
dress parts (contiguous bits) of vectors. For example, SUM[2: 0] specifies the three least sig-
nificant bits of vector SUM.

HDL Example 4.1 shows the gate-level description of a two-to-four-line decoder. (See
Fig. 4.19.) This decoder has two data inputs A and B and an enable input E. The four outputs
are specified with the vector D. The wire declaration is for internal connections. Three not
gates produce the complement of the inputs, and four nand gates provide the outputs for D. Re-
member that the output is always listed first in the port list of a primitive, followed by the in-
puts. This example describes the decoder of Fig. 4.19 and follows the procedures established
in Section 3.10. Note that the keywords not and nand are written only once and do not have
to be repeated for each gate, but commas must be inserted at the end of each of the gates in the
series, except for the last statement, which must be terminated with a semicolon.



(c) ketabton.com: The Digital Library
Section 4.12 HDL Moedels of Combinational Circuits 161

HDL Example 4.1

1/ Gate-level description of two-to-four-line decoder
I/ Refer to Fig, 4.19 with symbol E replaced by enable, for clarity.

module decoder_2x4_gates (D, A, B, enable);

output [0: 3] D;

input A, B:

input enable;

wire A_not, B_not, enable_not;
not

G1 (A_not, A),

G2 (B_not, B),

G3 (enable_not, enable);

nand

G4 (D[0], A_not, B_not, enable_not),

G5 (D[1], A_not, B, enable_not),

G6 (D[2], A, B_not, enable_not),

G7 (D[3], A, B, enable_not);
endmodule

Two or more modules can be combined to build a hierarchical description of a design.
There are two basic types of design methodologies: top down and bottom up. In a tep-down
design, the top-level block is defined and then the subblocks necessary to build the top-
level block are identified. In a botrom-up design. the building blocks are first identified and
then combined to build the top-level block. Take, for example, the binary adder of Fig. 4.9.
It can be considered as a top-block component built with four full-adder blocks, while each
full adder is built with two half-adder blocks. In a top-down design, the four-bit adder is de-
fined first, and then the two adders are described. In a bottom-up design, the half adder is
defined. then each full adder is constructed, and then the four-bit adder is built from the full
adders.

A bottom-up hierarchical description of a four-bit adder is shown in HDL Example 4.2,
The half adder is defined by instantiating primitive gates. The next module describes the
full adder by instantiating two half adders, The third module describes the four-bit adder by
instantiating four full adders. Note that the first character of an identifier cannot be a num-
ber, but can be an underscore. so the module name _4biradder is valid. An alternative name
that is meaningful, but does not require a leading underscore, is adder_4_bit. The instanti-
ation is done by using the name of the module that is instantiated together with a new (or the
same) set of port names, For example. the half adder HA/ inside the full adder module is in-
stantiated with ports §7. C/. x, and y. This produces a half adder with outputs §1 and CI and
inputs v and y.



(c) ketabton.com: The Digital Library

162

Chapter 4 Combinational Logic

HDL Example 4.2

Il Gate-level description of four-bit ripple carry adder
/{ Description of half adder (Fig. 4.5b)

/l module half_adder (S, C, x, y); Il Verilog 1995 syntax
/l output S, C,
Il input  x, v,

module half_adder (output S, C, input x, y); /! Verilog 2001, 2005 syntax
/! Instantiate primitive gates

xor (S, X, y);

and (C, x, y);
endmodule

/I Description of full adder (Fig. 4.8) Il Verilog 1995 syntax
/I module full_adder (S, C, x, v, z);

/| output S, C;

/' input X, ¥, Z;

module full_adder (output S, C, input x, y, z); /] Verilog 2001, 2005 syntax
wire S1, C1, C2;

/! Instantiate half adders
half_adder HA1 (S1, C1, x, y);
half_adder HAZ2 (S, C2, 81, z);
or G1(C, C2, C1);

endmodule

/f Description of four-bit adder (Fig. 4.9) Il Verilog 1995 syntax
// module ripple_carry_4_bit_adder (Sum, C4, A, B, C0);
// output [3: 0] Sum;

/l output C4;
/[l input [3:0] A, B;
/I input Co;

// Alternative Verilog 2001, 2005 syntax:

module ripple_carry_4_bit_adder ( output [3: 0] Sum, output C4,
input [3: 0] A, B, input CO0);
wire C1, C2, C3; I/l Intermediate carries
I/ Instantiate chain of full adders
full_adder FAOD (Sum(0], C1, A[0], B[O], CO),
FA1 (Sum[1], C2, A[1], B[1], C1),
FA2 (Sum[2], C3, A[2], B[2], C2),
FA3 (Sum([3], C4, A[3], B[3], C3);
endmodule




(c) ketabton.com: The Digital Library
Section 4.12 HDL Models of Combinational Circuits 163

HDL Example 4.2 illustrates Verilog 2001, 2005 syntax, which eliminates extra typing of
identifiers declaring the mode (e.g.. output). type (reg). and declaration of a vector range (e.g.,
[3: 0]). The first version of the standard (1995) uses separate statements for these declarations.

Note that modules can be instantiated (nested) within other modules, but module declara-
tions cannot be nested: that is, a module definition (declaration) cannot be placed within an-
other module declaration. In other words, a module definition cannot be inserted into the text
between the module and endmodule keywords of another module. The only way one module
definition can be incorporated into another module is by instantiating it. Instantiating modules
within other modules creates a hierarchical decomposition of a design. A description of a mod-
ule is said to be a srructural description if it is composed of instantiations of other modules.
Note also that instance names must be specified when defined modules are instantiated (such
as FAO for the first full adder in the third module), but using a name is optional when instanti-
ating primitive gates, Module ripple_carry_4_bit_adder is composed of instantiated and in-
terconnected full adders. each of which is itself composed of half adders and some glue logic.
The top level, or parent module, of the design hierarchy is the module ripple_carrv_4_bit_adder.
Four copies of full_adder are its child modules, ete, €0 is an input of the cell forming the least
significant bit of the chain, and €4 is the output of the cell forming the most significant bit.

Three-State Gates

As mentioned in Section 4.11, a three-state gate has a control input that can place the gate into
a high-impedance state. The high-impedance state is symbolized by z in Verilog. There are four
types of three-state gates, as shown in Fig. 4.31. The bufill gate behaves like a normal buffer
if control = 1. The output goes to a high-impedance state z when conrrol = ). The bufifQ
gate behaves in a similar fashion, except that the high-impedance state occurs when control = 1.
The two not gates operate in a similar manner, except that the output is the complement of
the input when the gate is not in a high-impedance state. The gates are instantiated with the

statement
gate name (owtpur, input, control);

in ? out in T out
control control

bufif! bufif0
in ﬁw oul in ——Qo— out
control control —i

notifl notiffh

FIGURE 4.31

Three-state gates



(c) ketabton.com: The Digital Library

164

Chapter 4 Combinational Logic

The gate name can be that of any | of the 4 three-state gates. In simulation, the output can re-
sultin 0, 1, x, or z. Two examples of gate instantiation are

bufifi (OUT, A, control);
notifd (Y, B, enable);

In the first example, input A is transferred o OUT when control = 1. OUT goes to z when
control = 0. In the second example, output ¥ = z when enable = 1 and output Y = B’ when
enable = (0,

The outputs of three-state gates can be connected together to form a common output line.
To identify such a connection, Verilog HDL uses the keyword tri (for tristate) to indicate that
the output has multiple drivers. As an example, consider the two-to-one-line multiplexer with
three-state gates shown in Fig. 4,32,

The HDL description must use a tri data type for the output:

// Mux with three-state output

module mux_tri (m_out, A, B, select);
output m_out;
input A, B, select;
tri - m_out;

bufif1 (m_out, A, select);
bufif0 (m_out, B, select);

endmodule
The 2 three-state buffers have the same output. In order to show that they have a common con-
nection, it is necessary to declare m_out with the keyword tri.

Keywords wire and tri are examples of a set of data types called nets, which represent con-
nections between hardware elements. In simulation, their value is determined by a continuous
assignment statement or by the device whose output they represent. The word net is not a key-
word, but represents a class of data types, such as wire, wor, wand, tri, supplyl. and supply0.
The wire declaration is used most frequently. In fact, if an identifier is used, but not declared,
the language specifies that it will be interpreted (by default) as a wire. The net wor models the
hardware implementation of the wired-OR configuration (emitter-coupled logic). The wand
models the wired-AND configuration (open-collector technology: see Fig. 3.28). The nets
supply1 and supply0 represent power supply and ground, respectively. They are used to hard-
wire an input of a device to either 1 or 0.

A > m_out

T

” T

select

FIGURE 4.32
Two-to-one-line multiplexer with three-state buffers



(c) ketabton.com: The Digital Library
Section 4.12 HDL Models of Combinational Circuits 165

Dataflow Medeling

Dataflow modeling of combinational logic uses a number of operators that act on operands to
produce desired results, Verilog HDL provides about 30 different operators, Table 4,10 lists some
of these operators, their symbols. and the operation that they perform. (A complete list of op-
erators supported by Verilog 2001, 2005 can be found in Table 8.1 in Section 8.2.) It is neces-
sary to distinguish between arithmetic and logic operations, so different symbols are used for
each. The plus symbol (+) indicates the arithmetic operation of addition: the bitwise logic
AND operation (conjunction) uses the symbol &. There are special symbols for bitwise logi-
cal OR (disjunction), NOT, and XOR. The equality symbol uses two equals signs (without
spaces between them) to distinguish it from the equals sign used with the assign statement. The
bitwise operators operate bit by bit on a pair of vector operands. The concatenation operator
provides a mechanism for appending multiple operands. For example, two operands with two
bits each can be concatenated to form an operand with four bits. The conditional operator acts
like a multiplexer and is explained later, in conjunction with HDL Example 4.6.

Dataflow modeling uses continuous assignments and the keyword assign. A continuous as-
signment is a statement that assigns a value to a net. The data type family ne is used in Ver-
ilog HDL to represent a physical connection between circuit elements. A net is declared
explicitly by a net keyword (e.g.. wire) or by declaring an identifier to be an output port. The
logic value associated with a net is determined by what the net is connected to. If the net is con-
nected to an output of a gate, the net is said to be driven by the gate, and the logic value of the
net is determined by the logic values of the inputs to the gate and the truth table of the gate, If
the identifier of a net is the left-hand side of a continuous assignment statement or a procedural
assignment statement, the value assigned to the net is specified by an expression that uses
operands and operators. As an example, assuming that the variables were declared, a two-to-
one-line multiplexer with data inputs A and B, select input S, and output Y is described with
the continuous assignment

assign ¥ = (A & S)|(B& ~S):

Table 4.10
Some Verifog HDL Operators

Symbol Operation

binary addition
binary subtraction
bitwise AND
bitwise OR
bitwise XOR
bitwise NOT
equality
greater than
less than

{} concatenation
% conditional

s—f |+

1
Wt

AV




(c) ketabton.com: The Digital Libraéy i X
166  Chapter 4 Combinational Logic

The relationship between Y, A, B, and § is declared by the keyword assign, followed by the target
output Y and an equals sign. Following the equals sign is a Boolean expression. In hardware terms,
this assignment would be equivalent to connecting the output of the OR (|) gate to wire Y.

The next two examples show the dataflow models of the two previous gate-level examples.
The dataflow description of a two-to-four-line decoder is shown in HDL Example 4.3. The cir-
cuit is defined with four continuous assignment statements using Boolean expressions, one for
each output. The dataflow description of the four-bit adder is shown in HDL Example 4.4. The
addition logic is described by a single statement using the operators of addition and concatena-
tion. The plus symbol ( +) specifies the binary addition of the four bits of A with the four bits of
B and the one bit of C_in. The target output is the concatenation of the output carry C_out and
the four bits of Sum. Concatenation of operands is expressed within braces and a comma sepa-
rating the operands. Thus, /C_out, Sum} represents the five-bit result of the addition operation.

HDL Example 4.3

/I Dataflow description of two-to-four-line decoder

I See Fig. 4.19. Note: The figure uses symbol E, but the
/I Verilog madel uses enable to clearly indicate functionality.

module decoder_2x4_df ( /I Verilog 2001, 2005 syntax
output [0: 3] D,
input A B,
enable
)

assign D[0] = ~(~A & ~B & ~enable),
D[1] = ~(~A & B & ~enable),
D[2] = ~(A & ~B & ~enable),
D[3] = ~(A & B & ~enable),
endmodule

HDL Example 4.4

/Il Dataflow description of four-bit adder
I/ Verilog 2001, 2005 module port syntax

module binary_adder (

output [3: 0] Sum,
output C_out,
input [3:0] A, B,
input C_in

):

assign {C_out, Sum}=A+B + C_in;
endmodule




(c) ketabton.com: The Digital Library
Section 4.12 HDL Models of Combinational Circuits 167

Dataflow HDL models describe combinational circuits by their function rather than by their
gate structure. To show how dataflow descriptions facilitate digital design, consider the 4-bit mag-
nitude comparator described in HDL Example 4.5. The module specifies two 4-bit inputs A and
B and three outputs. One output (A_{r_B) is logic | if A is less than B. a second output (A_gr_B)
is logic 1 if A is greater than B, and a third output (A_eg_B) is logic 1 if A is equal 1o B. Note
that equality (identity) is symbolized with two equals signs (==) to distinguish the operation
from that of the assignment operator (= ). A Verilog HDL synthesis compiler can accept this
module description as input, execute synthesis algorithms, and provide an output netlist and a
schematic of a circuit equivalent to the one in Fig. 4.17, all without manual intervention!

HDL Example 4.5

I/ Dataflow description of a four-bit comparator IN2001, 2005 syntax

module mag_compare

( output A_It B,A _eq_B, A gl B,
input [3: 0] A B

)

assign A_It_B = (A <B);
assign A_gt_B = (A >B);
assign A_eq_B = (A==B),
endmodule

The next example uses the conditional operator ( ? 1 ). This operator takes three operands:
condition ? true-expression : false-expression;

The condition is evaluated. If the result is logic 1. the true expression is evaluated. If the result is
logic 0, the false expression is evaluated, The two conditions together are equivalent to an if-else
condition. HDL Example 4.6 describes a two-to-one-line multiplexer using the conditional oper-
ator. The continuous assignment

assign OUT = select ? A: B;
specifies the condition that OUT = A if select = 1, else OUT = Bif selecr = 0,

HDL Example 4.6

{I Dataflow description of two-to-cne-line multiplexer
module mux_2x1_df(m_out, A, B, select);

output m_out;
input A, B;
input select;

assign m_out = (select)? A : B;
endmodule




(c) ketabton.com: The Digital Library

168 Chapter 4 Combinational Logic

Behavioral Modeling

Behavioral modeling represents digital circuits at a functional and algorithmic level. It is used
mostly to describe sequential circuits, but can also be used to describe combinational circuits.
Here, we give two simple combinational circuit examples to introduce the subject. Behavioral
modeling is presented in more detail in Section 5.6, after the study of sequential circuits.

Behavioral descriptions use the keyword always, followed by an optional event control ex-
pression and a list of procedural assignment statements. The event control expression specifies
when the statements will execute. The target output of procedural assignment statements must
be of the reg data type. Contrary to the wire data type. whereby the target output of an as-
signment may be continuously updated, a reg data type retains its value until a new value is
assigned.

HDL Example 4.7 shows the behavioral description of a two-to-one-line multiplexer.
(Compare it with HDL. Example 4.6.) Since variable m_out is a target output, it must be de-
clared as reg data (in addition to the output declaration). The procedural assignment state-
ments inside the always block are executed every time there is a change in any of the variables
listed after the @ symbol. (Note that there is no semicolon (;) at the end of the always state-
ment.) In this case, these variables are the input variables A, B, and select. The statements
execute if A, B, or select changes value. Note that the keyword or, instead of the bitwise
logical OR operator ", is used between variables. The conditional statement if-else pro-
vides a decision based upon the value of the select input. The if statement can be written with-
out the equality symbol:

if (select) OUT = A,
The statement implies that select is checked for logic 1.

HDL Example 4.7

I/ Behavioral description of two-to-one-line multiplexer
module mux_2x1_beh (m_out, A, B, select);

output m_out;
input A, B, select;
reg m_out;

always @(A or B or select)
if (select == 1) m_out = A;
else m_out = B;

endmodule

HDL Example 4.8 describes the function of a four-to-one-line multiplexer. The select input
is defined as a two-bit vector, and output y is declared to have type reg. The always statement, in
this example, has a sequential block enclosed between the keywords case and endcase. The block
is executed whenever any of the inputs listed after the @ symbol changes in value, The case state-
ment is a multiway conditional branch construct. Whenever in_0, in_1. in_2, in_3 or select change,
the case expression (se/ect) is evaluated and its value compared, from top to bottom, with the
values in the list of statements that follow, the so-called case items. The statement associated with



c) ketabton.com: The Digital Librar
© 9 Secylion 4.12 HDL Models of Combinational Circuits 169

the first case item that matches the case expression is executed. In the absence of a match, no
statement is executed. Since select is a two-bit number, it can be equal to 00, 01, 10, or 11. The
case items have an implied priority because the list is evaluated from top to bottom.

The list is called a sensitiviry list (Verilog 2001, 2005) and is equivalent to the event con-
trol expression (Verilog 1995) formed by “ORing” the signals.

HDL Example 4.8

/I Behavioral description of four-to-one line multiplexer
1 Verilog 2001, 2005 port syntax

module mux_4x1_beh

( output reg m_out,

input in_0,in_1,in_2,in_3,

input [1: 0] select

)i

always @ (in_0, in_1,in_2, in_3, select) 1/ Verilog 2001, 2005 syntax
case (select)

2'b00: m_out=in_0;
2'b01: m_out =in_1;
2'b10: m_out =in_2;
2b11: m_out =in_3;
endcase
endmodule

Binary numbers in Verilog are specified and interpreted with the letter b preceded by a
prime. The size of the number is written first and then its value. Thus, 2'b0] specifies a two-
bit binary number whose value is 01. Numbers are stored as a bit pattern in memory, but they
can be referenced in decimal. octal, or hexadecimal formats with the letters “d. "o, and "h, re-
spectively. If the base of the number is not specified. its interpretation defaulis to decimal, If
the size of the number is not specified. the system assumes that the size of the number is at least
32 bits: if a host simulator has a larger word length—say. 64 bits—the language will use that
value to store unsized numbers. The integer data type (keyword integer) is stored in a 32-bit
representation. The underscore (_) may be inserted in a number to improve readability of the
code (e.g.. 16'b0101_1110_0101_0011). It has no other effect.

The case construct has two important variations: casex and casez. The first will treat as
don’t-cares any bits of the case expression or the case item that have logic value x or z. The
casez construct treats as don't-cares only the logic value z. for the purpose of detecting a match
between the case expression and a case item.

If the list of case items does not include all possible bit patterns of the case expression, no
match can be detected. Unlisted case items, i.e., bit patterns that are not explicitly decoded
can be treated by using the default keyword as the, last item in the list of case items. The as-
sociated statement will execute when no other match is found. This feature is useful, for ex-
ample, when there are more possible state codes in a sequential machine than are actually used,
Having a default case item lets the designer map all of the unused states to a desired next state
without having to elaborate each individual state, rather than allowing the synthesis tool to ar-
bitrarily assign the next state.



(c) ketabton.com: The Digital Library

170

Chapter 4 Combinational Logic

The examples of behavioral descriptions of combinational circuits shown here are simple
ones. Behavioral modeling and procedural assignment statements require knowledge of se-
quential circuits and are covered in more detail in Section 5.6.

Writing a Simple Test Bench

A test bench is an HDL program used for describing and applying a stimulus to an HDL model
of a circuit in order to test it and observe its response during simulation. Test benches can be quite
complex and lengthy and may take longer to develop than the design that is tested. The results
of a test are only as good as the test bench that is used to test a circuit. Care must be taken to
write stimuli that will test a circuit thoroughly, exercising all of the operating features that are
specified. However, the test benches considered here are relatively simple, since the circuits we
want to test implement only combinational logic. The examples are presented to demonstrate
some basic features of HDL stimulus modules. Chapter 8 considers test benches in greater depth.

In addition to employing the always statement, test benches use the initial statement to pro-
vide a stimulus to the circuit being tested. We use the term “always statement™ loosely. Actu-
ally, always is a Verilog language construct specifying how the associated statement is to
execute (subject to the event control expression). The always statement executes repeatedly in
a loop. The initial statement executes only once, starting from simulation time 0, and may
continue with any operations that are delayed by a given number of time units, as specified by
the symbol #. For example, consider the initial block

initial
begin
A=0:B=0,
#10 A=1;
#20 A=0;B=1;
end
The block is enclosed between the keywords begin and end. At time 0, A and B are set to 0.
Ten time units later, A is changed to 1. twenty time units after that (at 7 = 30) A is changed to
0 and B to 1. Inputs specified by a three-bit truth table can be generated with the initial block:
initial
begin
D = 3'b000;
repeat (7)
#10 D =D + 3'b001;
end
When the simulator runs, the three-bit vector D is initialized to 000 at time = 0. The keyword
repeat specifies a looping statement: D is incremented by | seven times, once every 10 time
units. The result is a sequence of binary numbers from 000 to 111,
A stimulus module has the following form:

module test_module_name,
/I Declare local reg and wire identifiers.
/! Instantiate the design module under test.
Il Specify a stopwatch, using $finish to terminate the simulation.



(c) ketabton.com: The Digital Likrafyon 4.12 HDL Models of Combinational Circuits 171

Il Generate stimulus, using initial and always statements.
/I Display the output response (text or graphics (or both)).
endmodule

A test module is written like any other module, but it typically has no inputs or outputs. The
signals that are applied as inputs to the design module for simulation are declared in the stim-
ulus module as local reg data type. The outputs of the design module that are displayed for test-
ing are declared in the stimulus module as local wire data type. The module under test is then
instantiated, using the local identifiers in its port list. Figure 4.33 clarifies this relationship.
The stimulus module generates inputs for the design module by declaring local identifiers z_A
and ¢_B as reg type and checks the output of the design unit with the wire identifier 1_C. The
local identifiers are then used to instantiate the design module being tested. The simulator as-
sociates the (actual) local identifiers within the test bench. /_A, 1_B, and 1_C, with the formal
identifiers of the module (A, B, €). The association shown here is based on position in the port
list, which is adequate for the examples that we will consider. The reader should note, however,
that Verilog provides a more flexible name association mechanism for connecting ports in
larger circuits.

The response to the stimulus generated by the initial and always blocks will appear in text
format as standard output and as waveforms (timing diagrams) in simulators having graphical
output capability. Numerical outputs are displayed by using Verilog system tasks. These are built-
in system functions that are recognized by keywords that begin with the symbol $. Some of the
system tasks that are useful for display are

$display—display a one-time value of variables or strings with an end-of-line return,
$write—same as $display, but without going to next line,

$monitor—display variables whenever a value changes during a simulation run,
$time—display the simulation time,

$finish—terminate the simulation,

module t_circuit;
reg' I_A:,; t-B_;
wire t.C; MR
parameter sihp_time = 1000;

areuitM (lt_CH

!l Stimutos gcﬁcra_tﬁj’s for

/A and t_B-go_fuéxe'_': R
iuiﬁal#stop_'tiﬁeiﬁﬁdif.. 5

endmodule o

FIGURE 4.33
Interaction between stimulus and design modules



(c) ketabton.com: The Digital Library

172

Chapter 4 Combinational Logic

The syntax for $display, $write, and $monitor is of the form
Task-name (format specification, argument list);

The format specification uses the symbol % to specify the radix of the numbers that are dis-
played and may have a string enclosed in quotes ("). The base may be binary. decimal. hexa-
decimal, or octal, identified with the symbols %b, %d, %h, and %o, respectively (%B. %D, %H,
and %0 are valid t00). For example, the statement

$display ("%d %b %b", C, A, B),

specifies the display of C in decimal and of A and B in binary. Note that there are no commas
in the format specification, that the format specification and argument list are separated by a
comma, and that the argument list has commas between the variables. An example that spec-
ifies a string enclosed in quotes may look like the statement

$display ("time = %0d A = %b B = %b", $time, A, B);
and will produce the display
time=3 A=10 B=1

where (time = ), (A = ), and (B = ) are part of the string to be displayed. The format specifiers
%0d, %b, and %b specify the base for $time, A, and B, respectively. In displaying time val-
ues, it is better to use the format %0d instead of %d. This provides a display of the significant
digits without the leading spaces that %d will include. (%d will display about 10 leading spaces
because time is calculated as a 32-bit number.)

An example of a stimulus module is shown in HDL Example 4.9. The circuit to be tested is
the two-to-one-line multiplexer described in Example 4.6. The module 7_mux_2x/_df has no
ports. The inputs for the mux are declared with a reg keyword and the outputs with a wire
keyword. The mux is instantiated with the local variables. The initial block specifies a se-
quence of binary values to be applied during the simulation. The output response is checked
with the $monitor system task. Every time a variable in its argument changes value, the sim-
ulator displays the inputs, output, and time. The result of the simulation is listed under the sim-
ulation log in the example. It shows that m_out = A when select = | and m_our = B when
select = 0, verifying the operation of the multiplexer.

HDL Example 4.9

/I Test bench with stimulus for mux_2x1_df

module {_mux_2x1_df;

wire t_mux_out;
reg tA t_B;
reg 1_select;

parameter stop_time = 50;
mux_2x1_df M1 (t_mux_out, t A, t B, t_select)) // Instantiation of circuit to be tested



(c) ketabton.com: The Digital Libfaryjon 4.12  HDL Models of Combinational Circuits 173

initial # stop_time $finish;

initial begin /1 Stimulus generator
t select=1;t A=0;t B=1;
#10 tA=1;tB=0
#10 t_select=0;
#10 tA=0;t B=1;
end
initial begin 1/ Response monitor

I $display (" time Select A B m_out");
// $monitor (Stime,,” %b %b %b %b", t_select, t_A,t B, t_m_out)
$monitor ("time=", $time,, "select = %b A = %b B = %b OUT = %b",
t_select, t_A, t_B, t_mux_out);
end
endmodule

/I Dataflow description of two-to-one-line multiplexer

/I from Example 4.6

module mux_2x1_df (m_out, A, B, select),
output m_out;
input A B;
input select;

assign m_out = (select)? A : B;
endmodule

Simulation log:

select=1A=0B=10UT=0time=0
select=1A=1B=00UT =1time=10
select=0A=1B=00UT=0time =20
select=0A=0B=10UT=1time =30

Logic simulation is a fast, accurate method of analyzing combinational circuits to verify
that they operate properly. There are two types of verification: functional and timing. In func-
tional verification, we study the circuit logical operation independently of timing considera-
tions. This can be done by deriving the truth table of the combinational circuit. In riming
verification, we study the circuit’s operation by including the effect of delays through the
gates. This can be done by observing the waveforms at the outputs of the gates when they
respond to a given input. An example of a circuit with gate delays was presented in Section
3.10 in HDL Example 3.3, We next show an HDL example that produces the truth table of
a combinational circuit. A $monitor system task displays the output caused by the given
stimulus. A commented alternative statement having a $display task would create a header
that could be used with a $monitor statement to eliminate the repetition of names on each
line of output.

The analysis of combinational circuits was covered in Section 4.3. A multilevel circuit of a
full adder was analyzed, and its truth table was derived by inspection. The gate-level description
of this circuit is shown in HDL Example 4.10. The circuit has three inputs, two outputs, and



(c) ketabton.com: The Digital Library

174

Chapter 4 Combinational Logic

nine gates. The description of the circuit follows the interconnections between the gates ac-
cording to the schematic diagram of Fig. 4.2, The stimulus for the circuit is listed in the sec-
ond module. The inputs for simulating the circuit are specified with a three-bit reg vector D,
D[2] is equivalent to input A, Df /] to input B, and D[0] to input C. The outputs of the circuit
F, and F; are declared as wire. The complement of F2 is named F2_b to illustrate a common
industry practice for designating the complement of a signal (instead of appending _nor). This
procedure follows the steps outlined in Fig. 4.33. The repeat loop provides the seven binary
numbers after 000 for the truth table. The result of the simulation generates the output truth table
displayed with the example. The truth table listed shows that the circuit is a full adder.

HDL Example 4,10

/I Gate-level description of circult of Fig, 4.2

module Circuit_of_Fig_4_2 (A, B, C, F1, F2),
input A B, C;
output F1, F2,
wire T1,72 T3 F2_b, E1, E2 E3;
or gi(T1,A B, C)
and g2 (T2, A, B, C);
and g3 (E1, A, B);
and g4 (E2, A, C);
and g5 (E3, B, C);
or g6 (F2 E1 E2 E3)
not g7 (F2_b, F2),
and g8 (T3, T1, F2_b);
or @g9(F1,T2 T3),
endmodule

/i Stimulus to analyze the circuit

module test_circuit;
reg [2: 0] D;
wire F1, F2;
Circuit_of_Fig_4_2 M_F4_32 (D[2], D[1), D[0), F1, F2);
initial
begin
D = 3'b000;
repeat (7)#10D =D + 1'b1;
end

initial
$monitor ("ABC = %b F1 = %b F2 =%b ", D, F1, F2);

endmodule

Simulation log: ABC =000 F1=0F2=0
ABC=001F1=1F2=0ABC=010F1=1F2=0
ABC=011F1=0F2=1ABC=100F1=1F2=0
ABC=101F1=0F2=1ABC=110F1=0F2 =1
ABC=111F1=1F2=1




(c) ketabton.com: The Digital Library
Problems 175

PROBLEMS

Answers to problems marked with * appear at the end of the book. Where appropriate, a logic design
and its related HDL modeling problem are cross referenced.

4.1 Consider the combinational circuits shown in Fig. P4.1 (HDL — see Problem 4.49),

FIGURE P4.1

(a)* Derive the Boolean expressions for 7, through T4. Evaluate the outputs Fy and F; as a func-
tion of the four inputs.

(b) List the truth table with 16 binary combinations of the four input variables, Then list the bi-
nary values for T, through T4 and outputs F and F in the table,

(c) Plot the Boolean output functions obtained in part (b) on maps, and show that the simplified
Boolean expressions are equivalent to the ones obtained in part (a),

4.2*  Obtain the simplified Boolean expressions for outputs F and G in terms of the input variables in
the circuit of Fig. P4.2.

4.3 For the circuit shown in Fig. 4.26 (Section 4.11),
(a) Write the Boolean functions for the four outputs in terms of the input variables,
(b)* 1 the circuit is listed in a truth table, how many rows and columns would there be in the
table?



(c) ketabton.com: The Digital Library

176

Chapter 4 Combinational Logic

4.4 Design a combinational circuit with three inputs and one output.

(a)" The output is | when the binary value of the inputs is less than 3. The output is 0 otherwise.
(b) The output is | when the binary value of the inputs is an odd number.

4.5  Design a combinational circuit with three inputs, x, y, and z, and three outputs, A, B, and C. When
the binary input is 0, 1, 2, or 3, the binary output is two greater than the input. When the binary
input is 4, 5, 6, or 7, the binary output is three less than the input.

4.6 Amajority circuit is a combinational circuit whose output is equal to | if the input variables have
more 1's than 0's. The output is 0 otherwise.

(a)" Design a three-input majority circuit by finding the circuits truth table, Boolean equation, and
a logic diagram,
(b) Write and verify a Verilog dataflow model of the circuit,

4.7 Design a combinational circuit that converts a four-bit Gray code (Table 1-6) to a four-bit bina-

ry number.
(a)" Implement the circuit with exclusive-OR gates,
(b) Using a case statement. write and verify a Verilog model of the circuit.

4.8 Design a code converter that converts a decimal digit from the 8, 4, <2, =1 code to BCD (see
Table 1.5). (HDL — see Problem 4.50.)

4.9  An ABCD-to-seven-segment decoder is a combinational circuit that converts a decimal digit in
BCD to an appropriate code for the selection of segments in an indicator used to display the dec-
imal digit in a familiar form. The seven outputs of the decoder (a, b, c. d. e, f. g) select the cor-
responding segments in the display, as shown in Fig. P4.9(a). The numeric display chosen to
represent the decimal digit is shown in Fig. P4.9(b). Using a truth table and Karnaugh maps, de-
sign the BCD-to-seven-segment decoder, using a minimum number of gates. The six invalid com-
binations should result in a blank display. (HDL—see Problem 4.51.)

-
/. |b =
g | i - - = - - i
=3 00 0 T T o
el 41 N T I T O T T I
(a) Segment designation {b) Numerical designation for display
FIGURE P4.9

4.10" Design a four-bit combinational circuit 2's complementer. (The output generates the 2's comple-

4.1

ment of the input binary number.) Show that the circuit can be constructed with exclusive-OR
gates, Can you predict what the output functions are for a five-bit 2's complementer?

Using four half-adders (HDL — see Problem 4.52),

{a) Design a four-bit combinational circuit incrementer (a circuit that adds 1 to a four-bit bina-
ry number).

(b) Design a four-bit combinational circuit decrementer (a circuit that subtracts 1 from a four-
bit binary number).

4.12 (a) Design a half-subtractor circuit with inputs x and y and outputs Diff and B,,,. The circuit

subtracts the bits x = y and places the difference in Diff and the borrow in B,



(c) ketabton.com: The Digital Library Problems 177

(b)* Design a full-subtractor circuit with three inputs, X, ¥, B;,, and two outputs Diff and B ;. The
circuit subtracts x — v — By,, where By, is the input borrow, B, is the output borrow, and

Diff is the difference.
4.13" The adder-subtractor circuit of Fig. 4.13 has the following values for mode input M and data in-
puts A and B:

M A B

(a) 0 0111 0110

(b) 0 1000 100

(ey 1 1100 1000

(d) 1 0101 1010

{e) 1 0000 0001

In each case, determine the values of the four SUM outputs, the carry C, and overflow V. (HDL—
see Problems 4.37 and 4.40.)

4.74% Assume that the exclusive-OR gate has a propagation delay of 10 ns and that the AND or OR gates
have a propagation delay of 5 ns. What is the total propagation delay time in the four-bit adder
of Fig. 4.127

4.15  Derive the two-level Boolean expression for the output carry €y shown in the lookahead carry gen-
erator of Fig, 4.12,

4.16 Define the carry propagate and carry generale as
P =A; + B
Gr . A,‘Bl
respectively. Show that the output carry and output sum of a full adder becomes
Ciy1 = (Ci'c;f' APl
Si=(PG/)@C
The logic diagram of the first stage of a four-bit parallel adder as implemented in IC type 74283

is shown in Fig. P4.16. Identify the P;" and G;’ terminals and show that the circuit implements a
full adder.

Ag

GCo DC
FIGURE P4.16
First stage of a parallel adder




(c) ketabton.com: The Digital Library

178

Chapter 4 Combinational Logic

417

4.18°

4.19

4.20

4.1

4.22

4.23

4.24

4.25

4.26
4.27

4.28

Show that the output carry in a full-adder circuit can be expressed in the AND-OR-INVERT form
Cis1 =G+ PC, = (G/'P/ + G/'C)

IC type 74182 is a lookahead carry generator circuit that generates the carries with AND-OR-IN-

VERT (AOI) gates (see Section 3-8.) The circuit assumes that the input terminals have the com-

plements of the G's, the P's, and of C;. Derive the Boolean functions for the lookahead carries

C3. Cy, and Cy in this IC, (Hinr: Use the equation-substitution method to derive the carries in

terms of C,')

Design a combinational circuit that generates the 9's complement of a BCD digit. (HDL — see
Problem 4.54.)

Construct a BCD adder-subtractor circuit. Use the BCD adder of Fig. 4.14 and the 9's comple-
menter of Problem 4.18. Use block diagrams for the components. (HDL — see Problem 4.55.)
A binary multiplicr multiplies two unsigned four-bit numbers.

(a) Using AND gates and binary adders (see Fig. 4.16), design the circuit.

(b) Write and verify a Verilog dataflow model of the circuit.

Design a combinational circuit that compares two four-bit numbers to check if they are equal. The
circuit output is equal to 1 if the two numbers are equal and 0 otherwise.

Design an excess-3-to-binary decoder using the unused combinations of the code as don’t-care
conditions, (HDL — see Problem 4.42,)

Draw the logic diagram of a two-to-four-line decoder using (a) NOR gates only, and (b) NAND
gates only. Include an enable input.

Design a BCD-to-decimal decoder using the unused combinations of the BCD code as don’t-care
conditions, (HDL — see Problem 4.60.)

Construct a 5-to-32-line decoder with four 3-to-8-line decoders with enable and a 2-10-4-line de-
coder. Use block diagrams for the components,

Construct a 4-10- | 6-line decoder with five 2-to-4-line decoders with enable.
A combinational circuit is specified by the following three Boolean functions:

F(A.B.C) = £(3.5.6)
F(A.B.C) = £(1.4)
Fy(A.B.C) = £(2.3.5.6.7)

Implement the circuit with a decoder constructed with NAND gates (similar to Fig. 4.19) and
NAND or AND gates connected to the decoder outputs. Use a block diagram for the decoder. Min-
imize the number of inputs in the external gates.

Using a decoder and external gates, design the combinational circuit defined by the following three
Boolean functions:

(a) Fy=x'v'2" + a2
Fam xy's' +x'y
Fy=x'v's + xy

by Fy = (¥ + x)z
Fymy's' + gy + y2'
Fy=(x"+y)



(c) ketabton.com: The Digital Library

Problems 179

4.29* Design a four-input priority encoder with inputs as in Table 4.8, but with input Dy having the

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

highest priority and input 25 the lowest priority. (HDL—see Problem 4.57.)

Specify the truth table of an octal-to-binary priority encoder. Provide an output V to indicate that
at least one of the mputs is present. The input with the highest subscript number has the highest
priority. What will be the value of the four outputs if inputs 2, and Dy are | at the same time?
Construct a 16 X 1 multiplexer with two 8 X 1 and one 2 X 1 multiplexers. Use block dia-
grams,

Implement the following Boolean function with a multiplexer (HDL—see Problem 4.46):

(a) F(A,B.C,D) = X(0,2,5,7, 11, 14)

(b) F(A,B.C,D) = TI1(3,8, 12)

Implement a full adder with two 4 X 1 multiplexers.

An 8 % 1 multiplexer has inputs A, B, and C connected to the selection inputs S5, S, and Sy, re-
spectively. The data inputs [, through /5 are as follows:
@*Nh=h=L=0h=I=1Ij=I;=D,andlg = D'.

b)) Iy =hh=0L=1;=1l= Is= Diand Iy = Ig = D’

Determine the Boolean function that the multiplexer implements.

Implement the following Boolean function with a 4 X | multiplexer and external gates.

(a)* F(A,B,C,D) = Z(1,3,4,11, 12,13, 14, 15)

(b) F(A.B.C.D)=2(1,2,4,7,8,9,10, 11, 13, 15)

Connect inputs A and B 1o the selection lines. The input requirements for the four data lines will
be a function of variables C and D. These values are obtained by expressing F as a function of C
and D for each of the four cases when A8 = 00, 01, 10, and 11. The functions may have to be
implemented with external gates and with connections to power and ground.

Write the HDL gate-level description of the priority encoder circuit shown in Fig, 4,23, (HDL —
see Problem 4.45.)

Write the HDL gate-level hierarchical description of a four-bit adder-subtractor for unsigned bi-
nary numbers. The circuit is similar to Fig, 4.13 but without output V. You can instantiate the
four-bit full adder described in HDL Example 4.2. (See Problems 4.13 and 4.40.)

Write the HDL dataflow description of a quadruple two-to-one-line multiplexer with enable, (See
Fig. 4.26.)

4.39* Write an HDL behavioral description of a four-bit comparator with a six-bit output ¥5:0], Bit 5

4.40

4.41
4.42

of Y'is for “equals,” bit 4 is for “not equal to," bit 3 is for “greater than,” bit 2 is for “less than,”
bit 1 for “greater than or equal to,” and bit 0 for “less than or equal to.”

Using the conditional operator (? :), write an HDL dataflow description of a four-bit adder sub-

tractor of unsigned numbers, (See Problems 4.13 and 4.37.)

Repeat Problem 4.40, using a cyclic behavior.

(a) Write an HDL gate-level description of the BCD-to-excess-3 converter circuit shown in
Fig. 4.4 (see Problem 4.22),

(b) Write a dataflow description of the BCD-to-excess-3 converter, using the Boolean expressions
listed in Fig. 4.3.



(c) ketabton.com: The Digital Library

180

Chapter 4 Combinational Logic

4.43

4.44

4.45

446
4.47
4.48

4.49

4.50°

4.51

4.52

453
4.54

(€)* Write an HDL behavioral description of a BCD-to-excess-3 converter.
(d) Write a test bench to simulate and test the BCD-to-excess-3 converter circuit in order 1o ver-
ify the truth table, Check all three circuits.

Explain the function of the circuit specified by the following HDL description:
module Probd_43 (A, B, S, E. Q);

input [1:0]A B

input 8.E

output [1: 0] Q;

assignQ=E?7(57A:B) bz

endmodule

Using a case statement, write an HDL behavioral description of a eight-bit arithmetic-logic
unit (ALU). The circuit has a three-bit select bus (Se/), eight-bit input datapaths (A/7: 0] and
B[7: 0], an eight-bit output datapath (y[7: 0)), and performs the arithmetic and logical opera-
tions listed below

Sel Operation Description

000 y = 860

001 y=A&B Bitwise and

010 y=AlB Bitwise or

011 y=A"B Bitwise exclusive or

100 y=~A+B Add (Assume A and B are unsigned)
101 y=A-B Subtract

110 y= ~A Bitwise complement

m y = §'hFF

Write an HDL behavioral description of a four-input priority encoder. Use a four-bit vector for
the D inputs and an always block with if-else statements. Assume that input D[ 3] has the high-
est priority (see Problem 4.36).

Repeat Problem 4.32, using a dataflow description.

Repeat Problem 4.37, using a dataflow description.

Develop and modify the eight-bit ALU specified in Problem 4.44 so that it has three-state output
controlled by an enable input, En. Write a test bench and simulate the circuit.

For the circuit shown in Fig. P4.1,

(a) write and verify and verify a gate-level HDL model of the circuit

(b) compare your results with those obtained in Problem 4.1.

Using a case statement, develop and simulate a behavioral model of the 84-2-1 10 BCD code con-
verter described in Problem 4.8,

Develop and simulate a behavioral model of the ABCD-to-seven-segment decoder described in
Problem 4.9.

Using a continuous assignment, develop and simulate a dataflow model of
(a) the four-bit incrementer described in Problem 4.11(a)
(b) the four-bit decrementer described in Problem 4.11(b).

Develop and simulate a structural mode! of the decimal adder shown in Fig. 4.14,

Develop and simulate a behavioral model of a circuit that generates the 9°s complement of a BCD
digit (see Problem 4.18).



(c) ketabton.com: The Digital Library

4.55

4.57*

4.58

4.59

4.60

4.61

4.62

REFERENCES

References 181

Construct a hierarchical model of the BCD adder—subtractor described in Problem 4.19. The BCD
adder and the 9's complementer are to be described as behavioral models in separate modules, and
they are to be instantiated in a top-level module.

Write a continuous assignment statement that compares two four-bit numbers to check if their bit
patterns match. The variable to which the assignment is made is to equal 1 if the numbers match
and 0 otherwise.

Develop and verify a behavioral model of the four-bit priority encoder described in Prob-
lem 4.29.

Write a Verilog model of a circuit whose 32-bit output is formed by shifting its 32-bit input
three positions to the right and filling the vacated positions with the bit that was in the MSB
before the shift occurred (shift arithmetic right).

Write a Verilog model of a circuit whose 32-bit output is formed by shifting its 32-bit input
three positions to the left and filling the vacated positions with Os (shift logical left).

Write a Verilog model of a BCD-to-decimal decoder using the unused combinations of the
BCD code as don't-care conditions (see Problem 4.24).

Using the port syntax of the [EEE 1364-2001 standard, write and verify a gate-level model of
the 4-bit even parity checker shown in Fig. 3.36,

Using continuous assignment statements and the port syntax of the [EEE 1364-2001 standard,
write and verify an HDL model of the 4-bit even parity checker shown in Fig. 3.36,

W

B

o

10.

1.
12

13.

BHASKER, J. 1997. A Verilog HDL Primer. Allentown, PA: Star Galaxy Press.

BHASKER, J. 1998, Verilog HDL Synthesis. Allentown, PA: Star Galaxy Press.

Crerm, M. D. 1999. Modeling, Synthesis, and Rapid Prototyping with Verilog HDL. Upper Sad-
dle River, NJ: Prentice Hall.

DieT™EYER, D. L. 1988, Logic Design of Digital Systems, 3d ed. Boston: Allyn Bacon.

Gasskl, D, D, 1997. Principles of Digital Design. Upper Saddle River, NJ: Prentice Hall.
Haves, J. P. 1993. Introduction to Digital Logic Design. Reading. MA: Addison-Wesley.

Karz, R. H. 2005. Contemporary Logic Design. Upper Saddle River, NJ: Pearson Prentice
Hall.

Mano, M. M., and C. R. KiME, 2000. Logic and Computer Design Fund Is, 2d ed. Upper
Saddle River, NJ: Prentice Hall.

NELSON, V. P., H. T. NAGLE, J. D. IrwiN, and B. D. CARrOLL, 1995, Digital Logic Circuit Analy-
sis and Design. Englewood Cliffs, NJ: Prentice Hall.

PALNITKAR, S. 1996. Verilog HDL: A Guide to Digital Design and Synthesis. Mountain View,
CA: SunSoft Press (a Prentice Hall title).

Roth, C. H. 1992. Fundamentals of Logic Design, 4th ed. St. Paul, MN: West.

Tromas, D. E., and P. R. MoorsY. 1998. The Verilog Hardware Description Language. 4th ed.
Boston: Kluwer Academic Publishers.

WaKERLY, J. F. 2000. Digital Design: Principles and Practices, 3d ed. Upper Saddle River, NJ:
Prentice Hall.




(c) ketabton.com: The Digital Library

Chapter 5
Synchronous Sequential Logic

5.1 INTRODUCTION

The digital circuits considered thus far have been combinational; that is, the outputs are entirely
dependent on the current inputs, Although every digital system is likely to have some combi-
national circuits, most systems encountered in practice also include storage elements, which
require that the system be described in terms of sequential logic. First, we need to understand
what distinguishes sequential logic from combinational logic.

5.2 SEQUENTIAL CIRCUITS

A block diagram of a sequential circuit is shown in Fig. 5.1. It consists of a combinational cir-
cuit to which storage elements are connected to form a feedback path. The storage elements are
devices capable of storing binary information. The binary information stored in these elements
atany given time defines the state of the sequential circuit at that time. The sequential circuit
receives binary information from external inputs that, together with the present state of the

Inputs ——— oA SAE RN *+ Quipurs

FIGURE 5.1
Block diagram of sequential circuit

182



(c) ketabton.com: The Digital Library

Section 5.2 Sequential Circuits 183

storage elements, determine the binary value of the outputs. These external inputs also deter-
mine the condition for changing the state in the storage elements. The block diagram demon-
strates that the outputs in a sequential circuit are a function not only of the inputs, but also of
the present state of the storage elements. The next state of the storage elements is also a func-
tion of external inputs and the present state. Thus, a sequential circuit is specified by a time
sequence of inputs, outputs, and internal states. In contrast, the outputs of combinational logic
depend only on the present values of the inputs.

There are two main types of sequential circuits, and their classification is a function of the
timing of their signals. A synchronous sequential circuit is a system whose behavior can be
defined from the knowledge of its signals at discrete instants of time. The behavior of an asyn-
chronous sequential circuit depends upon the input signals at any instant of time and the order
in which the inputs change. The storage elements commonly used in asynchronous sequential
circuits are time-delay devices, The storage capability of a time-delay device varies with the
time it takes for the signal to propagate through the device. In practice, the internal propaga-
tion delay of logic gates is of sufficient duration to produce the needed delay, so that actual delay
units may not be necessary. In gate-type asynchronous systems, the storage elements consist
of logic gates whose propagation delay provides the required storage. Thus, an asynchronous
sequential circuit may be regarded as a combinational circuit with feedback. Because of the feed-
back among logic gates, an asynchronous sequential circuit may become unstable at times.
The instability problem imposes many difficulties on the designer. Asynchronous sequential cir-
cuits are presented in Chapter 9.

A synchronous sequential circuit employs signals that affect the storage elements at only dis-
crete instants of time. Synchronization is achieved by a timing device called a clock genera-
tor, which provides a clock signal having the form of a periodic train of clock pulses. The clock
signal is commonly denoted by the identifiers clock and ¢lk. The clock pulses are distributed
throughout the system in such a way that storage elements are affected only with the arrival of
each pulse. In practice, the clock pulses determine when computational activity will occur
within the circuit, and other signals (external inputs and otherwise) determine what changes will
take place affecting the storage elements and the outputs. For example, a circuit that is to add
and store two binary numbers would compute their sum from the values of the numbers and
store the sum at the occurrence of a clock pulse. Synchronous sequential circuits that use clock
pulses to control storage elements are called clocked sequential circuits and are the type most
frequently encountered in practice. They are called synchronous circuits because the activity
within the circuit and the resulting updating of stored values is synchronized to the occurrence
of clock pulses, The design of synchronous circuits is feasible because they seldom manifest
instability problems and their timing is easily broken down into independent discrete steps,
each of which can be considered separately.

The storage elements (memory) used in clocked sequential circuits are called flip-flops. A
flip-flop is a binary storage device capable of storing one bit of information. In a stable state,
the output of a flip-flop is either 0 or 1. A sequential circuit may use many flip-flops to store
as many bits as necessary. The block diagram of a synchronous clocked sequential circuit is
shown in Fig. 5.2. The outputs are formed by a combinational logic function of the inputs to
the circuit or the values stored in the flip-flops (or both). The value that is stored in a flip-flop
when the clock pulse occurs is also determined by the inputs to the circuit or the values presently



(c) ketabton.com: The Digital Library

184  Chapter 5 Synchronous Sequential Logic

Inputs ————s — Outputs
- Combinational -
i circuit -
Flip-flops
Clock pulses I
(a) Block diagram
= - - — p—
1| [ ]
(b) Timing diagram of clock pulses
FIGURE 5.2

Synchronous clocked sequential circuit

stored in the flip-flop (or both). The new value is stored (i.e., the flip-flop is updated) when a
pulse of the clock signal occurs. Prior to the occurrence of the clock pulse, the combinational
logic forming the next value of the flop-flop must have reached a stable value. Consequently,
the speed at which the combinational logic circuits operate is critical. If the clock (synchro-
nizing) pulses arrive at a regular interval, as shown in the timing diagram in Fig. 5.2, the com-
binational logic must respond to a change in the state of the flip-flop in time to be updated
before the next pulse arrives. Propagation delays play an important role in determining the
minimum interval between clock pulses that will allow the circuit to operate correctly. The
state of the flip-flops can change only during a clock pulse transition—for example, when the
value of the clock signals changes from 0 to 1. When a clock pulse is not active, the feedback
loop between the value stored in the flip-flop and the value formed at the input to the flip-flop
is effectively broken because the flip-flop outputs cannot change even if the outputs of the
combinational circuit driving their inputs change in value. Thus, the transition from one state
to the next occurs only at predetermined intervals dictated by the clock pulses.

5.3 STORAGE ELEMENTS: LATCHES

A storage element in a digital circuit can maintain a binary state indefinitely (as long as power
is delivered to the circuit), until directed by an input signal to switch states, The major differ-
ences among various types of storage elements are in the number of inputs they possess and
in the manner in which the inputs affect the binary state, Storage elements that operate with
signal levels (rather than signal transitions) are referred to as larches; those controlled by a
clock transition are flip-flops. Latches are said to be level sensitive devices; flip-flops are edge-
sensitive devices. The two types of storage elements are related because latches are the basic
circuits from which all flip-flops are constructed. Although latches are useful for storing binary
information and for the design of asynchronous sequential circuits (see Section 9.3), they are



(c) ketabton.com: The Digital Library

SR Latch

Section 5.3 Storage Elements: Latches 185

not practical for use in synchronous sequential circuits. Because they are the building blocks
of flip-flops, however, we will consider the fundamental storage mechanism used in latches be-
fore considering flip-flops in the next section.

The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates,
and two inputs labeled § for set and R for reset. The SR latch constructed with two cross-
coupled NOR gates is shown in Fig. 5.3, The latch has two useful states, When output Q = 1|
and Q' = 0, the latch is said to be in the ser state. When Q = 0 and Q' = 1, itis in the reset
state. Outputs O and Q' are normally the complement of each other. However, when both in-
puts are equal to 1 at the same time, a condition in which both outputs are equal to 0 (rather
than be mutually complementary) occurs. If both inputs are then switched to 0 simultaneous-
ly. the device will enter an unpredictable or undefined state or a metastable state. Consequently,
in practical applications, setting both inputs to 1 is forbidden.

Under normal conditions, both inputs of the latch remain at 0 unless the state has to be
changed. The application of a momentary 1 to the § input causes the latch to go to the set state.
The § input must go back to 0 before any other changes take place, in order to avoid the oc-
currence of an undefined next state that results from the forbidden input condition. As shown
in the function table of Fig. 5.3(b), two input conditions cause the circuit to be in the set state.
The first condition (§ = 1, R = 0) is the action that must be taken by input § to bring the cir-
cuit to the set state. Removing the active input from S leaves the circuit in the same state, After
both inputs return to 0, it is then possible to shift to the reset state by momentary applying a 1
to the R input, The 1 can then be removed from R, whereupon the circuit remains in the reset
state. Thus, when both inputs § and R are equal to 0, the latch can be in either the set or the reset
state, depending on which input was most recently a 1.

If a 1 is applied to both the S and R inputs of the latch, both outputs go to 0. This action pro-
duces an undefined next state, because the state that results from the input transitions depends
on the order in which they return to 0. It also violates the requirement that outputs be the com-
plement of each other. In normal operation, this condition is avoided by making sure that 1's
are not applied to both inputs simultaneously.

The SR latch with two cross-coupled NAND gates is shown in Fig. 5.4. It operates with
both inputs normally at 1, unless the state of the latch has to be changed. The application of 0

1 ——
(}J LR{reset) SR|2¢Q

|

[t
oo

1 0
1 0 (afterS=1,R=0)
01
01
00

1 — 01
‘ ‘ , 00 (after § = 0, R =1)
0 —1 L Sset) (@) 11 (forbidden)
(a) Logic diagram (b) Function table
FIGURE 5.3

SR latch with NOR gates



(c) ketabton.com: The Digital Library

186

Chapter § Synchronous Sequential Logic

{a) Logic diagram

FIGURE 5.4
SR latch with NAND gates

to the § input causes output Q to go to |, putting the latch in the set state. When the § input goes
back to 1. the circuit remains in the set state. After both inputs go back to 1, we are allowed to
change the state of the latch by placing a 0 in the R input. This action causes the circuit to go
10 the reset state and stay there even after both inputs return to 1. The condition that is forbid-
den for the NAND latch is both inputs being equal to 0 at the same time, an input combination
that should be avoided.

In comparing the NAND with the NOR latch, note that the input signals for the NAND re-
quire the complement of those values used for the NOR latch. Because the NAND latch requires
a0 signal to change its state, it is sometimes referred to as an S’ R’ latch. The primes (or, some-
times, bars over the letters) designate the fact that the inputs must be in their complement form
to activate the circuit.

The operation of the basic SR latch can be modified by providing an additional input sig-
nal that determines (controls) when the state of the latch can be changed. An SR latch with a
control input is shown in Fig. 5.5. It consists of the basic SR latch and two additional NAND
gates. The control input En acts as an enable signal for the other two inputs. The outputs of the
NAND gates stay at the logic-1 level as long as the enable signal remains at 0. This is the qui-
escent condition for the SR latch. When the enable input goes to 1, information from the § or
R input is allowed to affect the latch. The set state is reached withS = 1, R = 0.and En = |
(active-high enabled). To change to the reset state, the inputs must be § = 0. R = |, and

Next state of ¢

No change

No change

Q = O reset state
Q = 1:set slate

R ——— g‘l
_——o oM |t
—_—a—o e

Indeterminate

(a) Logic Jiagram (b) Function table

FIGURE 5.5
SR latch with control input



(c) ketabton.com: The Digital Library

En

Section 5.3 Storage Elements: Latches 187

En D | Next state of Q

0 X | Nochange
1 0 | @ =0:resetstate
1 1 | @=1;setstate

(a) Logic diagram (b) Function table

FIGURE 5.6
D latch

En = 1. In either case, when En returns to 0, the circuit remains in its current state. The con-
trol input disables the circuit by applying 0 to En, so that the state of the output does not change
regardless of the values of § and R. Moreover, when En = 1 and both the S and R inputs are
equal to 0, the state of the circuit does not change. These conditions are listed in the function
table accompanying the diagram.

An indeterminate condition occurs when all three inputs are equal to 1. This condition places
0’s on both inputs of the basic SR latch, which puts it in the undefined state. When the enable
input goes back to 0, one cannot conclusively determiné the next state, because it depends on
whether the S or R input goes to 0 first. This indeterminate condition makes this circuit diffi-
cult to manage. and it is seldom used in practice. Nevertheless, it is an important circuit because
other useful latches and flip-flops are constructed from it.

D Latch (Transparent Latch)

One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to
ensure that inputs § and R are never equal to 1 at the same time. This is done in the D latch,
shown in Fig. 5.6. This latch has only two inputs: D (data) and En (enable). The D input goes
directly to the § input, and its complement is applied to the R input. As long as the enable input
is at 0, the cross-coupled SR latch has both inputs at the | level and the circuit cannot change
state regardless of the value of D. The D input is sampled when En = 1. 1If D = 1, the Q out-
put goes to 1, placing the circuit in the set state. If D = 0, output Q goes to 0, placing the cir-
cuit in the reset state.

The D latch receives that designation from its ability to hold data in its internal storage. It
is suited for use as a temporary storage for binary information between a unit and its environ-
ment. The binary information present at the data input of the D latch is transferred to the Q out-
put when the enable input is asserted. The output follows changes in the data input as long as
the enable input is asserted. This situation provides a path from input D to the output, and for
this reason, the circuit is often called a rransparent latch. When the enable input signal is de-
asserted, the binary information that was present at the data input at the time the transition oc-
curred is retained (i.e., stored) at the Q output until the enable input is asserted again. Note that



(c) ketabton.com: The Digital Library

188

5.4

Chapter 5 Synchronous Sequential Logic

—n — — D _
PR . p—— —_k > En o
SR SR D

FIGURE 5.7

Graphic symbols for latches

an inverter could be placed at the enable input. Then, depending on the physical circuit, the ex-
ternal enabling signal will be a value of 0 (active low) or | (active high).

The graphic symbols for the various latches are shown in Fig. 5.7. A latch is designated by
a rectangular block with inputs on the left and outputs on the right. One output designates the
normal output, and the other (with the bubble designation) designates the complement output.
The graphic symbol for the SR latch has inputs § and R indicated inside the block. In the case
of a NAND gate laich, bubbles are added to the inputs to indicate that setting and resetting
ocecur with a logic-0 signal, The graphic symbol for the D latch has inputs D and En indicated
inside the block.

STORAGE ELEMENTS: FLIP-FLOPS

The state of a latch or flip-flop is switched by a change in the control input. This momentary
change is called a rrigger, and the transition it causes is said to trigger the flip-flop. The D
latch with pulses in its control input is essentially a flip-flop that is triggered every time the pulse
goes 1o the logic-1 level. As long as the pulse input remains at this level, any changes in the
data input will change the output and the state of the latch.

As seen from the block diagram of Fig. 5.2, a sequential circuit has a feedback path from the
outputs of the flip-flops to the input of the combinational circuit. Consequently, the inputs of the
flip-flops are derived in part from the outputs of the same and other flip-flops. When latches are
used for the storage elements, a serious difficulty arises. The state transitions of the latches start
as soon as the clock pulse changes to the logic-1 level. The new state of a latch appears at the
output while the pulse is still active. This output is connected to the inputs of the latches through
the combinational circuit. If the inputs applied to the latches change while the clock pulse is still
at the logic-1 level, the latches will respond to new values and a new output state may occur. The
result is an unpredictable situation, since the state of the latches may keep changing for as long
as the clock pulse stays at the active level. Because of this unreliable operation, the output of a
latch cannot be applied directly or through combinational logic to the input of the same or an-
other latch when all the latches are triggered by a common clock source.

Flip-flop circuits are constructed in such a way as to make them operate properly when they
are part of a sequential circuit that employs a common clock. The problem with the latch is that
it responds 1o a change in the level of a clock pulse. As shown in Fig. 5.8(a), a positive level
response in the enable input allows changes in the output when the D input changes while the



(c) ketabton.com: The Digital Library

Section 5.4 Storage Elements: Flip-Flops 189

LT

(a) Response to positive level

' A T A

(b) Positive-edge response

O S

(c) Negative-edge response

FIGURE 5.8
Clock response in latch and flip-flop

clock pulse stays at logic 1. The key to the proper operation of a flip-flop is to trigger it only
during a signal transition. This can be accomplished by eliminating the feedback path that is
inherent in the operation of the sequential circuit using latches. A clock pulse goes through
two transitions: from 0 to 1 and the return from 1 to 0. As shown in Fig. 5.8, the positive tran-
sition is defined as the positive edge and the negative transition as the negative edge. There are
two ways that a latch can be modified to form a flip-flop. One way is to employ two latches in
a special configuration that isolates the output of the flip-flop and prevents it from being af-
fected while the input to the flip-flop is changing, Another way is to produce a flip-flop that
triggers only during a signal transition (from O to 1 or from 1 to 0) of the synchronizing signal
(clock) and is disabled during the rest of the clock pulse. We will now proceed to show the im-
plementation of both types of flip-flops.

Edge-Triggered D Flip-Flop

The construction of a D flip-flop with two D latches and an inverter is shown in Fig. 5.9, The
first latch is called the master and the second the slave. The circuit samples the D input and changes
its output Q only at the negative edge of the synchronizing or controlling clock (designated as

Clk >o

FIGURE 5.9
Master—slave D flip-flop



(c) ketabton.com: The Digital Library

190

Chapter 5 Synchronous Sequential Logic

Clk). When the clock is 0, the output of the inverter is 1. The slave latch is enabled, and its out-
put Q is equal to the master output Y. The master latch is disabled because Clk = 0. When the
input pulse changes to the logic-1 level, the data from the external D input are transferred to
the master. The slave. however. is disabled as long as the clock remains at the | level. because
its enable input is equal to 0. Any change in the input changes the master output at Y, but can-
not affect the slave output. When the clock pulse returns to 0. the master is disabled and is iso-
lated from the D input. At the same time, the slave is enabled and the value of ¥ is transferred
to the output of the flip-flop at Q. Thus, a change in the output of the flip-flop can be triggered
only by and during the transition of the clock from 1 to 0.

The behavior of the master-slave flip-flop just described dictates that (1) the output may
change only once. (2) a change in the output is triggered by the negative edge of the clock, and
(3) the change may occur only during the clock’s negative level. The value that is produced at
the output of the flip-flop is the value that was stored in the master stage immediately before
the negative edge occurred. It is also possible to design the circuit so that the flip-flop output
changes on the positive edge of the clock. This happens in a flip-flop that has an additional in-
verter between the Clk terminal and the junction between the other inverter and input En of the
master latch. Such a flip-flop is triggered with a negative pulse, so that the negative edge of the
clock affects the master and the positive edge affects the slave and the output terminal.

Another construction of an edge-triggered D flip-flop uses three SR latches as shown in
Fig. 5.10. Two latches respond to the external 2 (data) and Clk (clock) inputs. The third laich
provides the outputs for the flip-flop. The § and R inputs of the output latch are maintained at
the logic-1 level when Clk = 0. This causes the output to remain in its present state. Input D

Cix ——s

=
>

D-type positive-edge-triggered flip-flop



(c) ketabton.com: The Digital Library

Section 5.4 Storage Elements: Flip-Flops 191

(a) Positive-edge (a) Negative-edge

FIGURE 5.11
Graphic symbol for edge-triggered D flip-flop

may be equal to O or 1. If D = 0 when Clk becomes 1, R changes to 0. This causes the flip-
flop to go to the reset state, making Q = 0. If there is a change in the D input while Clk = 1,
terminal R remains at O because Q is 0. Thus, the flip-flop is locked out and is unresponsive to
further changes in the input. When the clock returns to 0, R goes to 1, placing the output latch
in the quiescent condition without changing the output. Similarly, if D = 1 when Clk goes
from O to 1, S changes to 0. This causes the circuit to go to the set state, making Q = 1. Any
change in D while Clk = | does not affect the output.

In sum, when the input clock in the positive-edge-triggered flip-flop makes a positive tran-
sition, the value of D is transferred to (. A negative transition of the clock (i.e., from 1 to 0)
does not affect the output, nor is the output affected by changes in ) when Clk is in the steady
logic-1 level or the logic-0 level. Hence, this type of flip-flop responds to the transition from
0 to 1 and nothing else.

The timing of the response of a flip-flop to input data and to the clock must be taken into
consideration when one is using edge-triggered flip-flops. There is a minimum time called the
setup time during which the D input must be maintained at a constant value prior to the oc-
currence of the clock transition. Similarly, there is a minimum time called the hold time dur-
ing which the D input must not change gfter the application of the positive transition of the clock.
The propagation delay time of the flip-flop is defined as the interval between the trigger edge
and the stabilization of the output to a new state. These and other parameters are specified in
manufacturers” data books for specific logic families.

The graphic symbol for the edge-triggered D flip-flop is shown in Fig. 5.11. It is similar to
the symbol used for the D latch, except for the arrowheadlike symbol in front of the letter CIk,
designating a dynamic input. The dynamic indicator denotes the fact that the flip-flop responds
to the edge transition of the clock. A bubble outside the block adjacent to the dynamic indica-
tor designates a negative edge for triggering the circuit. The absence of a bubble designates a
positive-edge response.

Other Flip-Flops

Very large-scale integration circuits contain thousands of gates within one package. Circuits are
constructed by interconnecting the various gates to provide a digital system. Each flip-flop is con-
structed from an interconnection of gates. The most economical and efficient flip-flop con-
structed in this manner is the edge-triggered D flip-flop. because it requires the smallest number



(c) ketabton.com: The Digital Library

192

Chapter 5 Synchronous Sequential Logic

— -
)

D Q —_ o
—t> Ok
Clk ——{> Clk = Q — A =
(a) Circuit diagram (b) Graphic symbol
FIGURE 5.12
JK flip-flop

of gates, Other types of flip-flops can be constructed by using the D flip-flop and external logic.
Two flip-flops less widely used in the design of digital systems are the JK and 7 flip-flops.

There are three operations that can be performed with a flip-flop: Set it to 1, reset it to 0, or
complement its output. With only a single input, the D flip-flop can set or reset the output, de-
pending on the value of the D input immediately before the clock transition. Synchronized by
a clock signal, the JK flip-flop has two inputs and performs all three operations. The circuit di-
agram of a JK flip-flop constructed with a D flip-flop and gates is shown in Fig. 5.12(a). The
J input sets the flip-flop to 1, the K input resets it to 0, and when both inputs are enabled, the
output is complemented. This can be verified by investigating the circuit applied to the D input:

D=JQ +K'Q
WhenJ = land K = 0,D = Q" + Q = I, s0 the next clock edge sets the output to 1. When
J = 0and K = 1. D = 0, sothe next clock edge resets the output to 0, When both / = K = |
and D = @', the next clock edge complements the output. WhenbothJ = K = Oand D = Q.
the clock edge leaves the output unchanged. The graphic symbol for the JK flip-flop is shown
in Fig. 5.12(b). It is similar to the graphic symbol of the D flip-flop, except that now the in-
puts are marked J and K.,

The T (toggle) flip-tlop is a complementing flip-flop and can be obtained from a JK flip-
flop when inputs J and K are tied together. This is shown in Fig. 5.13(a). When
T =0(J = K = 0), aclock edge does not change the output. WhenT = 1 (J = K = 1),
a clock edge complements the output. The complementing flip-flop is useful for designing bi-
nary counters.

The T flip-flop can be constructed with a D flip-flop and an exclusive-OR gate as shown in
Fig. 5.13(b). The expression for the D input is

D=T®Q=TQ +T'Q

When 7" = 0, D = Q and there is no change in the output. When T = 1, D = Q' and the out-
put complements. The graphic symbol for this flip-flop has a T symbol in the input.



(c) ketabton.com: The Digital Library

Section 5.4 Storage Elements: Flip-Flops 193
J . D = T
—> Clk S :
K p— > b P Clie
(a) From JX flip-flop (b) From D flip-flop (¢) Graphic symbol
FIGURE 5.13
T flip-flop

Characteristic Tables

A characteristic table defines the logical properties of a flip-flop by describing its operation in
tabular form. The characteristic tables of three types of flip-flops are presented in Table 5.1.
They define the next state (i.e., the state that results from a clock transition) as a function of
the inputs and the present state. Q(7) refers to the present state (i.e., the state present prior to
the application of a clock edge). Q(¢ -+ 1) is the next state one clock period later, Note that the
clock edge input is not included in the characteristic table, but is implied to occur between
times rand ¢ + 1. Thus, (1) denotes the state of the flip-flop immediately before the clock edge,
and Q¢ + 1) denotes the state that results from the clock transition,

The characteristic table for the JK flip-flop shows that the next state is equal to the present
state when inputs J and K are both equal to 0. This condition can be expressed as
Q(t + 1) = Q(t), indicating that the clock produces no change of state. When K = 1 and

Table 5.1

Flip-Flop Characteristic Tables

JK Flip-Flop

] K |Qt+1)
0 0 | O No change
0 1 |0 Reset
1 0|1 Set
1 1 |0'(1) Complement
D Flip-Flop T Flip-Flop
D | Qt+1) T Qt+1)
0 |0 Reset 4] Q) No change
1|1 Set 1 0'(1) Complement




(c) ketabton.com: The Digital Library

194

Chapter 5 Synchronous Sequential Logic

J = 0, the clock rescts the flip-flopand Q(¢ + 1) = 0. WithJ = 1 and K = 0, the flip-floj
setsand Q(r + 1) = 1. When both J and K are equal to 1, the next state changes to the com
plement of the present state, a transition that can be expressed as Q(r + 1) = Q'(1).

The next state of a D flip-flop is dependent only on the D input and is independent of the
present state. This can be expressed as Q(r + 1) = D. It means that the next-state value is equa
to the value of D. Note that the D flip-flop does not have a “no-change™ condition. Such a con:
dition can be accomplished either by disabling the clock or by operating the clock by having
the output of the flip-flop connected into the D input. Either method effectively circulates the
output of the flip-flop when the state of the flip-flop must remain unchanged.

The characteristic table of the 7 flip-flop has only two conditions: When 7' = 0, the clock edge
does not change the state: when T = |, the clock edge complements the state of the flip-flop.

Characteristic Equations

The logical properties of a flip-flop, as described in the characteristic table, can be expressed al-
gebraically with a characteristic equation. For the D flip-flop, we have the characteristic equation

Qi +1)=D

which states that the next state of the output will be equal to the value of input D in the pres-
ent state. The characteristic equation for the JK flip-flop can be derived from the characteris-
tic table or from the circuit of Fig. 5.12. We obtain

o(r+1)=JQ + K'Q

where Q is the value of the flip-flop output prior to the application of a clock edge. The char-
acteristic equation for the 7 flip-flop is obtained from the circuit of Fig. 5.13:

Qi+ 1)=T@&Q=TQ' +T'Q

Direct Inputs

Some flip-flops have asynchronous inputs that are used to force the flip-flop to a particular
state independently of the clock. The input that sets the flip-flop to 1 is called preser or direct
set. The input that clears the flip-flop to 0 is called clear or direct reset. When power is turned
on in a digital system. the state of the flip-flops is unknown. The direct inputs are useful for
bringing all flip-flops in the system to a known starting state prior to the clocked operation.

A positive-edge-trig gered D flip-flop with active-low asynchronous reset is shown in Fig. 5.14.
The circuit diagram is the same as the one in Fig. 5.10, except for the additional reset input con-
nections to three NAND gates. When the reset input is 0, it forces output Q° to stay at 1, which,
in turn, clears output O to 0, thus resetting the flip-flop. Two other connections from the reset
input ensure that the S input of the third SR latch stays at logic | while the reset input is at 0,
regardless of the values of D and CIk.

The graphic symbol for the D flip-flop with a direct reset has an additional input marked with
R. The bubble along the input indicates that the reset is active at the logic-0 level. Flip-flops
with a direct set use the symbol § for the asynchronous set input.

The function table specifies the operation of the circuit. When R = 0, the output is reset to 0,
This state is independent of the values of D or Clk. Normal clock operation can proceed only



(c) ketabton.com: The Digital Library

Section 5.5 Analysis of Clocked Sequential Circuits 195

§
/5

Clock —¢

D
Reset
(a) Circuit diagram
Dara D —
R Clk D d
Clock > Clk ee
o— Q' 0 X X|01
K 0 g 0lo 1
0 1 1 0
Re.m—j —_——
(b) Graphic symbol (b) Function table
FIGURE 5.14

D flip-flop with asynchronous reset

after the reset input goes to logic 1. The clock at Clk is shown with an upward arrow to indi-
cate that the flip-flop triggers on the positive edge of the clock. The value in D is transferred
to Q with every positive-edge clock signal, provided that R = 1.

5.5 ANALYSIS OF CLOCKED
SEQUENTIAL CIRCUITS

Analysis describes what a given circuit will do under certain operating conditions. The be-
havior of a clocked sequential circuit is determined from the inputs. the outputs, and the state
of its flip-flops. The outputs and the next state are both a function of the inputs and the present



(c) ketabton.com: The Digital Library

196  Chapter 5 Synchronous Sequential Logic

state. The analysis of a sequential circuit consists of obtaining a table or a diagram for the time
sequence of inputs, outputs, and internal states, It is also possible to write Boolean expressions
that describe the behavior of the sequential circuit. These expressions must include the neces-
sary time sequence, either directly or indirectly.

A logic diagram is recognized as a clocked sequential circuit if it includes flip-flops with
clock inputs. The flip-flops may be of any type. and the logic diagram may or may not include
combinational circuit gates. In this section, we introduce an algebraic representation for spec-
ifying the next-state condition in terms of the present state and inputs. A state table and state
diagram are then presented to describe the behavior of the sequential circuit. Another algebraic rep-
resentation is introduced for specifying the logic diagram of sequential circuits. Examples are
used to illustrate the various procedures,

State Equations

The behavior of a clocked sequential circuit can be described algebraically by means of state
equations. A szate equation (also called a transition equation) specifies the next state as a func-
tion of the present state and inputs. Consider the sequential circuit shown in Fig. 5.15. It consists

B> 1

> Clk
e A
B—
> Ctk
et}
Clock

i
Do

FIGURE 5.15
Example of sequential circuit



(c) ketabton.com: The Digital Library

Section 5.5 Analysis of Clocked Sequential Circuits 197

of two D flip-flops A and B, an input x and an output y. Since the D input of a flip-flop deter-
mines the value of the next state (i.e., the state reached after the clock transition), it is possible
to write a set of state equations for the circuit:
Alr + 1) = A()x(t) + B(1)x(1)
Bt + 1) = A'(t)x(r)
A state equation is an algebraic expression that specifies the condition for a flip-flop state tran-
sition. The left side of the equation, with (r + 1). denotes the next state of the flip-flop one
clock edge later. The right side of the equation is a Boolean expression that specifies the pres-
ent state and input conditions that make the next state equal to 1. Since all the variables in the
Boolean expressions are a function of the present state, we can omit the designation (1) after
each variable for convenience and can express the state equations in the more compact form
A(t +1) = Ax + Bx
B(t+1)=A'x
The Boolean expressions for the state equations can be derived directly from the gates that
form the combinational circuit part of the sequential circuit, since the D values of the combi-

national circuit determine the next state. Similarly, the present-state value of the output can be
expressed algebraically as

y(r) = [A(r) + B(1)lx'(1)
By removing the symbol (1) for the present state, we obtain the output Boolean equation:
y= (A + B)x'

State Table

The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state table (some-
times called a rransition table). The state table for the circuit of Fig. 5.15 is shown in Table 5.2,

Table 5.2

State Table for the Circuit of Fig. 5.15

Present Next
State Input State Output
A B X A y
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 i
0 1 1 1 | 0
1 0 0 0o 0 1
1 0 ] 1 0 0
1 1 0 0 0 1
1 1 1 1 0 0




(c) ketabton.com: The Digital Library

198

Chapter 5 Synchronous Sequential Logic

The table consists of four sections labeled present state, input, next state, and output. The
present-state section shows the states of flip-flops A and B at any given time 1. The input sec-
tion gives a value of x for each possible present state, The next-state section shows the states
of the flip-flops one clock cycle later, at time 7 + 1. The output section gives the value of y at
time 1 for each present state and input condition.

The derivation of a state table requires listing all possible binary combinations of present
states and inputs. In this case, we have eight binary combinations from 000 to 111, The next-
state values are then determined from the logic diagram or from the state equations. The next
state of flip-flop A must satisfy the state equation

A(r + 1) = Ax + Bx

The next-state section in the state table under column A has three 1's where the present state
of A and input x are both equal to 1 or the present state of B and input x are both equal to 1.
Similarly. the next state of flip-flop B is derived from the state equation

B(t+1) = A'x

and is equal to | when the present state of A is 0 and input x is equal to 1. The output column
is derived from the output equation

y= Ax' + Bx'

The state table of a sequential circuit with D-type flip-flops is obtained by the same procedure
outlined in the previous example. In general, a sequential circuit with m flip-flops and n inputs
needs 2™ " rows in the state table. The binary numbers from 0 through 2™ " — | are listed
under the present-state and input columns, The next-state section has m columns, one for each
flip-flop. The binary values for the next state are derived directly from the state equations. The
output section has as many columns as there are output variables. Its binary value is derived
from the circuit or from the Boolean function in the same manner as in a truth table,

It is sometimes convenient 1o express the state table in a slightly different form having only
three sections: present state, next state, and output. The input conditions are enumerated under
the next-state and output sections, The state table of Table 5.2 is repeated in Table 5.3 in this
second form. For each present state, there are two possible next states and outputs, depending on
the value of the input. One form may be preferable to the other, depending on the application.

Table 5.3
Second Form of the State Table
» Next State Output
State x=0 x=1 x=0 x=1
A B AB A B y y
0 0 0 0 0 1 0 0
0 | 0 0 1 1 | 0
| 0 0o o0 1 0 1 0
i | 0 0 1 0 | 0




(c) ketabton.com: The Digital Library

Section 5.5 Analysis of Clocked Sequential Circuits 199

0| + 011 ’\m
@ ®

'|

iaO! lul\l |l,{i

FIGURE 5.16
State diagram of the circuit of Fig. 5.15

State Diagram

The information available in a state table can be represented graphically in the form of a state
diagram. In this type of diagram, a state is represented by a circle, and the (clock-triggered)
transitions between states are indicated by directed lines connecting the circles. The state dia-
gram of the sequential circuit of Fig. 5.15 is shown in Fig. 5.16. The state diagram provides the
same information as the state table and is obtained directly from Table 5.2 or Table 5.3. The bi-
nary number inside each circle identifies the state of the flip-flops. The directed lines are la-
beled with two binary numbers separated by a slash. The input value during the present state is
labeled first, and the number after the slash gives the output during the present state with the given
input. (It is important to remember that the bit value listed for the output along the directed line
occurs during the present state and with the indicated input, and has nothing to do with the tran-
sition to the next state.) For example, the directed line from state 00 to 01 is labeled 1/0. mean-
ing that when the sequential circuit is in the present state 00 and the input is 1, the output is 0.
After the next clock cycle, the circuit goes to the next state, 01. If the input changes to 0, then
the output becomes 1, but if the input remains at 1, the output stays at 0. This information is ob-
tained from the state diagram along the two directed lines emanating from the circle with state
01. A directed line connecting a circle with itself indicates that no change of state occurs.

There is no difference between a state table and a state diagram, except in the manner of rep-
resentation. The state table is easier to derive from a given logic diagram and the state equa-
tion. The state diagram follows directly from the state table. The state diagram gives a pictorial
view of state transitions and is the form more suitable for human interpretation of the circuit’s
operation. For example, the state diagram of Fig. 5.16 clearly shows that, starting from state
00, the output is 0 as long as the input stays at 1. The first O input after a string of 1's gives an
output of | and transfers the circuit back to the initial state, 00. The machine represented by
the state diagram acts to detect a zero in the bit stream of data.

Flip-Flop Input Equations

The logic diagram of a sequential circuit consists of flip-flops and gates. The interconnections
among the gates form a combinational circuit and may be specified algebraically with Boolean



©)X9g°on ERapteP's™@ §hronous Sequential Logic

expressions. The knowledge of the type of flip-flops and a list of the Boolean expressions of
the combinational circuit provide the information needed to draw the logic diagram of the se-
quential circuit. The part of the combinational circuit that generates external outputs is de-
scribed algebraically by a set of Boolean functions called ourput equations. The part of the
circuit that generates the inputs to flip-flops is described algebraically by a set of Boolean func-
tions called flip-flop input equations (or, sometimes, excitation equations). We will adopt the
convention of using the flip-flop input symbol to denote the input equation variable and a sub-
script to designate the name of the flip-flop output, For example, the following input equation
specifies an OR gate with inputs x and y connected to the D input of a flip-flop whose output
is labeled with the symbol Q:

Dy=% 43

The sequential circuit of Fig. 5.15 consists of two D flip-flops A and B, an input x. and an
output y. The logic diagram of the circuit can be expressed algebraically with two flip-flop
input equations and an output equation:

Dy = Ax + Bx
DB' = A'x
y=(A+ B)x'

The three equations provide the necessary information for drawing the logic diagram of the
sequential circuit. The symbol D, specifies a D flip-flop labeled A. Dy specifies a second D
flip-flop labeled B. The Boolean expressions associated with these two variables and the ex-
pression for output y specify the combinational circuit part of the sequential circuir,

The flip-flop input equations constitute a convenient algebraic form for specifying the logic
diagram of a sequential circuit. They imply the type of flip-flop from the letter symbol. and they
fully specify the combinational circuit that drives the flip-flops. Note that the expression for
the input equation for a D flip-flop is identical to the expression for the corresponding state equa-
tion. This is because of the characteristic equation that equates the next state to the value of the
D input: Q(1 + 1) = Dg.

Analysis with D Flip-Flops

We will summarize the procedure for analyzing a clocked sequential circuit with D flip-flops by
means of a simple example. The circuit we want to analyze is described by the input equation

DA — A$x$_\'

The D, symbol implies a D flip-flop with output A. The x and y variables are the inputs to the
circuit. No output equations are given, which implies that the output comes from the output of
the flip-flop. The logic diagram is obtained from the input equation and is drawn in Fig. 5.17(a).

The state table has one column for the present state of flip-flop A, two columns for the two in-
puts, and one column for the next state of A. The binary numbers under Axy are listed from 000
through 111 as shown in Fig. 5.17(b). The next-state values are obtained from the state equation

At +1)=ABxDy



(c) ketabton.com: The Digital Library

Section 5.5 Analysis of Clocked Sequential Circuits 201

Present Next
state  Inputs state
A xy A
0 00 0
i 0 01 1
x B A 0 10 1
¥ o ; 0 11 0
= Ik 1 00 1
> Clk 1 01 0
S L 10 0
Clock Fiisaiis T
(a) Circuit diagram (b) State table
M.ll(t\tf_\m'w ; ) 00, 11
N 7
T =
01,10

{c) State diagram

FIGURE 5.17
Sequential circuit with D flip-flop

The expression specifies an odd function and is equal to | when only one variable is | or when
all three variables are 1. This is indicated in the column for the next state of A.

The circuit has one flip-flop and two states. The state diagram consists of two circles, one
for each state as shown in Fig. 5.17(c). The present state and the output can be either O or 1, as
indicated by the number inside the circles. A slash on the directed lines is not needed, because
there is no output from a combinational circuit. The two inputs can have four possible combi-
nations for each state. Two input combinations during each state transition are separated by a
comma to simplify the notation.

Analysis with JK Flip-Flops

A state table consists of four sections: present state, inputs, next state, and outputs. The
first two are obtained by listing all binary combinations, The output section is determined
from the output equations. The next-state values are evaluated from the state equations. For
a D-type flip-flop, the state equation is the same as the input equation. When a flip-flop other
than the D type is used, such as JK or T, it is necessary to refer to the corresponding char-
acteristic table or characteristic equation to obtain the next-state values. We will illustrate
the procedure first by using the characteristic table and again by using the characteristic
equation,



(c) ketabton.com: The Digital Library

202

Chapter 5 Synchronous Sequential Logic

The next-state values of a sequential circuit that uses JK- or T-type flip-flops can be derived
as follows:

1. Determine the flip-flop input equations in terms of the present state and input variables.
2. List the binary values of each input equation.

3. Use the corresponding flip-flop characteristic table to determine the next-state values in
the state table.

As an example, consider the sequential circuit with two JK flip-flops A and B and one input
x, as shown in Fig. 5.18, The circuit has no outputs; therefore, the state table does not need an
output column. (The outputs of the flip-flops may be considered as the outputs in this case.)
The circuit can be specified by the flip-flop input equations

Ji=B K,;=Bx
Jg=x" Kg=A'x+ Ax' = Adx

The state table of the sequential circuit is shown in Table 5.4. The present-state and input
columns list the eight binary combinations. The binary values listed under the columns labeled
flip-flop inputs are not part of the state table, but they are needed for the purpose of evaluating
the next state as specified in step 2 of the procedure. These binary values are obtained di-
rectly from the four input equations in a manner similar to that for obtaining a truth table
from a Boolean expression. The next state of each flip-flop is evaluated from the correspon-
ding J and K inputs and the characteristic table of the JK flip-flop listed in Table 5.1. There
are four cases to consider. When J = 1 and K = 0, the next state is 1. When J = 0 and

Clock

FIGURE 5.18
. Sequential circuit with JK flip-flop



(c) ketabton.com: The Digital Library

Section 5.5 Analysis of Clocked Sequential Circuits 203

Table 5.4
State Table for Sequential Circuit with JK Flip-Flops
Present Next Flip-Flop
State Input State Inputs
A B X A B h. “4 jg “3
0 0 0 0 | 0 0 1 0
0 0 1 0 0 0 0 0 1
0 1 0 | 1 I | | 0
0 1 1 1 0 | 0 0 1
1 0 0 1 | 0 0 1 1
| 0 1 1 0 0 0 0 0
1 1 0 0 0 I 1 1 1
1 I I ! I | o o0 0
K = 1, the next state is 0. When J = K = 0, there is no change of state and the next-state
value is the same as that of the present state. When J = K = [, the next-state bit is the com-

plement of the present-state bit. Examples of the last two cases occur in the table when the
present state AB is 10 and input x is 0. JA and KA are both equal to 0 and the present state of
A is 1. Therefore, the next state of A remains the same and is equal to 1. In the same row of
the table, /B and KB are both equal to 1. Since the present state of B is 0, the next state of B
is complemented and changes to 1.

The next-state values can also be obtained by evaluating the state equations from the char-
acteristic equation. This is done by using the following procedure:

1. Determine the flip-flop input equations in terms of the present state and input variables,

2. Substitute the input equations into the flip-flop characteristic equation to obtain the state
equations.

3. Use the corresponding state equations to determine the next-state values in the state table.
The input equations for the two JK flip-flops of Fig. 5.18 were listed a couple of paragraphs
ago. The characteristic equations for the flip-flops are obtained by substituting A or B for the
name of the flip-flop, instead of Q:
Alt +1)=JA" + K'A
B(t+1)=JB" + K'B
Substituting the values of /4 and K 4 from the input equations, we obtain the state equation for A:
A(t + 1) = BA' + (Bx')’A = A'B + AB' + Ax

The state equation provides the bit values for the column headed “Next State” for A in the state
table. Similarly. the state equation for flip-flop B can be derived from the characteristic equa-
tion by substituting the values of Jg and Kpg:

B(t+1)=x'B"+ (A@x)'B = B'x" + ABx + A'Bx’



(c) ketabton.com: The Digital Library

204

Chapter 5 Synchronous Sequential Logic

FIGURE 5.19
State diagram of the circuit of Fig. 5.18

The state equation provides the bit values for the column headed “Next State™ for B in the state
table. Note that the columns in Table 5.4 headed “Flip-Flop Inputs” are not needed when state
equations are used.

The state diagram of the sequential circuit is shown in Fig. 5.19. Note that since the circuit
has no outputs, the directed lines out of the circles are marked with one binary number only,
to designate the value of input x.

Analysis With T Flip-Flops

The analysis of a sequential circuit with T flip-flops follows the same procedure outlined for
JK flip-flops. The next-state values in the state table can be obtained by using either the char-
acteristic table listed in Table 5.1 or the characteristic equation

Qt+1)=T®Q=T'Q+TQ'

Now consider the sequential circuit shown in Fig. 5.20. It has two flip-flops A and B. one input
x, and one output y and can be described algebraically by two input equations and an output
equation:

T, = Bx
Tg = X
y= AB

The state table for the circuit is listed in Table 5.5. The values for y are obtained from the out-
put equation. The values for the next state can be derived from the state equations by substi-
tuting T4 and T in the characteristic equations, yielding
A(t +1) = (Bx)'A + (Bx)A’ = AB' + Ax’ + A'Bx
B(r+1)=x®B



(c) ketabton.com: The Digital Library

Section 5.5 Analysis of Clocked Sequential Circuits

> Cli
R

A

]

> Clk
R

|

Clock  reset
(a) Circuit diagram
FIGURE 5.20

Sequential circuit with T flip-flops

(b) State diagram

205

The next-state values for A and B in the state table are obtained from the expressions of the two

state equations.

The state diagram of the circuit is shown in Fig. 5.20(b). As long as input x is equal to 1,
the circuit behaves as a binary counter with a sequence of states 00, 01, 10, 11, and back to 00.

Table 5.5

State Table for Sequential Circuit with T Flip-Flops

Present Next
State Input State OQutput
A B X A B y
0o 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 0
0o 1 1 1 0 0
1 0 0 1 0 0]
1 0 1 1 1 0
1 1 0 1 1 1
1 1 ! 0 0 !




(c) ketabton.com: The Digital Library
206  Chapter 5 Synchronous Sequential Logic

When x = 0, the circuit remains in the same state. Output y is equal to | when the present
state is 11. Here, the output depends on the present state only and is independent of the input.
The two values inside each circle and separated by a slash are for the present state and output.

Mealy and Moore Models of Finite State Machines

The most general model of a sequential circuit has inputs, outputs, and internal states. It is cus-
tomary to distinguish between two models of sequential circuits: the Mealy model and the
Moore model. Both are shown in Figure 5.21. They differ only in the way the output is gener-
ated. In the Mealy model, the output is a function of both the present state and the input. In the
Moore model, the output is a function of only the present state. A circuit may have both types
of outputs. The two models of a sequential circuit are commonly referred to as a finite state ma-
chine, abbreviated FSM. The Mealy model of a sequential circuit is referred to as a Mealy
FSM or Mealy machine. The Moore model is referred to as a Moore FSM or Moore machine.

An example of a Mealy model is given in Fig. 5.15. Output y is a function of both input x
and the present state of A and B. The corresponding state diagram in Fig. 5.16 shows both the
input and output values, separated by a slash along the directed lines between the states.

An example of a Moore model is given in Fig. 5.18. Here, the output is a function of the pres-
ent state only. The corresponding state diagram in Fig. 5.19 has only inputs marked along the

Mealy Machine

Qutputs
{Mealy-tvpes

Moore Machine

Inputs ee—— Ouiputs

{Moare-1ype)

Clock

(b)

FIGURE 5.21
Block diagrams of Mealy and Moore state machines



(c) ketabton.com: The Digital Library

Section 5.6 Synthesizable HDL Models of Sequential Circuits 207

directed lines. The outputs are the {lip-flop states marked inside the circles. Another example
of a Moore model is the sequential circuit of Fig. 5.20. The output depends only on flip-flop
values, and that makes it a function of the present state only. The input value in the state dia-
gram is labeled along the directed line, but the output value is indicated inside the circle together
with the present state.

In a Moore model, the outputs of the sequential circuit are synchronized with the clock, be-
cause they depend only on flip-flop outputs that are synchronized with the clock. In a Mealy
model, the outputs may change if the inputs change during the clock cycle. Moreover, the out-
puts may have momentary false values because of the delay encountered from the time that the
inputs change and the time that the flip-flop outputs change. In order to synchronize a Mealy-
type circuit, the inputs of the sequential circuit must be synchronized with the clock and the
outputs must be sampled immediately before the clock edge. The inputs are changed at the in-
active edge of the clock to ensure that the inputs to the flip-flops stabilize before the active edge
of the clock occurs, Thus, the output of the Mealy machine is the value that is present imme-
diately before the active edge of the clock.

5.6 SYNTHESIZABLE HDL MODELS
OF SEQUENTIAL CIRCUITS

The Verilog hardware description language (HDL) was introduced in Section 3.10. Combina-
tional circuits were described in Section 4.12, and behavioral modeling with Verilog was in-
troduced in that section as well. Behavioral models are abstract representations of the
functionality of digital hardware. Designers write behavioral models to quickly describe how
a circuit is to operate, without having 1o first specify its hardware. In this section, we continue
the discussion of behavioral modeling and present description and examples of flip-flops and
sequential circuits in preparation for modeling more complex circuits.

Behavioral Modeling

There are two kinds of abstract behaviors in the Verilog HDL. Behavior declared by the key-
word initial is called single-pass behavior and specifies a single statement or a block statement
(1.e., a list of statements enclosed by either a begin ... end or a fork ... join keyword pair).
A single-pass behavior expires after the associated statement executes. In practice, designers
use single-pass behavior primarily to prescribe stimulus signals in a test bench—never to model
the behavior of a circuit—because synthesis tools do not accept descriptions that use the initial
statement. The always keyword declares a cyclic behavior: Both types of behaviors begin ex-
ecuting when the simulator launches at time ¢ = 0. The initial behavior expires after its state-
ment executes; the always behavior executes and reexecutes indefinitely, until the simulation
is stopped. A module may contain an arbitrary number of initial or always behavioral state-
ments. They execute concurrently with respect to each other starting at time 0 and may inter-
act through common variables. Here's a word description of how an always statement works
for a simple model of a D flip-flop: Whenever the rising edge of the clock occurs, if the reset
input is asserted, the output g gets 0: otherwise the output  gets the value of the input D. The
execution of statements triggered by the clock is repeated until the simulation ends. We’ll see
shortly how to write this description in Verilog.



(c) ketabton.com: The Digital Library

208

Chapter 5 Synchronous Sequential Logic

An initial behavioral statement executes only once. It begins its execution at the start of sim-
ulation and expires after all of its statements have completed execution. As mentioned at the
end of Section 4.12, the initial statement is useful for generating input signals to simulate a de-
sign. In simulating a sequential circuit, it is necessary to generate a clock source for triggering
the flip-flops. The following are two possible ways to provide a free-running clock that oper-
ates for a specified number of cycles:

initial initial
begin begin
clock = 1'b0; clock = 1'b0;
repeat (30) end
#10 clock = ~clock;
end initial 300 $finish;

always #10 clock = ~clock;

In the first version, the initial block contains two statements enclosed within the begin and end
keywords. The first statement sets clock to 0 at time = 0. The second statement specifies a loop
that reexecutes 30 times to wait 10 time units and then complement the value of c/ock. This pro-
duces 15 clock cycles, each with a cycle time of 20 time units. In the second version. the first init-
ial behavior has a single statement that sets clock to 0 at time = 0, and it then expires (causes
no further simulation activity). The second single-pass behavior declares a stopwatch for the sim-
ulation. The system task finish causes the simulation to terminate unconditionally after 300
time units have elapsed. Because this behavior has only one statement associated with it there
is no need to write the begin ... end keyword pair, After 10 time units, the always statement
repeatedly complements clock, providing a clock generator having a cycle time of 20 time units.
The three behavioral statements in the second example can be written in any order.
Here is another way to describe a free-running clock:

initial begin clock = 0; forever #10 clock = ~clock; end

This version, with two statements on one line, initializes the clock and then executes an in-
definite loop (forever) in which the clock is complemented after a delay of 10 time steps. Note
that the single-pass behavior never finishes executing and so does not expire. Another behav-
ior would have to terminate the simulation.

The activity associated with either type of behavioral statement can be controlled by a delay
operator that waits for a certain time or by an event control operator that waits for certain con-
ditions to become true or for specified events (changes in signals) to occur. Time delays spec-
ified with the # delay control operator are commonly used in single-pass behaviors. The delay
control operator suspends execution of statements until a specified time has elapsed. We've al-
ready seen examples of its use to specify signals in a test bench. Another operator. @. is called
the event control operator and is used to suspend activity until an event occurs. An event can
be an unconditional change in a signal value (e.g.. @ A) or a specified transition of a signal value
(e.g., @ (posedge clock)). The general form of this type of statement is

always @ (event control expression) begin
/! Procedural assignment statements that execute when the condition is met
end



(c) ketabton.com: The Digital Library

Section 5.6 Synthesizable HDL Models of Sequential Circuits 209

The event control expression specifies the condition that must occur to launch execution of the
procedural assignment statements. The variables in the left-hand side of the procedural state-
ments must be of the reg data type and musl be declared as such. The right-hand side can be
any expression that produces a value using Verilog-defined operators,

The event control expression (also called the sensitivity list) specifies the events that must
occur to initiate execution of the procedural statements associated with the always block. State-
ments within the block execute sequentially from top to bottom. After the last statement exe-
cutes, the behavior waits for the event control expression to be satisfied. Then the statements
are executed again. The sensitivity list can specify level-sensitive events, edge-sensitive events,
or a combination of the two. In practice, designers do not make use of the third option, because
this third form is not one that synthesis tools are able to translate into physical hardware, Level-
sensitive events occur in combinational circuits and in latches. For example, the statement

always @ (AorBorC)

will initiate execution of the procedural statements in the associated always block if a change
oceurs in A, B, or C. In synchronous sequential circuits, changes in flip-flops occur only in re-
sponse to a transition of a clock pulse. The transition may be either a positive edge or a nega-
tive edge of the clock, but not both. Verilog HDL takes care of these conditions by providing
two keywords: posedge and negedge. For example, the expression

always @(posedge clock or negedge reset) I Verilog 1995

will initiate execution of the associated procedural statements only if the clock goes through a
positive transition or if reser goes through a negative transition. The 2001 and 2005 revisions
to the Verilog language allow a comma-separated list for the event control expression (or sen-
sitivity list):

always @(posedge clock, negedge reset) / Verilog 2001, 2005

A procedural assignment is an assignment of a logic value to a variable within an initial or
always statement. This is in contrast to a continuous assignment discussed in Section 4.12
with dataflow modeling. A continuous assignment has an implicit level-sensitive sensitivity list
consisting of all of the variables on the right-hand side of its assignment statement, The updating
of a continuous assignment is triggered whenever an event occurs in a variable listed on the
right-hand side of its expression, In contrast, a procedural assignment is made only when an
assignment statement is executed within a behavioral statement. For example. the clock sig-
nal in the preceding example was complemented only when the statement clock = ~clock
executed; the statement did not execute until 10 time units after the simulation began. It is im-
portant to remember that a variable having type reg remains unchanged until a procedural as-
signment is made to give it a new value.

There are two kinds of procedural assignments: blocking and nonblocking. The two are
distinguished by the symbols that they use. Blocking assignments use the symbol (=) as
the assignment operator, and nonblocking assignments use (< =) as the operator. Blocking
assignment statements are executed sequentially in the order they are listed in a block of
statements. Nonblocking assignments are executed concurrently by evaluating the set of
expressions on the right-hand side of the list of statements; they do not make assignments
to their left-hand sides until all of the expressions are evaluated. The two types of



(c) ketabton.com: The Digital Library

210

Chapter 5 Synchronous Sequential Logic

assignments may be better understood by means of an illustration. Consider these two pro-
cedural blocking assignments:

B=A
C=B+1

The first statement transfers A into B. The second statement increments the value of B and
transfers the new value to C. At the completion of the assignments, C contains the value of
A+ 1L

Now consider the two statements as nonblocking assignments:

B<=A
C<=B+1

When the statements are executed, the expressions on the right-hand side are evaluated and
stored in a temporary location. The value of A is kept in one storage location and the value of
B + 1 in another. After all the expressions in the block are evaluated and stored, the assign-
ment to the targets on the left-hand side is made. In this case, C will contain the original value
of B, plus 1. A general rule is to use blocking assignments when sequential ordering is imper-
ative and in cyclic behavior that is level sensitive (i.e., in combinational logic). Use nonblocking
assignments when modeling concurrent execution (e.g., edge-sensitive behavior such as syn-
chronous, concurrent register transfers) and when modeling latched behavior. Nonblocking as-
signments are imperative in dealing with register transfer level design, as shown in Chapter 8.
They model the concurrent operations of physical hardware synchronized by a common clock.
Today's designers are expected to know what features of an HDL are useful in a practical way
and how to avoid features that are not. Following these rules will prevent conditions that lead
synthesis tools astray and create mismatches between the behavior of a model and the behav-
ior of physical hardware that is produced by a synthesis tool.

Flip-Flops and Latches

HDL Examples 5.1 through 5.4 show descriptions of various flip-flops and a D latch. The D
latch is transparent and responds to a change in data input with a change in output, as long as
the enable input is asserted. The module description of a D latch is shown in HDL Example 5.1.
It has two inputs, D and enable, and one output Q. Since Q is evaluated in a procedural state-
ment, it must be declared as reg type. Latches respond to input signal levels, so the two inputs
are listed without edge qualifiers in the event enable expression following the @ symbol in the
always statement. There is only one blocking procedural assignment statement. and it specifies
the transfer of input D to output Q if enable is true (logic 1). Note that this statement is exe-
cuted every time there is a change in D if enable is 1.

A D-type flip-flop is the simplest example of a sequential machine. HDL Example 5.2 de-
scribes two positive-edge D flip-flops in two modules. The first responds only to the clock; the
second includes an asynchronous reset input. Output Q must be declared as a reg data type in
addition to being listed as an output. This is because it is a target output in a procedural assign-
ment statement. The keyword posedge ensures that the transfer of input D into Q is synchronized
by the positive-edge transition of Clk. A change in D at any other time does not change Q.



(c) ketabton.com: The Digital Library

Section 5.6 Synthesizable HDL Models of Sequential Circuits 21

HDL Example 5.1

/! Description of D latch (See Fig. 5.6)
module D_latch (Q, D, enable);
output Q;
input D, enable;
reg Q
always @ (enable or D)
if (enable) Q <= D; // Same as: if (enable == 1)
endmodule

/1 Alternative syntax (Verilog 2001, 2005)
module D_latch (output reg Q, input enable, D),
always @ (enable, D)
if (enable) Q <= D; I/ No action if enable not asserted
endmodule

HDL Example 5.2

/I D flip-flop without reset
module D_FF (Q, D, Clk);
output Q;
input D, Clk;
reg Q
always @ (posedge CIk)
Q<=D;
endmodule

/1 D flip-flop with asynchronous reset (V2001, V2005)
module DFF (output reg Q, input D, CIk, rst);
always @ (posedge Clk, negedge rst)
if (~rst) Q <= 1'b0; // Same as: if (rst == 0)
else Q <=D;
endmodule

The second module includes an asynchronous reset input in addition to the synchronous
clock. A specific form of an if statement is used to describe such a flip-flop so that the model
can be synthesized by a software tool. The event expression after the @ symbol in the always
statement may have any number of edge events, either posedge or negedge. For modeling hard-
ware, one of the events must be a clock event. The remaining events specify conditions under
which asynchronous logic is to be executed. The designer knows which signal is the clock, but
clock is not an identifier that software tools automatically recognize as the synchronizing sig-
nal of a circuit. The tool must be able to infer which signal is the clock, so you need to write the
description in a way that enables the tool to infer the clock correctly, The rules are simple to fol-
low: (1) Each if or else if statement in the procedural assignment statements is to correspond to



(c) ketabton.com: The Digital Library

212

Chapter 5 Synchronous Sequential Logic

an asynchronous event, (2) the last else statement corresponds to the clock event, and (3) the
asynchronous events are tested first. There are two edge events in the second module of HDL
Example 5.2. The negedge rst (reset) event is asynchronous, since it matches the if (~rst)
statement. As long as rst is 0, O is cleared to 0. If Clk has a positive transition, its effect is
blocked. Only if rsr = 1 can the posedge clock event synchronously transfer D into Q.

Hardware always has a reset signal. It is strongly recommended that all models of edge-
sensitive behavior include a reset (or preset) input signal: otherwise, the initial state of the flip-
flops of the sequential circuit cannot be determined. A sequential circuit cannot be tested with
HDL simulation unless an initial state can be assigned with an input signal.

HDL Example 5.3 describes the construction of a T or JK flip-flop from a D flip-flop and
gates. The circuit is described with the characteristic equations of the flip-flops:

Qt+1)=0&T fora T flip-flop

Qr +1)=JQ" + K'Q for a JK flip-flop
The first module, 7FF, describes a T flip-flop by instantiating DFF. (Instantiation is explained
in Section 4.12.) The declared wire, DT, is assigned the exclusive-OR of Q and 7', as is required
for building a T flip-flop with a D flip-flop. The instantiation with the value of DT replacing D

in module DFF produces the required T flip-flop. The JK flip-flop is specified in a similar man-
ner by using its characteristic equation to define a replacement for D in the instantiated DFF.

HDL Example 5.3

/I T flip-flop from D flip-flop and gates
module TFF (Q, T, Clk, rst);
output Q;
input T, Clk, rst;
wire DT,
assignDT=Q*T; I/ Continuous assignment
Il Instantiate the D flip-flop
DFF TF1(Q, DT, CIk, rst);
endmodule

/1 JK fiip-flop from D flip-flop and gates (V2001, 2005)
module JKFF (output reg Q, input J, K, Clk, rst);
wire JK;
assign JK=(J & ~Q) | (~K & Q);
/I Instantiate D fiip-flop
DFF JK1 (Q, J, K, Clk, rst);
endmodule

/1 D flip-flop (V2001, V2005)
module DFF (output reg Q, input D, Clk, rst);
always @ (posedge Clk, negedge rst)
if (~rst) Q <= 1'b0;
else Q<=D;
endmodule




(c) ketabton.com: The Digital Library
Section 5.6 Synthesizable HDL Models of Sequential Circuits 213

HDL Example 5.4 shows another way to describe a JK flip-flop. Here, we choose to describe
the flip-flop by using the characteristic table rather than the characteristic equation. The case
multiway branch condition checks the two-bit number obtained by concatenating the bits of J
and K. The case expression ({J, K }) is evaluated and compared with the values in the list of
statements that follows. The first value that matches the true condition is executed. Since the
concatenation of J and K produces a two-bit number, it can be equal to 00. 01, 10, or 11. The
first bit gives the value of J and the second the value of K. The four possible conditions spec-
ify the value of the next state of Q after the application of & positive-edge clock.

HDL Example 5.4

/I Functional description of JK flip-flop (V2001, 2005)
module JK_FF (input J, K, Clk, output reg Q, output Q_b);
assignQ_b=~Q;
always @ (posedge Clk)
case ({J.K})
2'000: Q <= Q;
2'b01: Q <= 1'b0;
2'010: Q <= 1'b1;
2b11: Q <=~Q;

endmodule

State Diagram

An HDL model of the operation of a sequential circuit can be based on the format of the cir-
cuit’s state diagram. A Mealy HDL model is presented in HDL Example 5.5 for the state ma-
chine described by the state diagram shown in Figure 5.16. The input, output, clock, and reset
are declared in the usual manner. The state of the flip-flops is declared with identifiers stare and
next_state. These variables hold the values of the present state and the next value of the se-
quential circuit. The state's binary assignment is done with a parameter statement. (Verilog
allows constants to be defined in a module by the keyword parameter.) The four states 50
through S3 are assigned binary 00 through 11. The notation §2 = 2'b10 is preferable to the al-
ternative S2 = 2. The former uses only two bits to store the constant, whereas the latter results
in a binary number with 32 (or 64) bits.

HDL Example 5.5

/I Mealy FSM zero detector (See Fig. 5.16) Verilog 2001, 2005 syntax
module Mealy Zero_Detector (
output reg y_oult,
input %_in, clock, reset
b2
reg [1: 0] state, next_state;
parameter S0 = 2'b00, 81 =2'b01, 82 = 2'b10, 83 = 2'b11;



(c) ketabton.com: The Digital Library

214  Chapter 5 Synchronous Sequential Logic

always @ (posedge clock, negedge reset)  Verilog 2001, 2005 syntax

if (reset ==

0) state <= S0;

else state <= next_state;

always @ (state, x_in) // Form the next state
case (state)

S0:

S1:

S2:

S3:
endcase

if (x_in) nexl_state = S1; else next_state = SO;
if (x_in) next_state = S3; else next_state = SO;
if (~x_in) next_state = SO; else next_state = S2;
if (x_in) next_state = S2; else next_state = SO;

always @ (state, x_in) // Form the output
case (state)

S0:

y_out=0;

S1, 52, S3: y_out =~x_in;

endcase
endmodule

module t_Mealy Zerc_Detector;
wire 1ty out;
reg ! x_in, t _clock, t_reset,

Mealy_Zero_Detector MO (t_y_out, t_x_in, t_clock, t_reset);
initial #200 $finish;
initial begin t_clock = 0; forever #5 t_clock = ~t_clock; end

initial fork

_resel =

0;

#2 t_reset = 1;

#87 t_reset=0;
#89 1 _reset=1;
#10t x_in=1;

#30t x_in=

0;

#0t x_in=1;

#5011 x_in=

0;

#5211 x_in=1;

#54t x_in=

0;

#70t_x_in=1;
#80t_x_in=1,

#70t_x_in =

0;

#0t x_in=1,;

#100t x_in=0;
#120t x_in=1;
#1601 x_in=0;
#1170t x_in=1;

join
endmodule




(c) ketabton.com: The Digital Library
Section 5.6 Synthesizable HDL Models of Sequential Circuits 215

The Verilog model in HDL Example 5.5 uses three always blocks that execute concurrently and
interact through common variables. The first always statement resets the circuit to the initial state
§0 = 00 and specifies the synchronous clocked operation. The statement state <= next_state
is executed only in response to a positive-edge transition of the clock. This means that any change
in the value of next_stare in the second always block can affect the value of srare only as a result
of a posedge event of clock, The second always block determines the value of the next state tran-
sition as a function of the present state and input. The value assigned to state by the nonblocking
assignment is the value of next_srare immediately before the rising edge of clock, Notice how the
multiway branch condition implements the state transitions specified by the annotated edges in the
state diagram of Fig. 5.16. The third always block specifies the output as a function of the pres-
ent state and the input. Although this block is listed as a separate behavior for clarity, it could be
combined with the second block. Note that the value of output y_ont may change if the value of
input x_in changes while the circuit is in any given state.

So let’s summarize how the model describes the behavior of the machine: At every rising
edge of clock, if reset is not asserted, the state of the machine is updated by the first always
block; when state is updated by the first always block, the change in state is detected by the
sensitivity list mechanism of the second always block: then the second always block updates
the value of next_state (it will be used by the first always block at the next tick of the clock):
the third always block also detects the change in stare and updates the value of the output. In
addition, the second and third always blocks detect changes in x_in and update nexi_srate and
v_our accordingly. The test bench provided with Mealy_Zero_Detector provides some wave-
forms to stimulate the model, producing the results shown in Fig. 5.22. Notice how 1_y_our

0 30 60 90
IR N W T W W SN 1A M Y TN T RO T T W TN SN TN AN T TN TN T Y TN W MO AN N AN N T M S U A
i [ [
1 I [
t_clock g 1 g I g Ny T o s N o, B B o O
i_reset | | } i U
o
1 ] 1
i ] g T oy S ey S
I | ]
| I {
state[1:0] 0 ) 1 3 Lo J 1 | 0 ) § R EW I
next_state[1:0] o 3 20 G 0 O G o )
| | |
| | I
f_y_out i /| J:_ [
i / AR

valid Mealy owput Mealy glitch

FIGURE 5.22
Simulation output of Mealy Zero_Detector



(c) ketabton.com: The Digital Library

216

Chapter 5 Synchronous Sequential Logic

responds to changes in both the state and the input and has a glitch (a transient logic value).
The waveform description uses the fork . . . join construct. Statements within the fork . . . join
block execute in parallel, so the time delays are relative to a common reference of 1 = 0. It is
usually more convenient to use the fork. .. join block instead of the begin . .. end block in
describing waveforms. The waveform of reset is triggered “on the fly” to demonstrate that the
machine recovers from an unexpected reset condition during any state.

How does our Verilog model Mealy_Zero_Detector correspond to hardware? The first
always block corresponds to a D flip-flop implementation of the state register in Fig. 5.21; the
second always block is the combinational logic block describing the next state; the third always
block describes the output combinational logic of the zero-detecting Mealy machine. The reg-
ister operation of the state transition uses the nonblocking assignment operator (< =) because
the (edge-sensitive) flip-flops of a sequential machine are updated concurrently by a common
clock. The second and third always blocks describe combinational logic. which is level sensi-
tive, so they use the blocking (=) assignment operator. Their sensitivity lists include both the
state and the input because their logic must respond to a change in either or both of them.

Note: the modeling style illustrated by Mealv_Zero_Detector is commonly used by de-
signers. Notice that the reset signal is associated with the first always block. It is modeled here
as an active-low reset. By including the reset in the model of the state transition, there is no need
to include it in the combinational logic that specifies the next state and the output, producing
a simpler and more readable description.

The behavior of the Moore FSM having the state diagram shown in Fig. 5.19 can be modeled
by the Verilog description in HDL Example 5.6. This example shows that it is possible to describe
the state transitions of a clocked sequential machine with only one always block. The present state
of the circuit is identified by the variable stare. The state transitions are triggered by the rising
edge of the clock according to the conditions listed in the case statements. The combinational
logic that implicitly determines the next state is included in the nonblocking assignment to szate.
In this example, the output of the circuit is independent of the input and is taken directly from the
outputs of the flip-flops. The two-bit output y_out is specified with a continuous (assign) statement
and is equal 1o the value of the present state vector. Figure 5.23 shows some simulation results for
Moore_Model_Fig_5_19. Notice that the output of the Moore machine does not have glitches.

HDL Example 5.6
/I Moore model FSM (see Fig. 5.19) Verilog 2001, 2005 syntax
module Moore_Model_Fig_5_19 (
output [1: 0] y_out,
input x_in, clock, reset
)i
reg [1: 0] state;
parameter S0 =2'b00, S1=2'b01, S2 = 2'b10, S3 = 2'b11;

always @ (posedge clock, negedge reset)
if (reset == 0) state <= S0; // Initialize to state SO

else case (state)



(c) ketabton.com: The Digital Library

Section 5.6 Synthesizable HDL Models of Sequential Circuits 217

S0  if (~x_in) state <= S1; else state <= SO
S1: if(x_in) state <= S2; else state <= §3;
S2:  if (~x_in) state <= S3; else state <= S2;
83: if(~x_in) state <= S0, else state <= S3;

endcase

assign y_out = state;  // Output of flip-flops

endmodule
1] 30 60 90
RS ) N M Wty e W] e el e S e T vy Y N TNV N S Wy S S ) v e T G G e ) T
o ok I e T e e O e T e O e A e 1 e U s O s W e B
1_reset i) U
f_x_in [— i 1 | s e ——

state[1:0] 0 i1z folt1 )l o 1B
2ol o J1pB

[B¥ ]

1_v_out(1:0] 0 l 1 Y

FIGURE 5.23
Simulation output of HDL Example 5.6

Structural Description of Clocked Sequential Circuits

Combinational logic circuits can be described in Verilog by a connection of gates (primitives
and UDPs), by dataflow statements (continuous assignments), or by level-sensitive cyclic be-
haviors (always blocks). Sequential circuits are composed of combinational logic and flip-
flops, and their HDL models use sequential UDPs and behavioral statements (edge-sensitive
cyclic behaviors) to describe the operation of flip-flops, One way to describe a sequential cir-
cuit uses a combination of dataflow and behavioral statements. The flip-flops are described
with an always statement. The combinational part can be described with assign statements
and Boolean equations. The separate modules can be combined to form a structural model by
instantiation within a module.

The structural description of a sequential circuit is shown in HDL Example 5.7. We want
to encourage the reader to consider alternative ways to model a circuit, so as a point of
comparison, we first present Moore_Model_Fig_5_20, a Verilog behavioral description of
the machine having the state diagram shown in Fig. 5.20. This style of modeling is direct.



(c) ketabton.com: The Digital Library

218

Chapter 5 Synchronous Sequential Logic

An alternative style, used in Moore_Model_STR_Fig_5_20, is to represent the structure
shown in Fig. 5.20(a). This style uses two modules. The first describes the circuit of Fig. 5.20(a).
The second describes the 7' flip-flop that will be used by the circuit. We also show two ways
to model the T flip-flop. The first asserts that, at every clock tick, the value of the output
of the flip-flop toggles if the toggle input is asserted. The second model describes the be-
havior of the toggle flip-flop in terms of its characteristic equation. The first style is at-
tractive because it does not require the reader to remember the characteristic equation.
Nonetheless, the models are interchangeable and will synthesize to the same hardware cir-
cuit. A test bench module provides a stimulus for verifying the functionality of the circuit.
The sequential circuit is a two-bit binary counter controlled by input x_in. The output,
y_out, is enabled when the count reaches binary 11. Flip-flops A and B are included as out-
puts in order to check their operation. The flip-flop input equations and the output equation
are evaluated with continuous assignment (assign) statements having the corresponding
Boolean expressions. The instantiated T flip-flops use 7A and 7B as defined by the input
equations.

The second module describes the T flip-flop. The reser input resets the flip-flop to 0 with
an active-low signal. The operation of the flip-flop is specified by its characteristic eguation,
Ot +1)=0aT.

The test bench includes both models of the machine. The stimulus module provides com-
mon inputs to the circuits to simultaneously display their output responses. The first initial
block provides eight clock cycles with a period of 10 ns. The second initial block specifies a
toggling of input x_in that occurs at the negative edge transition of the clock. The result of the
simulation is shown in Fig. 5.24. The pair (A, B) goes through the binarv sequence 00, 01, 10,
11, and back to 00. The change in the count is triggered by a positive edge of the clock. pro-
vided that x_in = 1. If x_in = 0, the count does not change. y_our is equal to | when both A
and B are equal to 1. This verifies the main functionality of the circuit, but not a recovery from
an unexpected reset event.

HDL Example 5.7

I State-diagram-based model (V2001, 2005)
module Moore_Model_Fig_5_20 (

output y_out,

input x_in, clock, reset

)i

reg [1: 0] state;
parameter S0 =2'b00, S1=2'b01, $2=2b10, S3 =2'b11;
always @ (posedge clock, negedge reset)
if (reset == 0) state <= S0; /! Initialize to state SO

else case (state)
S0: if (x_in) state <= $1, else state <= SO;
S1:  if (x_in) state <= §2; else state <= S1;



(c) ketabton.com: The Digital Library

Section 5.6 Synthesizable HDL Models of Sequential Circuits 219

S§2:  if {x_in) state <= S3; else state <= 52;
83: if(x_in) state <= SO; else state <= S3;
endcase

assign y_out = (state == S3); {/ Output of flip-flops
endmodule

/1 structural model

module Moore_Model_STR_Fig 5 20 (
output vy out A B,

input  x_in, clock, reset

)
wire TA, T8B;

/I Flip-flop input equations
assign TA=x_in & B;
assign TB = x_in;

/I Output equation
assigny out=A&B;

Il Instantiate Toggle flip-flops
Toggle_fiip_flop_3 M_A (A, TA, clock, reset);
Toggle_fiip_flop_3 M_B (B, TB, clock, reset);

endmodule

module Toggle_fiip_fiop (Q, T, CLK, RST_b};
output Q;
input T, CLK RST_b;
reg Q

always @ (posedge CLK, negedge RST_b)
if (RST_b==0) Q <= 1'0;
else if (T)Q <=~Q;
endmodule

/Il Alternative model using characleristic eguation
/I module Toggle_flip_flop (Q, T, CLK, RST_b);
/I output Q;

Il 'input T, CLK, RST_b;

iHreg Q

/I always @ (posedge CLK, negedge RST)
/I (RST_b==0)Q<=1b0;

Il else Q<=Q*T;

/I endmodule



(c) ketabton.com: The Digital Library

220 Chapter 5 Synchronous Sequential Logic
module t_Moore_Fig_5_20;
wire tyout2tyoutt;
reg t_x_in, t_clock, t_reset;
Moore_Model_Fig_5_20 M1(t_y_out_1,t x_in, t_clock, t_reset);
Moore_Model_STR_Fig_5_20 M2 (t y out 2 A B, t x_in t_clock, t_reset);
initial #200 $finish;
initial begin
t_reset=10,;
t_clock=0;
#51 reset=1,;
repeat (16)
#5t_clock = ~t_clock;
end
initial begin
tx in=0;
#1511 x_in=1,
repeat (8)
#10t x_in=~t_x_in;
end
endmodule
va 0 i A A | T — ? Il L i i L lim i 'l zw
1_clock (N = %8 i S O i S [ [ O s (Y
t_reset =3
t_x_in g 1 o (1 s’ WU o) O |
y_out_l I I
t_y_out_2 I
A ] |
B e T W )
FIGURE 5.24

Simulation output of HDL Example 5.7




(c) ketabton.com: The Digital Library

Section 5.7 State Reduction and Assignment = 221

5.7 STATE REDUCTION AND ASSIGNMENT

The analysis of sequential circuits starts from a circuit diagram and culminates in a state table
or diagram. The design (synthesis) of a sequential circuit starts from a set of specifications and
culminates in a logic diagram. Design procedures are presented in Section 5.8. Two sequen-
tial circuits may exhibit the same input—output behavior, but have a different number of inter-
nal states in their state diagram. The current section discusses certain properties of sequential
circuits that may simplify a design by reducing the number of gates and flip-flops it uses. In
general, reducing the number of flip-flops reduces the cost of a circuit.

State Reduction

The reduction in the number of flip-flops in a sequential circuit is referred 1o as the srare-
reduction problem. State-reduction algorithms are concerned with procedures for reducing the
number of states in a state table, while keeping the external input-output requirements un-
changed, Since m flip-flops produce 2" states, a reduction in the number of states may (or may
not) result in a reduction in the number of flip-flops. An unpredictable effect in reducing the
number of flip-flops is that sometimes the equivalent circuit (with fewer flip-flops) may require
more combinational gates.

We will illustrate the state-reduction procedure with an example. We start with a sequential
circuit whose specification is given in the state diagram of Fig. 5.25. In our example, only the
input—output sequences are important; the internal states are used merely to provide the re-
quired sequences. For that reason, the states marked inside the circles are denoted by letter
symbols instead of their binary values. This is in contrast to a binary counter, wherein the bi-
nary value sequence of the states themselves is taken as the outputs.

FIGURE 5.25
State diagram



(c) ketabton.com: The Digital Library

222

Chapter 5 Synchronous Sequential Logic

There are an infinite number of input sequences that may be applied to the circuit; each re-
sults in a unigue output sequence. As an example, consider the input sequence 01010110100
starting from the initial state a. Each input of 0 or 1 produces an output of 0 or | and causes
the circuit to go to the next state. From the state diagram, we obtain the output and state sequence
for the given input sequence as follows: With the circuit in initial state a. an input of 0 produces
an output of 0 and the circuit remains in state a. With present state a and an input of [, the out-
put is 0 and the next state is b. With present state b and an input of 0. the output is 0 and the
next state is ¢. Continuing this process, we find the complete sequence to be as follows:

state a a b c d e f S g f g a
input 0 1 0 1 0 1 1 0 1 0 0
output 0 0 0o 0 0 1 1 0 1 0 0

In each column, we have the present state, input value, and output value. The next state is writ-
ten on top of the next column. It is important to realize that in this circuit the states themselves
are of secondary importance, because we are interested only in output sequences caused by input
sequences.

Now let us assume that we have found a sequential circuit whose state diagram has fewer
than seven states, and suppose we wish to compare this circuit with the circuit whose state di-
agram is given by Fig. 5.25. If identical input sequences are applied to the two circuits and iden-
tical outputs occur for all input sequences, then the two circuits are said to be equivalent (as
far as the input—output is concerned) and one may be replaced by the other. The problem of state
reduction is to find ways of reducing the number of states in a sequential circuit without altering
the input—output relationships.

We now proceed to reduce the number of states for this example. First, we need the state
table: it is more convenient to apply procedures for state reduction with the use of a table rather
than a diagram. The state table of the circuit is listed in Table 5.6 and is obtained directly from
the state diagram.

The following algorithm for the state reduction of a completely specified state table is given
here without proof: “Two states are said to be equivalent if, for each member of the set of in-
puts, they give exactly the same output and send the circuit either to the same state or to an

Table 5.6
State Table
Next State Output
Present State x=0 x=1 x=0 x=1
a a b 0 0
b c d 0 0
c a d 0 0
d ¢ f 0 1
¢ a f 0 1
f g f 0 1
g a b ; 0 1




(c) ketabton.com: The Digital Library

Section 5.7 State Reduction and Assignment 223

Table 5.7
Reducing the State Table

Next State Output

Present State x=0 x=1 x=0 x=1

e an o
N Ea oo R
ey ey BB O
cooccoo

equivalent state.” When two states are equivalent, one of them can be removed without alter-
ing the input—output relationships.

Now apply this algorithm to Table 5.6. Going through the state table, we look for two pres-
ent states that go to the same next state and have the same output for both input combinations.
States g and e are two such states: They both go to states a and fand have outputs of 0 and |
for x = 0 and x = 1, respectively. Therefore, states g and e are equivalent, and one of these
states can be removed. The procedure of removing a state and replacing it by its equivalent is
demonstrated in Table 5.7. The row with present state g is removed, and state g is replaced by
state e each time it occurs in the columns headed “Next State.”

Present state f now has next states ¢ and fand outputs 0 and 1 for x = 0 and x = 1, re-
spectively, The same next states and outputs appear in the row with present state d, Therefore,
states fand d are equivalent, and state f can be removed and replaced by d. The final reduced
table is shown in Table 5.8. The state diagram for the reduced table consists of only five states
and is shown in Fig. 5.26. This state diagram satisfies the original input-output specifications
and will produce the required output sequence for any given input sequence. The following list
derived from the state diagram of Fig. 5.26 is for the input sequence used previously (note that
the same output sequence results, although the state sequence is different):

state a a b ¢ d e d d e d e a
input 0 1 0 1 0 1 1 0 1 0 0
output 0 0 0 0 0 l 1 0 1 0 0
Table 5.8
Reduced State Table
Next State Output
Present State x=0 x=1 x=0 x=1
a a b 0 0
b c d 0 0
¢ a d 0 0
d e d 0 1
e a d 0 1




(c) ketabton.com: The Digital Library

224

Chapter 5 Synchronous Sequential Logic

FIGURE 5.26
Reduced state diagram

In fact, this sequence is exactly the same as that obtained for Fig. 5.25 if we replace g by e and
fbyd.

Checking each pair of states for equivalency can be done systematically by means of a pro-
cedure that employs an implication table, which consists of squares, one for every suspected
pair of possible equivalent states. By judicious use of the table, it is possible to determine all
pairs of equivalent states in a state table. The use of the implication table for reducing the num-
ber of states in a state table is demonstrated in Section 9.5.

The sequential circuit of this example was reduced from seven to five states. In general, re-
ducing the number of states in a state table may result in a circuit with less equipment. How-
ever, the fact that a state table has been reduced to fewer states does not guarantee a saving in
the number of flip-flops or the number of gates.

State Assignment

In order to design a sequential circuit with physical components, it is necessary to assign unigue
coded binary values to the states. For a circuit with m states, the codes must contain n bits, where
2" = m. For example, with three bits, it is possible to assign codes to eight states, denoted by
binary numbers 000 through 111. If the state table of Table 5.6 is used, we must assign binary
values to seven states; the remaining state is unused. If the state table of Table 5.8 is used. only
five states need binary assignment, and we are left with three unused states. Unused states are
treated as don’t-care conditions during the design. Since don't-care conditions usually help in
obtaining a simpler circuit, it is more likely that the circuit with five states will require fewer
combinational gates than the one with seven states.

The simplest way to code five states is to use the first five integers in binary counting order,
as shown in the first assignment of Table 5.9. Another similar assignment is the Gray code
shown in assignment 2. Here, only one bit in the code group changes when going from one num-
ber to the next. This code makes it easier for the Boolean functions to be placed in the map for
simplification. Another possible assignment often used in the design of state machines to con-
trol data-path units is the one-hot assignment. This configuration uses as many bits as there are



(c) ketabton.com: The Digital Library

Section 5.8 Design Procedure 225

Table 5.9
Three Possible Binary State Assignments

Assignment 1, Assignment 2, Assignment 3,

State Binary Gray Code One-Hot
a 000 000 00001
b 001 001 (0010
[y 010 011 00100
d 011 010 01000
e 100 110 10000
Table 5.10

Reduced State Table with Binary Assignment 1
Next State Output
Present State x=0 x=1 x=0 x=1
000 000 001 0 0
001 010 011 0 0
010 000 011 0 0
011 100 011 0 1
100 000 011 0 1

states in the circuit. At any given time, only one bit is equal to 1 while all others are kept at 0.
This type of assignment uses one flip-flop per state. which is not an issue for register-rich field-
programmable gate arrays. (See Chapter 7.) One-hot encoding usually leads to simpler de-
coding logic for the next state and output. One-hot machines can be faster than machines with
sequential binary encoding, and the silicon area required by the extra flip-flops can be offset
by the area saved by using simpler decoding logic. This trade-off is not guaranteed, so it must
be evaluated for a given design.

Table 5.10 is the reduced state table with binary assignment 1 substituted for the letter sym-
bols of the states. A different assignment will result in a state table with different binary val-
ues for the states. The binary form of the state table is used to derive the next-state and
output-forming combinational logic part of the sequential circuit. The complexity of the com-
binational circuit depends on the binary state assignment chosen.

Sometimes, the name transition table is used for a state table with a binary assignment.
This convention distinguishes it from a state table with symbolic names for the states. In this
book, we use the same name for both types of state tables.

5.8 DESIGN PROCEDURE

Design procedures or methodologies specify hardware that will implement a desired behavior.
The design effort for small circuits may be manual, but industry relies on automated synthesis



(c) ketabton.com: The Digital Library

226

Chapter 5 Synchronous Sequential Logic

tools for designing massive integrated circuits. The building block used by synthesis tools is
the D flip-flop. Together with additional logic, it can implement the behavior of /K and T flip-
flops. In fact, designers generally do not concern themselves with the type of flip-flop: rather,
their focus is on correctly describing the sequential functionality that is to be implemented by
the synthesis tool. Here we will illustrate manual methods vsing D, JK. and T flip-flops.

The design of a clocked sequential circuit starts from a set of specifications and culminates
in a logic diagram or a list of Boolean functions from which the logic diagram can be obtained.
In contrast to a combinational circuit, which is fully specified by a truth table, a sequential cir-
cuit requires a state table for its specification. The first step in the design of sequential circuits
is to obtain a state table or an equivalent representation, such as a state diagram.

A synchronous sequential circuit is made up of flip-flops and combinational gates. The de-
sign of the circuit consists of choosing the flip-flops and then finding a combinational gate struc-
ture that, together with the flip-flops, produces a circuit which fulfills the stated specifications.
The number of flip-flops is determined from the number of states needed in the circuit. The
combinational circuit is derived from the state table by evaluating the flip-flop input equations
and output equations. In fact, once the type and number of flip-flops are determined, the design
process involves a transformation from a sequential circuit problem into a combinational circuit
problem. In this way, the techniques of combinational circuit design can be applied.

The procedure for designing synchronous sequential circuits can be summarized by a list of
recommended steps:

1. From the word description and specifications of the desired operation. derive a state
diagram for the circuit.

2. Reduce the number of states if necessary.

3. Assign binary values to the states.

4. Obtain the binary-coded state table.

5. Choose the type of flip-flops to be used.

6. Derive the simplified flip-flop input equations and output equations.
7. Draw the logic diagram.

The word specification of the circuit behavior usually assumes that the reader is familiar with
digital logic terminology. It is necessary that the designer use intuition and experience 1o ar-
rive at the correct interpretation of the circuit specifications, because word descriptions may
be incomplete and inexact. Once such a specification has been set down and the state diagram
obtained, it is possible to use known synthesis procedures to complete the design. Although there
are formal procedures for state reduction and assignment (steps 2 and 3), they are seldom used
by experienced designers. Steps 4 through 7 in the design can be implemented by exact algo-
rithms and therefore can be automated. The part of the design that follows a well-defined pro-
cedure is referred to as synthesis. Designers using logic synthesis tools (software) can follow
a simplified process that develops an HDL description directly from a state diagram. letting the
synthesis tool determine the circuit elements and structure that implement the description.

The first step is a critical part of the process, because succeeding steps depend on it. We
will give one simple example to demonstrate how a state diagram is obtained from a word
specification.



(c) ketabton.com: The Digital Library

Section 5.8 Design Procedure 227

FIGURE 5.27
State diagram for sequence detector

Suppose we wish to design a circuit that detects a sequence of three or more consecutive 1's
in a string of bits coming through an input line (i.e.. the input is a serial bit stream). The state
diagram for this type of circuit is shown in Fig. 5.27. It is derived by starting with state Sy, the
reset state. If the input is 0, the circuit stays in Sy, but if the input is 1, it goes to state §; to in-
dicate that a 1 was detected. If the next input is 1. the change is to state S, to indicate the ar-
rival of two consecutive 1's, but if the input is 0, the state goes back to Sp. The third consecutive
I sends the circuit to state §3. If more 1's are detected, the circuit stays in S3. Any 0 input sends
the circuit back to Sp. In this way. the circuit stays in S5 as long as there are three or more con-
secutive 1's received. This is a Moore model sequential circuit, since the output is 1 when the
circuit is in state S; and is 0 otherwise.

Synthesis Using D Flip-Flops

Once the state diagram has been derived, the rest of the design follows a straightforward syn-
thesis procedure. In fact, we can design the circuit by using an HDL description of the state di-
agram and the proper HDL synthesis tools to obtain a synthesized netlist. (The HDL description
of the state diagram will be similar to HDL Example 5.6 in Section 5.6.) To design the circuit
by hand. we need to assign binary codes to the states and list the state table. This is done in
Table 5.11. The table is derived from the state diagram of Fig. 5.27 with a sequential binary as-
signment. We choose two D flip-flops to represent the four states, and we label their outputs
A and B, There is one input x and one output y. The characteristic equation of the D flip-flop
is Q1 + 1) = Dgp. which means that the next-state values in the state table specify the D input
condition for the flip-flop. The flip-flop input equations can be obtained directly from the next-
state columns of A and B and expressed in sum-of-minterms form as

A(t + 1) = D4(A.B.x) = £(3.5.7)
B(r + 1) = Dg(A,B,x) = £(1,5,7)
v(A, B.x) = £(6,7)



(c) ketabton.com: The Digital Library

228

Chapter 5 Synchronous Sequential Logic

Table 5.11
State Table for Sequence Detector
Present Next
State Input State Output
A B x A B ¥
0 0 0 0 0 0
0 0 1 0 1 0
0 | 0 0 0 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 1 | 1 0
1 1 0 0 0 1
1 1 1 1 1 1

where A and B are the present-state values of flip-flops A and B, x is the input, and D, and Dy
are the input equations, The minterms for output y are obtained from the output column in the
state table.

The Boolean equations are simplified by means of the maps plotted in Fig. 5.28. The sim-
plified equations are

Dy=Ax + Bx
Dg = Ax + B'x
y=AB

The advantage of designing with D flip-flops is that the Boolean equations describing the in-
puts to the flip-flops can be obtained directly from the state table. Software tools automatically
infer and select the D-type flip-flop from a properly written HDL model. The schematic of the
sequential circuit is drawn in Fig. 5.29.

B
01 11 10
o |
2
= e
e
I-'.x.-.-.-'.n;
—————
x -
D‘.‘ = Ax + Bx
FIGURE 5.28

Maps for sequence detector



(c) ketabton.com: The Digital Library

Section 5.8 Design Procedure 229

Clock

) ¥
. } )

FIGURE 5.29
Logic diagram of sequence detector

Excitation Tables

The design of a sequential circuit with flip-flops other than the D type is complicated by the
fact that the input equations for the circuit must be derived indirectly from the state table. When
D-type flip-flops are employed, the input equations are obtained directly from the next state.
This is not the case for the JK and T types of flip-flops. In order to determine the input equa-
tions for these flip-flops, it is necessary to derive a functional relationship between the state table
and the input equations.

The flip-flop characteristic tables presented in Table 5.1 provide the value of the next state
when the inputs and the present state are known. These tables are useful for analyzing se-
quential circuits and for defining the operation of the flip-flops. During the design process, we
usually know the transition from the present state to the next state and wish to find the flip-flop
input conditions that will cause the required transition. For this reason, we need a table that lists
the required inputs for a given change of state. Such a table is called an excitation table.

Table 5.12 shows the excitation tables for the two flip-flops. Each table has a column for
the present state Q(1), a column for the next state Q(¢ + 1), and a column for each input to show



(c) ketabton.com: The Digital Library

230 Chapter 5 Synchronous Sequential Logic

Table 5.12

Flip-Flop Excitation Tables

an Q=1 J K y Qe=1)|T
0 0 0 X 0 0 0
0 1 1 X 0 I 1
1 0 X 1 | 0 1
1 1 X 0 1 1 | 0

(a) JK (b) T

how the required transition is achieved. There are four possible transitions from the present state
to the next state. The required input conditions for each of the four transitions are derived from
the information available in the characteristic table. The symbol X in the tables represents a
don’t-care condition, which means that it does not matter whether the input is 1 or 0.

The excitation table for the JK flip-flop is shown in part (a). When both present state and next
state are 0, the J input must remain at 0 and the K input can be either 0 or 1. Similarly, when both
present state and next state are 1, the K input must remain at 0, while the J input can be 0 or 1.
If the flip-flop is to have a transition from the O-state to the |-state, J must be equal to 1. since
the J input sets the flip-flop. However, input K may be either Oor 1. If K = 0.the J = 1 con-
dition sets the flip-flop as required; if K = 1 and J = 1, the flip-flop is complemented and
goes from the O-state to the 1-state as required. Therefore, the K input is marked with a don’t-
care condition for the 0-to-1 transition. For a transition from the 1-state to the 0-state. we must
have K = 1, since the K input clears the flip-flop. However, the J input may be either 0 or 1,
since J = 0 has no effectand J = 1 together with K = 1 complements the flip-flop with a re-
sultant transition from the 1-state to the 0-state.

The excitation table for the T flip-flop is shown in part (b). From the characteristic table, we
find that when input 7 = 1, the state of the flip-flop is complemented, and when T = 0, the
state of the flip-flop remains unchanged. Therefore, when the state of the flip-flop must re-
main the same, the requirement is that 7 = 0. When the state of the flip-flop has to be com-
plemented, 7" must equal 1,

Synthesis Using JK Flip-Flops

The manual synthesis procedure for sequential circuits with JK flip-flops is the same as with
D flip-flops. except that the input equations must be evaluated from the present-state to the next-
state transition derived from the excitation table. To illustrate the procedure, we will synthe-
size the sequential circuit specified by Table 5.13. In addition to having columns for the present
state, input, and next state, as in a conventional state table, the table shows the flip-flop input
conditions from which the input equations are derived. The flip-flop inputs are derived from
the state table in conjunction with the excitation table for the JK flip-flop. For example, in the
first row of Table 5.13, we have a transition for flip-flop A from 0 in the present state to 0 in
the next state, In Table 5.12, for the JK flip-flop, we find that a transition of states from pres-
ent state 0 to next state () requires that input J be 0 and input K be a don’t-care. So 0 and X are



(c) ketabton.com: The Digital Library

Section 5.8 Design Procedure 231

Table 5.13
State Table and K Flip-Fiop Inputs
Present Next
State Input State Flip-Flop Inputs
A B x A B Ja Ki Js Kg
0 0 0 0 0 (1] X 0 X
0 0 1 0 1 0 X 1 X
0 1 0 1 0 1 X X I
0 1 | 0 1 0 X X 0
| 0 0 1 0 X 0 0 X
1 0 | 1 1 X 0 1 X
1 1 0 1 | X 0 X 0
1 1 1 0 0 X 1 X 1

entered in the first row under J, and K 4. respectively. Since the first row also shows a transi-
tion for flip-flop B from 0 in the present state to 0 in the next state, 0 and X are inserted into
the first row under Jg and K, respectively. The second row of the table shows a transition for
flip-flop B from 0 in the present state to 1 in the next state. From the excitation table, we find
that a transition from 0 to | requires that J be | and K be a don’t-care, so 1 and X are copied
into the second row under Ji and K g, respectively. The process is continued for each row in
the table and for each flip-flop, with the input conditions from the excitation table copied into
the proper row of the particular flip-flop being considered.

The flip-flop inputs in Table 5.13 specify the truth table for the input equations as a func-
tion of present state A, present state B, and input x. The input equations are simplified in the
maps of Fig. 5.30. The next-state values are not used during the simplification, since the input
equations are a function of the present state and the input only. Note the advantage of using JK-
type flip-flops when sequential circuits are designed manually. The fact that there are so many
don’t-care entries indicates that the combinational circuit for the input equations is likely to be
simpler, because don't-care minterms usually help in obtaining simpler expressions. If there are
unused states in the state table, there will be additional don’t-care conditions in the map.

The four input equations for the pair of JK flip-flops are listed under the maps of Fig. 5.30.
The logic diagram (schematic) of the sequential circuit is drawn in Fig. 5.31.

Synthesis Using T Flip-Flops

The procedure for synthesizing circuits using 7' flip-flops will be demonstrated by designing
a binary counter. An n-bit binary counter consists of n flip-flops that can count in binary from
0to 2" — 1. The state diagram of a three-bit counter is shown in Fig. 5.32. As seen from the
binary states indicated inside the circles, the flip-flop outputs repeat the binary count sequence
with a return to 000 after 111. The directed lines between circles are not marked with input
and output values as in other state diagrams. Remember that state transitions in clocked se-
quential circuits occur during a clock edge: the flip-flops remain in their present states if no
clock is applied. For that reason, the clock does not appear explicitly as an input variable in



(c) ketabton.com: The Digital Library

232  Chapter 5 Synchronous Sequential Logic

B
Bx
A 00 01 11 10
= S .
0 X || x
Al X g
X
K4$83
Bx
A 00 o1
"y m,
0
i g
Al i
Ezﬁ’.r
X
Kg=(A Ex)
FIGURE 5.30

Maps for | and K input equations

Clock
FIGURE 5.31

Logic diagram for sequential circuit with JK flip-flops




(c) ketabton.com: The Digital Library

Section 5.8 Design Procedure 233

FIGURE 5.32
State diagram of three-bit binary counter

a state diagram or state table. From this point of view, the state diagram of a counter does not
have to show input and output values along the directed lines. The only input to the circuit is
the clock, and the outputs are specified by the present state of the flip-flops. The next state of
a counter depends entirely on its present state, and the state transition occurs every time the
clock goes through a transition,

Table 5.14 is the state table for the three-bit binary counter. The three flip-flops are sym-
bolized by A, Ay, and Ay. Binary counters are constructed most efficiently with T flip-flops
because of their complement property. The flip-flop excitation for the 7 inputs is derived from
the excitation table of the T flip-flop and by inspection of the state transition of the present state
to the next state. As an illustration, consider the flip-flop input entries for row 001. The pres-
ent state here is 001 and the next state is 010, which is the next count in the sequence, Com-
paring these two counts, we note that A, goes from 0 to 0. so T is marked with 0 because
flip-flop A, must not change when a clock occurs. Also, A goes from Oto 1, so T4 is marked
with a 1 because this flip-flop must be complemented in the next clock edge. Similarly, Ag
goes from 1 to 0. indicating that it must be complemented, so T is marked with a 1. The last
row. with present state 111, is compared with the first count 000, which is its next state. Going
from all 1's to all 0's requires that all three flip-flops be complemented.

Table 5.14
State Table for Three-Bit Counter
Present State Next State Flip-Flop Inputs
Az Ay Ao Az A1 A Taz Tav Tao
0 0 0 0 0 ] 0 0 |
0 0 | 0 1 0 0 1 1
0 I 0 0 1 1 0 0 |
0 | 1 | 0 0 | 1 1
| 0 0 1 0 | 0 0 1
| 0 l | 1 0 0 1 1
! ! 0 1 1 1 0 0 1
1 1 1 0 0 0 1 1 1




(c) ketabton.com: The Digital Library

234  Chapter 5 Synchronous Sequential Logic

AAg

A A Ay

—_

01 11 10 A 00

my,

i, A My

[CH

my m my

Ty = A4

FIGURE 5.33
Maps for three-bit binary counter

Clock

FIGURE 5.34
Logic diagram of three-bit binary counter

The flip-flop input equations are simplified in the maps of Fig. 5.33. Note that Ty, has 1's
in all eight minterms because the least significant bit of the counter is complemented with
each count, A Boolean function that includes all minterms defines a constant value of 1. The
input equations listed under each map specify the combinational part of the counter. In-
cluding these functions with the three flip-flops, we obtain the logic diagram of the count-
er, as shown in Fig. 5.34. For simplicity, the reset signal is not shown, but be aware that
every design should include a reset signal.

PROBLEMS

Answers to problems marked with * appear at the end of the book. Where appropriate. a logic design
and its related HDL modeling problem are cross referenced.

Note: For each problem that requires writing and verifying a HDL model. a test plan should be written
to identify which functional features are to be tested during the simulation and how they will be tested.
For example. a reset on the fly could be tested by asserting the reset signal while the simulated
machine is in a state other than the reset state, The test plan is to guide the development of a test bench
that will implement the plan. Simulate the model, using the test bench, and verify that the behavior is



(c) ketabton.com: The Digital Library

correct.

Problems 235

If synthesis tools and an ASIC cell library are available, the Verilog descriptions developed for

Problems 5.34-5.46 can be assigned as synthesis exercises, The gate-level circuit produced by the
synthesis tools should be simulated and compared with the simulation results for the presynthesis

model.
5.1

5.2

53

54

55

5.6

5.7

5.8%

The D latch of Fig. 5.6 is constructed with four NAND gates and an inverter. Consider the fol-
lowing three other ways for obtaining a D latch, and in each case draw the logic diagram and
verify the circuit operation;

(a) Use NOR gates for the SR latch part and AND gates for the other two. An inverter may be
needed.

(b) Use NOR gates for all four gates, Inverters may be needed.

(c) Use four NAND gates only (without an inverter). This can be done by connecting the output
of the upper gate in Fig. 5.6 (the gate that goes to the SR latch) to the input of the lower gate
(instead of the inverter output).

Construct a JK flip-flop, using a D flip-flop. a two-to-one-line multiplexer, and an inverter.
(HDL—see Problem 5.34.)

Show that the characteristic equation for the complement output of a JX flip-flop is
Q(r+1)=JQ +KQ

A PN flip-flop has four operations, clear to (), no change, complement, and set to 1, when inputs

P and N are 00, 01, 10, and 11, respectively.

(a) Tabulate the characteristic table. (b)* Derive the characteristic equation.

(c) Tabulate the excitation table. (d) Show how the PN flip-flop can be converted
to a D flip-flop.

Explain the differences among a truth table, a state table, a characteristic table, and an excitation

table. Also, explain the difference among a Boolean equation, a state equation, a characteristic

equation, and a flip-flop input equation.

A sequential circuit with two D flip-flops A and 8, two inputs x and y, and one output z is speci-
fied by the following next-state and output equations (HDL—see Problem 5.35):

A(t + 1) =x'vy + xB

B(t +1)=2x"A + 1B
= A

(a) Draw the logic diagram of the circuit.
(b) List the state table for the sequential circuit.
(c) Draw the corresponding state diagram,

A sequential circuit has one flip-flop @, two inputs x and y, and one output S. It consists of a full-
adder circuit connected to a D flip-flop, as shown in Fig. P5.7. Derive the state table and state
diagram of the sequential circuit.

Derive the state table and the state diagram of the sequential circuit shown in Fig. P5.8. Explain
the function that the circuit performs. (HDL—see Problem 5.36.)



(c) ketabton.com: The Digital Library

236 Chapter 5 Synchronous Sequential Logic

FIGURE P5.7

Clock

FIGURE P5.8

5.9  Asequential circuit has two JK flip-flops A and B and one input x. The circuit is described by the
following flip-flop input equations:
Ji=x K;=8
Jg=x Kg=A

(a)* Derive the state equations A(r + 1) and B(r + 1) by substituting the input eguations for the
J and K variables.
{b) Draw the state diagram of the circuit.
5.10 A sequential circuit has two JK flip-flops A and B, two inputs x and v, and one output =. The flip-

flop input equations and circuit output equation are

Jd=81+8'y' K‘=B'.r)"

J":A'I K’=A+.I‘_\"

= Axt.‘_a + B;',"



(c) ketabton.com: The Digital Library

Problems 237

(a) Draw the logic diagram of the circuit,
(b) Tabulate the state table.
(¢)* Derive the state equations for A and B.

5.17% Starting from state 00 in the state diagram of Fig. 5.16, determine the state transitions and

5.12+

5.13*

5.14

515

5.16*

517

output sequence that will be generated when an input sequence of 010110111011110 is
applied.

Reduce the number of states in the following state table, and tabulate the reduced state table:

Next State Output
Present State x =10 x=1 x=0 x=1
a f b 0 0
b d 0 0
(o £ ¢ 0 0
d 2 a 1 0
e d ¢ 0 0
f f b 1 1
g g h 0 |
h 2 a 1 0

Starting from state & and the input sequence 01110010011, determine the output sequence for
(a) the state table of the previous problem and

(b) the reduced state table from the previous problem. Show that the same output sequence is ob-
tained for both.

Substitute binary assignment 2 from Table 5.9 to the states in Table 5.8, and obtain the binary state
table.

List a state table for the JK flip-flop, using Q as the present and next state and J and K as in-
puts. Design the sequential circuit specified by the state table, and show that it is equivalent to
Fig. 5.12(a).

Design a sequential circuit with two D flip-flops A and B and one input x_in.

(a) When x_in = 0, the state of the circuit remains the same. When x_in = 1, the circuit goes
through the state transitions from 00 to 01, to 11, to 10, back to ()0, and repeats.

(b) When x_in = 0, the state of the circuit remains the same. When x_in = 1, the circuit goes
through the state transitions from 00 to 11, to 01, to 10, back to 00, and repeats. (HDL—see
Problems 5.38.)

Design a one-input, one-output serial 2’s complementer. The circuit accepts a string of bits from
the input and generates the 2's complement at the output. The circuit can be reset asynchronously
to start and end the operation. (HDL—see Problem 5.39.)



(c) ketabton.com: The Digital Library

238 Chapter 5 Synchronous Sequential Logic

5.18* Design a sequential circuit with two JK flip-flops A and B and two inputs Eand F. If E = 0, the
circuit remains in the same state regardless of the value of F. When £ = | and F = 1, the cir-
cuit goes through the state transitions from 00 to 01, to 10, to 11, back to 00, and repeats, When
E = 1and F = 0, the circuit goes through the state transitions from 00 to 11, to 10, to 01, back
to 00, and repeats. (HDL—see Problem 5.40.)

5.19 A sequential circuit has three flip-flops A, B, and C; one input x_in: and one output ¥_our. The
state diagram is shown in Fig. P5.19. The circuit is to be designed by treating the unused states
as don’t-care conditions, Analyze the circuit obtained from the design to determine the effect of
the unused states. (HDL—see Problem 5.41.)

(a)* Use D flip-flops in the design.
(b) Use JK flip-flops in the design.

FIGURE P5.19

5.20 Design the sequential circuit specified by the state diagram of Fig. 5.19, using T flip-flops.
5.21 What is the main difference between an initial statement and an always statement in Verilog HDL?
5.22 Draw the waveform generated by the following statements:
(a) initial begin
w=0; #15w=1; #0w=0; #25w=1; #0w=0;
end

(b) initial fork
w=0; #15w=1; #60w=0; #25w=1; #40w=0;

join
5.23*% Consider the following statements, assuming that RegA contains the value of 30 initially:
(a) RegA =75; (b) RegA <= 75;
RegB = RegA; RegB <= RegA,;

What are the values of RegA and RegB after execution?



(c) ketabton.com: The Digital Library

5.24

5.25

5.26

5.27

5.28

5.29

5.30°

531

5.32

533

534

5.35

Problems 139

Write and verify an HDL behavioral description of a positive-edge-sensitive D flip-flop with
(a) active-low asynchronous preset and clear. (This type of flip-flop is shown in Fig. 11.13.)
{b) active-low synchronous preset and clear.

A special positive-edge-triggered flip-flop has two inputs D/ and D2 and a control input that
chooses between the two. Write and verify an HDL behavioral description of this flip-flop.
Write and verify an HDL behavioral description of the JK flip-flop, using an if-else statement based
on the value of the present state.

(a)* Consider the characteristic equation when @ = OorQ = 1

(b) Consider how the J and K inputs affect the output of the flip-flop at each clock tick.
Rewrite and verify the description of HDL Example 5.5 by combining the state transitions and
output into one always block.

Simulate the sequential circuit shown in Fig. 5.17.

(a) Write the HDL description of the state diagram (i.e.. a behavioral model).

(b) Write the HDL description of the circuit diagram (i.e.. a structural model).

(c) Write an HDL stimulus with the sequence 00, 01, 11, 10 of inputs. Verify that the response
is the same for both descriptions.

Write a behavioral description of the state machine described by the state diagram shown in
Fig. P5.19. Write a test bench and verify the functionality of the description.

Draw the logic diagram for the sequential circuit described by the following HDL module:

module Seq_Ckt (input A, B, C, CLK, output reg Q);
reg E;

always @ (posedge CLK);
begin
E<=A&B;
Q<=E|C;
end
endmodule

What changes, if any, must be included in the circuit if the last two statements use blocking in-
stead of nonblocking assignment?

How should the description in Problem 5.30 be written so that the circuit has the same behavior
when the assignments are made with = instead of with <= ?

Using an initial statement with a begin ... end block, write a Verilog description of the wave-
forms shown in Fig. P5.32, Repeat using a fork ... join block.

Explain why it is important that the stimulus signals in a test bench be synchronized to the inac-
tive edge of the clock of the sequential circuit that is to be tested.

Using behavioral models for the D flip-flop and the inverter, write and verify an HDL model of
the J-K flip-flop described in Problem 5.2,

Write and verify an HDL mode! of the sequential circuit described in Problem 5.6,



(c) ketabton.com: The Digital Library

240  Chapter 5

Synchronous Sequential Logic

enable

IR [N N D | T S

C i

S

A =

¥ |
r T T T T T T T !
0 10 20 30 40 50 60 70 80

FIGURE P5.32

Waveforms for Problem 5.32

5.36 Write and verify an HDL structural description of the machine having the circuit diagram
(schematic) shown in Fig. P5.8.

5.37 Write and verify HDL behavioral descriptions of the state machines shown in Fig. 5.25 and
Fig, 5.26. Write a test bench to compare the state sequences and input—output behaviors of the
two machines.

5.38 Write and verify an HDL behavioral description of the machine described in Problem 5.16.

5.39 Write and verify a behavioral description of the machine specified in Problem 5.17.

5.40 Write and verify a behavioral description of the machine specified in Problem 5.18.

5.47 Write and verify a behavioral description of the machine specified in Problem 5.19. (Hint: See
the discussion of the default case item preceding HDL Example 4.8 in Chapter 4.)

5.42 Write and verify an HDL structural description of the circuit shown in Fig. 5.29.

5.43 Write and verify an HDL behavioral description of the three-bit binary counter shown in Figure
5.34.

5.44 Write and verify a Verilog model of a D flip-flop having synchronous reset,

5.45 Write and verify an HDL behavioral description of the sequence detector described in Figure
5.27

REFERENCES
1. BHASKER, I. 1997. A Verilog HDL Primer. Allentown, PA; Star Galaxy Press.
2.  BHASKER, 1. 1998, Verilog HDL Synthesis. Allentown, PA: Star Galaxy Press.



(c) ketabton.com: The Digital Library

ENOWA W

A

10.

11.
12.

13

References 24

CiLETTI, M. D. 1999. Modeling, Synihesis, and Rapid Protoryping with Verilog HDL. Upper Sad-
dle River, NJ: Prentice Hall.

DIETMEYER, D. L. 1988. Logic Design of Digital Systems, 3d ed. Boston: Allyn Bacon.

Gatskl, D. D. 1997. Principles of Digital Design. Upper Saddle River. NJ: Prentice Hall,
Haves, J, P. 1993, Introduction to Digital Logic Design. Reading, MA: Addison-Wesley.

Karz, R. H. 2005. Contemporary Logic Design, Upper Saddle River, NJ: Prentice Hall.

Mano, M, M., and C. R. KimE. 2005. Logic and Computer Design Fundamentals & Xilinx 6.3
Student Edition, 3rd ed. Upper Saddle River, NJ: Prentice Hall.

NELSON, V. P, H. T. NAGLE, J. D. Irwiy, and B. D. CarroLL. 1995, Digital Logic Circuit Analy-
sis and Design. Englewood Cliffs, NJ: Prentice Hall,

PALNITKAR, S. 1996. Verilog HDL: A Guide to Digital Design and Synthesis, Mountain View,
CA: SunSoft Press (a Prentice Hall title).

RotH, C. H. 2004. Fundamentals of Logic Design, 5th ed. St. Paul, MN: Brooks/Cole.
THoMAS, D. E., and P. R. MoORBY, 2002, The Verilog Hardware Description Language, 6th ed.
Boston: Kluwer Academic Publishers.

WAaKERLY, 1. F. 2006. Digital Design: Principles and Practices, 4th ed. Upper Saddle River, NJ:
Prentice Hall.



(c) ketabton.com: The Digital Library

Chapter 6
Registers and Counters

6.1

REGISTERS

A clocked sequential circuit consists of a group of flip-flops and combinational gates con-
nected to form a feedback path. The flip-flops are essential because, in their absence, the
circuit reduces to a purely combinational circuit (provided that there is no feedback among
the gates). A circuit with flip-flops is considered a sequential circuit even in the absence of
combinational gates. Circuits that include flip-flops are usually classified by the function
they perform rather than by the name of the sequential circuit. Two such circuits are regis-
ters and counters.

A register is a group of flip-flops, each one of which is capable of storing one bit of
information. An n-bit register consists of a group of n flip-flops capable of storing n bits of
binary information. In addition to the flip-flops, a register may have combinational gates
that perform certain data-processing tasks. In its broadest definition, a register consists of
a group of flip-flops together with gates that affect their operation. The flip-flops hold the
binary information. and the gates determine how the information is transferred into the
register.

A counter is essentially a register that goes through a predetermined sequence of binary
states. The gates in the counter are connected in such a way as to produce the prescribed se-
quence of states. Although counters are a special type of register, it is common to differentiate
them by giving them a different name.

Various types of registers are available commercially. The simplest register is one that con-
sists of only flip-flops, without any gates. Figure 6.1 shows such a register constructed with four
D-type flip-flops to form a four-bit data storage register. The common clock input triggers all
flip-flops on the positive edge of each pulse, and the binary data available at the four inputs are



(c) ketabton.com: The Digital Library

Section 6.1 Registers 243

Ay

I
I
1(3 AJ
> ¢
L]

Clock Clear

FIGURE 6.1
Four-bit register

transferred into the register. The four outputs can be sampled at any time to obtain the binary
information stored in the register. The input Clear_b goes to the active-low R (reset) input of
all four flip-flops. When this input goes to 0, all flip-flops are reset asynchronously. The Clear_b



(c) ketabton.com: The Digital Library

244

Chapter 6 Registers and Counters

input is useful for clearing the register to all 0's prior to its clocked operation. The R inputs must
be maintained at logic 1 during normal clocked operation. Note that, depending on the flip-flop,
either Clear, Clear_b, reset, or reset_b can be used to indicate the transfer of the register to an
all 0s state.

Register with Parallel Load

Synchronous digital systems have a master clock generator that supplies a continuous train
of clock pulses. The pulses are applied to all flip-flops and registers in the system, The
master clock acts like a drum that supplies a constant beat to all parts of the system. A sep-
arate control signal must be used to decide which register operation will execute at each
clock pulse. The transfer of new information into a register is referred to as loading or up-
dating the register. If all the bits of the register are loaded simultaneously with a common
clock pulse. we say that the loading is done in parallel. A clock edge applied to the C in-
puts of the register of Fig. 6.1 will load all four inputs in parallel. In this configuration, if
the contents of the register must be left unchanged, the inputs must be held constant or the
clock must be inhibited from the circuit. In the first case, the data bus driving the register
would be unavailable for other traffic, In the second case, the clock can be inhibited from
reaching the register by controlling the clock input signal with an enabling gate. However,
inserting gates into the clock path is ill advised because it means that logic is performed with
clock pulses. The insertion of logic gates produces uneven propagation delays between the
master clock and the inputs of flip-flops. To fully synchronize the system, we must ensure
that all clock pulses arrive at the same time anywhere in the system, so that all flip-flops
trigger simultaneously. Performing logic with clock pulses inserts variable delays and may
cause the system to go out of synchronism. For this reason, it is advisable to control the
operation of the register with the D inputs, rather than controlling the clock in the C inputs
of the flip-flops. This creates the effect of a gated clock, but without affecting the clock path
of the circuit,

A four-bit data-storage register with a load control input that is directed through gates and
into the D inputs of the flip-flops is shown in Fig. 6.2. The additional gates implement a two-
channel mux whose output drives the input to the register with either the data bus or the out-
put of the register. The load input to the register determines the action to be taken with each
clock pulse. When the load input is 1, the data at the four external inputs are transferred into
the register with the next positive edge of the clock. When the load input is 0, the outputs of
the flip-flops are connected to their respective inputs. The feedback connection from output
to input is necessary because a D flip-flop does not have a “no change” condition. With each
clock edge. the D input determines the next state of the register. To leave the output un-
changed, it is necessary to make the D input equal to the present value of the output (i.e.. the
output circulates to the input at each clock pulse). The clock pulses are applied to the C in-
puts without interruption. The load input determines whether the next pulse will accept new
information or leave the information in the register intact. The transfer of information from
the data inputs or the outputs of the register is done simultaneously with all four bits in response
to a clock edge.



(c) ketabton.com: The Digital Library

Section 6.2 Shift Registers 245

Load Dc Dc
‘4[]
'
Ay
1
Aj
I
A;
I
Clock
FIGURE 6.2

Four-bit register with parallel load

6.2 SHIFT REGISTERS

A register capable of shifting the binary information held in each cell to its neighboring cell,
in a selected direction, is called a shift register. The logical configuration of a shift register
consists of a chain of flip-flops in cascade, with the output of one flip-flop connected to the input
of the next flip-flop. All flip-flops receive common clock pulses, which activate the shift of data
from one stage to the next.

The simplest possible shift register is one that uses only flip-flops, as shown in Fig. 6.3. The
output of a given flip-flop is connected to the D input of the flip-flop at its right. This shift reg-
ister is unidirectional. Each clock pulse shifts the contents of the register one bit position to the



(c) ketabton.com: The Digital Library

246

Chapter 6 Registers and Counters

Serial S/
input

FIGURE 6.3
Four-bit shift register

) SO Serial
/s output

right. The configuration does not support a left shift. The serial inpur determines what goes into
the leftmost flip-flop during the shift. The serial output is taken from the output of the rightmost
flip-flop. Sometimes it is necessary to control the shift so that it occurs only with certain pulses,
but not with others. As with the data register discussed in the previous section. the clock’s sig-
nal can be suppressed by gating the clock signal to prevent the register from shifting. A preferred
alternative in high-speed circuits is to suppress the clock action, rather than gate the clock sig-
nal, by leaving the clock path unchanged, but recirculating the output of each register cell back
through a two-channel mux whose output is connected to the input of the cell. When the clock
action is not suppressed, the other channel of the mux provides a data path to the cell.

It will be shown later that the shift operation can be controlled through the D inputs of the flip-
flops rather than through the clock input. If, however, the shift register of Fig. 6.3 is used. the shift
can be controlled with an input by connecting the clock through an AND gate. Note that the sim-
plified schematics do not show a reset signal, but such a signal is required in practical designs.

Serial Transfer

A digital system is said to operate in serial mode when information is transferred and manip-
ulated one bit at a time. Information is transferred one bit at a time by shifting the bits out of
the source register and into the destination register. This type of transfer is in contrast to par-
allel transfer, whereby all the bits of the register are transferred at the same time.

The serial transfer of information from register A to register B is done with shift registers. as
shown in the block diagram of Fig. 6.4(a). The serial output (SO) of register A is connected to the
serial input (87) of register B. To prevent the loss of information stored in the source register. the
information in register A is made to circulate by connecting the serial output to its serial input.
The initial content of register B is shifted out through its serial output and is lost unless it is trans-
ferred to a third shift register. The shift control input determines when and how many times the reg-
isters are shifted. For illustration here, this is done with an AND gate that allows clock pulses to
pass into the CLK terminals only when the shift control is active. (This practice can be problem-
atic because it may compromise the clock path of the circuit, as discussed earlier.)

Suppose the shift registers have four bits each. Then the control unit that supervises the
transfer of data must be designed in such a way that it enables the shift registers, through the
shift control signal, for a fixed time of four clock pulses. This design is shown in the timing
diagram of Fig. 6.4(b). The shift control signal is synchronized with the clock and changes
value just after the negative edge of the clock. The next four clock pulses find the shift control
signal in the active state, so the output of the AND gate connected to the CLK inputs produces



(c) ketabton.com: The Digital Library

Section 6.2 Shift Registers

St
Clock R 3\

SO

AT

CLK

A J

Shif register B |

Shift —
control

(a) Block diagram

CLK

S0

aead LTI

Shift

control

CLK

FIGURE 6.4

Serial transfer from register A to register B

T

T;
{b) Timing diagram

LU L]

T,

.

247

four pulses: Ty, 75, T3, and T}, Each rising edge of the pulse causes a shift in both registers. The
fourth pulse changes the shift control to 0, and the shift registers are disabled.
Assume that the binary content of A before the shift is 1011 and that of B is 0010. The se-
rial transfer from A to B occurs in four steps, as shown in Table 6.1, With the first pulse, T},
the rightmost bit of A is shifted into the leftmost bit of B and is also circulated into the leftmost
position of A, At the same time, all bits of A and B are shifted one position to the right. The pre-
vious serial output from B in the rightmost position is lost, and its value changes from 0 to 1.
The next three pulses perform identical operations. shifting the bits of A into B, one at a time.
After the fourth shift, the shift control goes to 0 and registers A and B both have the value
1011. Thus, the contents of A are copied into B, so that the contents of A remain unchanged.

Table 6.1

Serial-Transfer Example

Shift Register B

Timing Pulse  Shift Register A

Initial value
After Ty
After T,
After T3
After T,

1
1
1
0
1

=

0
I
1
I
0

—— e O

1~
1

0

.
1

O = =

0 01
v1 %l <0
1 0
0 1
1 1

s |

0

0
0
1




(c) ketabton.com: The Digital Library

248  Chapter 6 Registers and Counters
The difference between the serial and the parallel mode of operation should be apparent
from this example. In the parallel mode, information is available from all bits of a register and
all bits can be transferred simultaneously during one clock pulse. In the serial mode. the reg-
isters have a single serial input and a single serial output. The information is transferred one
bit at a time while the registers are shifted in the same direction.
Serial Addition

Operations in digital computers are usually done in parallel because that is a faster mode of op-
eration, Serial operations are slower because a data-path operation takes several clock cycles,
but serial operations have the advantage of requiring fewer hardware components. In VLSI
circuits, they require less silicon area on a chip. To demonstrate the serial mode of operation,
we present the design of a serial adder. The parallel counterpart was presented in Section 4.4.

The two binary numbers to be added serially are stored in two shift registers. Beginning with
the least significant pair of bits, the circuit adds one pair at a time through a single full-adder
(FA) circuit, as shown in Fig. 6.5. The carry out of the full adder is transferred to a D flip-flop,
the output of which is then used as the carry input for the next pair of significant bits. The sum
bit from the § output of the full adder could be transferred into a third shift register. By shift-
ing the sum into A while the bits of A are shifted out, it is possible to use one register for stor-
ing both the augend and the sum bits. The serial input of register B can be used to transfer a
new binary number while the addend bits are shifted out during the addition,

-
Shift "
control >
CLK -
B —
Serial i e
input 4 :
Q
D
cqd——
Clear —T
FIGURE 6.5

Serial adder



(c) ketabton.com: The Digital Library

Section 6.2 Shift Registers 249

The operation of the serial adder is as follows: Initially, register A holds the augend, regis-
ter B holds the addend, and the carry flip-flop is cleared to 0. The outputs (SO) of A and B pro-
vide a pair of significant bits for the full adder at x and y. Output Q of the flip-flop provides
the input carry at z. The shift control enables both registers and the carry flip-flop. so at the next
clock pulse, both registers are shifted once to the right, the sum bit from § enters the leftmost
flip-flop of A, and the output carry is transferred into flip-flop Q. The shift control enables the
registers for a number of clock pulses equal to the number of bits in the registers. For each suc-
ceeding clock pulse, a new sum bit is transferred to A, a new carry is transferred to Q, and both
registers are shifted once to the right. This process continues until the shift control is disabled.
Thus, the addition is accomplished by passing each pair of bits together with the previous carry
through a single full-adder circuit and transferring the sum, one bit at a time, into register A,

Initially, register A and the carry flip-flop are cleared to 0, and then the first number is added
from B. While B is shifted through the full adder, a second number is transferred to it through
its serial input. The second number is then added to the contents of register A while a third
number is transferred serially into register B. This can be repeated to perform the addition of
two, three, or more four-bit numbers and accumulate their sum in register A.

Comparing the serial adder with the parallel adder described in Section 4.4, we note several
differences. The parallel adder uses registers with a parallel load, whereas the serial adder uses
shift registers. The number of full-adder circuits in the parallel adder is equal to the number of
bits in the binary numbers, whereas the serial adder requires only one full-adder circuit and a
carry flip-flop. Excluding the registers, the parallel adder is a combinational circuit, whereas the
serial adder is a sequential circuit which consists of a full adder and a flip-flop that stores the out-
put carry. This design is typical in serial operations because the result of a bit-time operation may
depend not only on the present inputs, but also on previous inputs that must be stored in flip-flops.

To show that serial operations can be designed by means of sequential circuit procedure, we
will redesign the serial adder with the use of state table. First, we assume that two shift regis-
ters are available to store the binary numbers to be added serially. The serial outputs from the
registers are designated by x and y. The sequential circuit to be designed will not include the
shift registers, but they will be inserted later to show the complete circuit. The sequential cir-
cuit proper has the two inputs, x and y. that provide a pair of significant bits, an output S that
generates the sum bit, and flip-flop Q for storing the carry. The state table that specifies the se-
quential circuit is listed in Table 6.2. The present state of @ is the present value of the carry.
The present carry in Q is added together with inputs x and y to produce the sum bit in output
S. The next state of @ is equal to the output carry. Note that the state table entries are identical
to the entries in a full-adder truth table, except that the input carry is now the present state of
Q and the output carry is now the next state of Q.

If a D flip-flop is used for Q, the circuit reduces to the one shown in Fig. 6.5. If a JK flip-
flop is used for Q, it is necessary to determine the values of inputs J and K by referring to the
excitation table (Table 5.12). This is done in the last two columns of Table 6.2, The two flip-
flop input equations and the output equation can be simplified by means of maps to

Jo = xy
Kg=xy'=(x+y)
S=x@yaQ



(c) ketabton.com: The Digital Library
250 Chapter 6 Registers and Counters

Table 6.2

State Table for Serial Adder

Present State  Inputs  Next State  Output  Flip-Flop Inputs
Q > Q 5 Jo Kq
0 0 0 0 0 0 X
0 0 1 0 1 0 X
0 1 0 0 | 0 X
0 1 3 1 0 1 X
1 0 0 0 1 X 1
1 0 1 1 0 X 0
i 1 0 1 0 X 0
i 11 1 1 X 0

Shift

control

CLK

Serial

input

FIGURE 6.6

Second form of serial adder

The circuit diagram is shown in Fig. 6.6. The circuit consists of three gates and a JX flip-flop.
The two shift registers are included in the diagram to show the complete serial adder. Note
that output S is a function not only of x and y, but also of the present state of Q. The next state
of Q is a function of the present state of Q and of the values of x and y that come out of the se-
rial outputs of the shift registers.

Universal Shift Register

If the flip-flop outputs of a shift register are accessible, then information entered serially by shift-
ing can be taken out in parallel from the outputs of the flip-flops. If a paraliel load capability
is added to a shift register, then data entered in parallel can be taken out in serial fashion by
shifting the data stored in the register.



(c) ketabton.com: The Digital Library

Section 6.2 Shift Registers 251

Some shift registers provide the necessary input and output terminals for parallel transfer.
They may also have both shift-right and shift-left capabilities. The most general shift register
has the following capabilities:

1. A clear control to clear the register to 0.

2. A clock input to synchronize the operations,

3. A shift-right control to enable the shift-right operation and the serial input and output lines
associated with the shift right.

4. A shift-left control to enable the shiti-lett operation and the serial input and output Hhes
associated with the shift left.

5. Aparallel-load control to enable a parallel transfer and the # input lines associated with
the parallel transfer,

6. n parallel output lines.

7. A control state that leaves the information in the register unchanged in response to the
clock. Other shift registers may have only some of the preceding functions, with at least
one shift operation.

A register capable of shifting in one direction only is a unidirectional shift register. One
that can shift in both directions is a bidirectional shift register. If the register has both shifts and
parallel-load capabilities, it is referred to as a universal shift register.

The block diagram symbol and the circuit diagram of a four-bit universal shift register that
has all the capabilities just listed are shown in Fig. 6.7, The circuit consists of four D flip-flops
and four multiplexers. The four multiplexers have two common selection inputs s; and s;. Input
0 in each multiplexer is selected when s1sp = 00, input 1 is selected when 5359 = 01, and sim-
ilarly for the other two inputs. The selection inputs control the mode of operation of the regis-
ter according to the function entries in Table 6.3. When s;5 = 00, the present value of the
register is applied to the D inputs of the flip-flops. This condition forms a path from the output
of each flip-flop into the input of the same flip-flop. so that the output recirculates to the input
in this mode of operation. The next clock edge transfers into each flip-flop the binary value it held
previously, and no change of state occurs. When sys5 = 01, terminal | of the multiplexer inputs
has a path to the D inputs of the flip-flops. This causes a shift-right operation, with the serial
input transferred into flip-flop As. When ;89 = 10, a shift-left operation results, with the other
serial input going into flip-flop Ay. Finally, when s159 = 11, the binary information on the par-
allel input lines is transferred into the register simultaneously during the next clock edge. Note
that data enters MSB_in for a shift-right operation and enters LSB_in for a shift-left operation.

Shift registers are often used to interface digital systems situated remotely from each other.
For example, suppose it is necessary to transmit an n-bit quantity between two points. If the
distance is far, it will be expensive to use n lines to transmit the n bits in parallel. It is more eco-
nomical to use a single line and transmit the information serially, one bit at a time. The trans-
mitter accepts the n-bit data in parallel into a shift register and then transmits the data serially
along the common line. The receiver accepts the data serially into a shift register. When all n
bits are received, they can be taken from the outputs of the register in parallel. Thus, the trans-
mitter performs a parallel-to-serial conversion of data and the receiver does a serial-to-parallel
conversion.



(c) ketabton.com: The Digital Library

252  Chapter 6 Registers and Counters

Clear ————
CLK
Serial :
input for \— inf:en::lf]or
shift-right shift-left
IJ 1; I 1 ln
Parallel inputs
(b)
FIGURE 6.7

Four-bit universal shift register



(c) ketabton.com: The Digital Library

Section 6.3 Ripple Counters 253

Table 6.3
Function Table for the Register of Fig. 6.7
Mode Control
s1 S Register Operation
0 0 No change
0 1 Shift right
I 0 Shift left
1 1 Parallel load

6.3 RIPPLE COUNTERS

A register that goes through a prescribed sequence of states upon the application of input pulses
is called a counter. The input pulses may be clock pulses, or they may originate from some
external source and may occur at a fixed interval of time or at random. The sequence of states
may follow the binary number sequence or any other sequence of states. A counter that follows
the binary number sequence is called a birary counter. An n-bit binary counter consists of n
flip-flops and can count in binary from 0 through 2" — 1.

Counters are available in two categories: ripple counters and synchronous counters. In a
ripple counter, a flip-flop output transition serves as a source for triggering other flip-flops. In
other words, the C input of some or all flip-flops are triggered, not by the common clock pulses,
but rather by the transition that occurs in other flip-flop outputs. In a synchronous counter, the
C inputs of all flip-flops receive the common clock. Synchronous counters are presented in
the next two sections. Here, we present the binary and BCD ripple counters and explain their

operation.

Binary Ripple Counter

A binary ripple counter consists of a series connection of complementing flip-flops. with
the output of each flip-flop connected to the C input of the next higher order flip-flop. The
flip-flop holding the least significant bit receives the incoming count pulses. A comple-
menting flip-flop can be obtained from a JK flip-flop with the J and K inputs tied together
or from a T flip-flop. A third possibility is to use a D flip-flop with the complement output
connected to the D input. In this way, the D input is always the complement of the present
state, and the next clock pulse will cause the flip-flop to complement. The logic diagram of
two 4-bit binary ripple counters is shown in Fig. 6.8. The counter is constructed with com-
plementing flip-flops of the 7 type in part (a) and D type in part (b). The output of each flip-
flop is connected to the C input of the next flip-flop in sequence. The flip-flop holding the
least significant bit receives the incoming count pulses. The 7 inputs of all the flip-flops in
(a) are connected to a permanent logic 1, making each flip-flop complement if the signal in
its C input goes through a negative transition. The bubble in front of the dynamic indicator
symbol next to C indicates that the flip-flops respond to the negative-edge transition of the



(c) ketabton.com: The Digital Library

254 Chapter 6 Registers and Counters

Count

Logic 1

Reser

(a) With T flip-flops

FIGURE 6.8
Four-bit binary ripple counter

Ay

N

Al_l

Count

Ay

A

Reset

(b) With D flip-flops



(c) ketabton.com: The Digital Library

Section 6.3 Ripple Counters 255

Table 6.4

Binary Count Sequence
Az Az Ay Ao
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 ] 0 0
0 1 0 I
0 1 I 0
0 1 1 l
1 0 0 0

input. The negative transition occurs when the output of the previous flip-flop to which C is
connected goes from 1 to 0.

To understand the operation of the four-bit binary ripple counter, refer to the first nine binary
numbers listed in Table 6.4, The count starts with binary () and increments by | with each count
pulse input. After the count of 15, the counter goes back to 0 to repeat the count, The least sig-
nificant bit, Ag, is complemented with each count pulse input. Every time that A goes from
1 to 0, it complements A;. Every time that A; goes from 1 to 0, it complements A,. Every
time that A, goes from 1 to 0. it complements A3, and so on for any other higher order bits of
aripple counter. For example, consider the transition from count 0011 to 0100. A, is comple-
mented with the count pulse. Since A( goes from 1 to 0, it triggers A; and complements it. As
aresult, A, goes from 1 to 0, which in turn complements A,, changing it from 0 to 1. A, does
not trigger As, because A, produces a positive transition and the flip-flop responds only to
negative transitions. Thus, the count from 0011 to 0100 is achieved by changing the bits one
at a time, so the count goes from 0011 to 0010, then to 0000, and finally to 0100, The flip-flops
change one at a time in succession. and the signal propagates through the counter in a ripple
fashion from one stage to the next.

A binary counter with a reverse count is called a binary countdown counter. In a count-
down counter, the binary count is decremented by 1 with every input count pulse. The count
of a four-bit countdown counter starts from binary 15 and continues to binary counts 14, 13,
12, ..., Oand then back to 15. A list of the count sequence of a binary countdown counter shows
that the least significant bit is complemented with every count pulse. Any other bit in the
sequence is complemented if its previous least significant bit goes from 0 to 1. Therefore, the
diagram of a binary countdown counter looks the same as the binary ripple counter in Fig. 6.8,
provided that all flip-flops trigger on the positive edge of the clock. (The bubble in the C in-
puts must be absent.) If negative-edge-triggered flip-flops are used, then the C input of each
flip-flop must be connected to the complemented output of the previous flip-flop. Then, when
the true output goes from 0 to 1, the complement will go from 1 to 0 and complement the next
flip-flop as required.



(c) ketabton.com: The Digital Library

256

Chapter 6 Registers and Counters

FIGURE 6.9
State diagram of a decimal BCD counter

BCD Ripple Counter

A decimal counter follows a sequence of 10 states and returns to 0 after the count of 9. Such a
counter must have at least four flip-flops to represent each decimal digit, since a decimal digit
is represented by a binary code with at least four bits. The sequence of states in a decimal
counter is dictated by the binary code used to represent a decimal digit. If BCD is used. the se-
quence of states is as shown in the state diagram of Fig. 6.9. A decimal counter is similar to a
binary counter, except that the state after 1001 (the code for decimal digit 9) is 0000 (the code
for decimal digit 0).

The logic diagram of a BCD ripple counter using JK flip-flops is shown in Fig. 6.10. The
four outputs are designated by the letter symbol Q. with a numeric subscript equal to the bi-
nary weight of the corresponding bit in the BCD code. Note that the output of Q, is applied to
the C inputs of both O, and Qg and the output of O, is applied to the C input of Q5. The J and
K inputs are connected either to a permanent 1 signal or to outputs of other flip-flops.

Aripple counter is an asynchronous sequential circuit. Signals that affect the flip-flop tran-
sition depend on the way they change from 1 to 0. The operation of the counter can be ex-
plained by a list of conditions for flip-flop transitions. These conditions are derived from the
logic diagram and from knowledge of how a JK flip-flop operates. Remember that when the
C input goes from 1 to 0, the flip-flop is set if J = 1, is cleared if K = 1, is complemented if
J = K = 1, and is left unchanged if / = K = 0.

To verify that these conditions result in the sequence required by a BCD ripple counter, it
is necessary to verify that the flip-flop transitions indeed follow a sequence of states as spec-
ified by the state diagram of Fig. 6.9. O, changes state after each clock pulse. Q> complements
every time Q; goes from 1 to 0, as long as Qg = 0. When Qg becomes 1, Q5 remains at 0. 0y
complements every time Q5 goes from 1 to 0. Og remains at 0 as long as Q; or Qy is 0. When
both 0> and Q, become 1, Qg complements when @, goes from | to 0. Qg is cleared on the next
transition of Q.

The BCD counter of Fig. 6.10 is a decade counter, since it counts from 0 to 9. To count in dec-
imal from 0 to 99, we need a two-decade counter, To count from 0 to 999, we need a three-decade
counter. Multiple decade counters can be constructed by connecting BCD counters in cascade,
one for each decade. A three-decade counter is shown in Fig. 6.11. The inputs to the second and
third decades come from Qg of the previous decade. When Qg in one decade goes from 1 100, it
triggers the count for the next higher order decade while its own decade goes from 9 1o 0.



(c) ketabton.com: The Digital Library

Count —__T_C?F..E -

Section 6.3 Ripple Counters

0

U

FIGURE 6.10
BCD ripple counter

Logic 1

(2]

Q

257



(c) ketabton.com: The Digital Library

258  Chapter 6 Registers and Counters

Qs Q4 O O Qs Q4 O O Qs Q4 O O

7 BED, Count
iBoumeE 1 ounter : pulses
107 digit 10° digit 10 digit
FIGURE 6.11

Block diagram of a three-decade decimal BCD counter

6.4 SYNCHRONOUS COUNTERS

Synchronous counters are different from ripple counters in that clock pulses are applied to the
inputs of all flip-flops. A common clock triggers all flip-flops simultaneously, rather than one
at a time in succession as in a ripple counter. The decision whether a flip-flop is to be
complemented is determined from the values of the data inputs, such as T or J and K at the time
of the clock edge. If 7 = O or J = K = 0, the flip-flop does not change state. If 7 = 1 or
J = K = 1, the flip-flop complements.

The design procedure for synchronous counters was presented in Section 5.8, and the design
of a three-bit binary counter was carried out in conjunction with Fig. 5.31. In this section, we
present some typical synchronous counters and explain their operation.

Binary Counter

The design of a synchronous binary counter is so simple that there is no need to go through a
sequential logic design process. In a synchronous binary counter, the flip-flop in the least sig-
nificant position is complemented with every pulse. A flip-flop in any other position is com-
plemented when all the bits in the lower significant positions are equal to 1. For example, if
the present state of a four-bit counter is A3A>A 1Ay = 0011, the next count is 0100. Ay, is al-
ways complemented. A is complemented because the present state of Ay = 1. A5 is comple-
mented because the present state of AjAg = 11. However, A3 is not complemented. because
the present state of A,A;Ag = 011, which does not give an all-1's condition.

Synchronous binary counters have a regular pattern and can be constructed with comple-
menting flip-flops and gates. The regular pattern can be seen from the four-bit counter depicted
in Fig. 6.12. The C inputs of all flip-flops are connected to a common clock. The counter is
enabled with the count enable input. If the enable input is 0, all J and K inputs are equal to (
and the clock does not change the state of the counter. The first stage. A, has its J and K equal
to 1 if the counter is enabled. The other J and K inputs are equal to 1 if all previous least sig-
nificant stages are equal to 1 and the count is enabled. The chain of AND gates generates the
required logic for the J and K inputs in each stage. The counter can be extended to any num-
ber of stages, with each stage having an additional flip-flop and an AND gate that gives an
output of 1 if all previous flip-flop outputs are 1.



(c) ketabton.com: The Digital Library

Section 6.4 Synchronous Counters 259

J : St Ap
> C:
Count enable S .
I
PN
A
: Ay
K _.:__.
[
L G
7 Ay
P € %
&
D—— To next stage

CLK

FIGURE 6.12
Four-bit synchronous binary counter



(c) ketabton.com: The Digital Library

260

Chapter 6 Registers and Counters

Note that the flip-flops trigger on the positive edge of the clock. The polarity of the clock
is not essential here, but it is with the ripple counter. The synchronous counter can be triggered
with either the positive or the negative clock edge. The complementing flip-flops in a binary
counter can be of either the JK type, the T type, or the D type with XOR gates. The equivalency
of the three types is indicated in Fig. 5.13.

Up-Down Binary Counter

A synchronous countdown binary counter goes through the binary states in reverse order, from
1111 down to 0000 and back to 1111 to repeat the count. It is possible to design a countdown
counter in the usual manner, but the result is predictable by inspection of the downward binary
count. The bit in the least significant position is complemented with each pulse. A bit in any
other position is complemented if all lower significant bits are equal to 0. For example, the next
state after the present state of 0100 is 0011. The least significant bit is always complemented.
The second significant bit is complemented because the first bit is 0. The third significant bit
is complemented because the first two bits are equal to 0. But the fourth bit does not change,
because not all lower significant bits are equal to 0.

A countdown binary counter can be constructed as shown in Fig. 6.12, except that the in-
puts to the AND gates must come from the complemented outputs, instead of the normal out-
puts, of the previous flip-flops. The two operations can be combined in one circuit to form a
counter capable of counting either up or down. The circuit of an up—down binary counter using
T flip-flops is shown in Fig. 6.13. It has an up control input and a down control input. When
the up input is 1, the circuit counts up, since the T inputs receive their signals from the values
of the previous normal outputs of the flip-flops. When the down input is | and the up input is
0, the circuit counts down, since the complemented outputs of the previous flip-flops are ap-
plied to the T'inputs. When the up and down inputs are both 0, the circuit does not change state
and remains in the same count, When the up and down inputs are both 1. the circuit counts up.
This set of conditions ensures that only one operation is performed at any given time. Note that
the up input has priority over the down input.

BCD Counter

A BCD counter counts in binary-coded decimal from 0000 to 1001 and back to 0000. Because
of the return to 0 after a count of 9, a BCD counter does not have a regular pattern. unlike a
straight binary count. To derive the circuit of a BCD synchronous counter, it is necessary to go
through a sequential circuit design procedure.

The state table of a BCD counter is listed in Table 6.5. The input conditions for the 7 flip-flops
are obtained from the present- and next-state conditions. Also shown in the table is an output y,
which is equal to 1 when the present state is 1001. In this way, v can enable the count of the next-
higher significant decade while the same pulse switches the present decade from 1001 to 0000.

The flip-flop input equations can be simplified by means of maps. The unused states for
minterms 10 to 15 are taken as don’t-care terms. The simplified functions are

TQ] =1
Tox = Q30

Il



(c) ketabton.com: The Digital Library

Section 6.4 Synchronous Counters

Up

Down

FIGURE 6.13
Four-bit up—down binary counter

CLK

261

Ay

A

Ay

Az



(c) ketabton.com: The Digital Library

262

Chapter 6 Registers and Counters

Table 6.5
State Table for BCD Counter

Present State Next State Output Flip-Flop Inputs
QB QG Q @& Q@ QU Q0 O y TQg TQ4 TQ; TQ

0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 | 0 0 | 0 0 0 0 | 1
0 0 l 0 0 0 1 1 0 0 0 0 |
0 0 | 1 0 1 0 0 0 0 1 | 1
0 | 0 0 0 | 0 | 0 0 0 0 |
0 1 0 I 0 1 | 0 0 0 0 | 1
0 1 1 0 0 1 1 1 0 0 0 0 1
0 | 1 1 1 0 0 0 0 1 | | 1
1 0 0 0 1 0 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0 1 1 0 0 1
Tos = 020,
Tos = 03Q) + 04050,
y = Q0

The circuit can easily be drawn with four T flip-flops, five AND gates, and one OR gate.
Synchronous BCD counters can be cascaded to form a counter for decimal numbers of any
length. The cascading is done as in Fig. 6.11, except that output y must be connected to the count
input of the next-higher significant decade.

Binary Counter with Parallel Load

Counters employed in digital systems quite often require a parallel-load capability for trans-
ferring an initial binary number into the counter prior to the count operation. Figure 6.14 shows
the top-level block diagram symbol and the logic diagram of a four-bit register that has a par-
allel load capability and can operate as a counter. When equal to 1, the input load control dis-
ables the count operation and causes a transfer of data from the four data inputs into the four
flip-flops. If both control inputs are 0. clock pulses do not change the state of the register.

The carry output becomes a | if all the flip-flops are equal to 1 while the count input is en-
abled. This is the condition for complementing the flip-flop that holds the next significant bit.
The carry output is useful for expanding the counter to more than four bits. The speed of the
counter is increased when the carry is generated directly from the outputs of all four flip-flops,
because of the reduced delay for generating the carry. In going from state 1111 to 0000, only
one gate delay occurs, whereas four gate delays occur in the AND gate chain shown in Fig. 6.12,
Similarly, each flip-flop is associated with an AND gate that receives all previous flip-flop
outputs directly instead of connecting the AND gates in a chain,

The operation of the counter is summarized in Table 6.6. The four control inputs—Clear,
CLK, Load, and Count—determine the next state. The Clear input is asynchronous and, when
equal to 0, causes the counter to be cleared regardless of the presence of clock pulses or other



(c) ketabton.com: The Digital Library

Section 6.4 Synchronous Counters

Count ——————

Load ]

Data_in —ims! e it Binary Cot

Clear — | I C_out

Count i 'J o (a)
Lmd‘D@—[—Do—
*-— ? \
I . sy
'—._ = ..I-.‘
LN
!l FACH |
1»-—|"'—"\
L)’ g
4r-—~——_\'\
L VS
2 . eI
Clear |
CLK
(b}
FIGURE 6.14

Four-bit binary counter with parallel load



(c) ketabton.com: The Digital Library

264

g 1 T N

Chapter 6 Registers and Counters

Table 6.6
Function Table for the Counter of Fig. 6.14

Clear CLK Load Count Function

0 X X X Clear to 0

1 1 1 X Load inputs

1 T 0 1 Count next binary state
1 1 0 0 No change

inputs. This relationship is indicated in the table by the X entries, which symbolize don’t-care
conditions for the other inputs. The Clear input must be in the | state for all other operations.
With the Load and Count inputs both at 0, the outputs do not change, even when clock pulses
are applied. A Load input of | causes a transfer from inputs /y— /5 into the register during a pos-
itive edge of CLK. The input data are loaded into the register regardless of the value of the
Count input, because the Count input is inhibited when the Load input is enabled. The Load
input must be 0 for the Count input to control the operation of the counter.

A counter with a parallel load can be used to generate any desired count sequence. Figure 6.15
shows two ways in which a counter with a parallel load is used to generate the BCD count. In each
case, the Count control is set to 1 to enable the count through the CLK input. Also. recall that the
Load control inhibits the count and that the clear operation is independent of other control inputs.

The AND gate in Fig. 6.15(a) detects the occurrence of state 1001. The counter is initially
cleared to 0, and then the Clear and Count inputs are set to I, so the counter is active at all times.
As long as the output of the AND gate is 0, each positive-edge clock increments the counter by 1.
When the output reaches the count of 1001, both Ay and A3 become [, making the output of the
AND gate equal to 1. This condition activates the Load input; therefore, on the next clock edge the
register does not count, but is loaded from its four inputs. Since all four inputs are connected to logic
0, an all-0’s value is loaded into the register following the count of 1001. Thus, the circuit goes
through the count from 0000 through 1001 and back to 0000, as is required in a BCD counter.

In Fig. 6.15(b). the NAND gate detects the count of 1010, but as soon as this count occurs,
the register is cleared. The count 1010 has no chance of staying on for any appreciable time,

A Ay A Ay Az Ay A A

Inputs have no effect
(a) Using the load input (b) Using the clear input

FIGURE 6.15
Two ways to achieve a BCD counter using a counter with parallel load



(c) ketabton.com: The Digital Library

Section 6.5 Other Counters 265

because the register goes immediately to 0. A momentary spike occurs in output Ay as the
count goes from 1010 to 1011 and immediately to 0000, The spike may be undesirable, and for
that reason, this configuration is not recommended. If the counter has a synchronous clear
input, it is possible to clear the counter with the clock after an occurrence of the 1001 count.

6.5 OTHER COUNTERS

Counters can be designed to generate any desired sequence of states. A divide-by-N counter (also
known as a modulo-N counter) is a counter that goes through a repeated sequence of N states.
The sequence may follow the binary count or may be any other arbitrary sequence. Counters
are used to generate timing signals to control the sequence of operations in a digital system.
Counters can also be constructed by means of shift registers. In this section, we present a few
examples of nonbinary counters.

Counter with Unused States

A circuit with 2 flip-flops has 2" binary states. There are occasions when a sequential circuit uses
fewer than this maximum possible number of states. States that are not used in specifying the
sequential circuit are not listed in the state table. In simplifying the input equations, the unused
states may be treated as don't-care conditions or may be assigned specific next states. Once the
circuit is designed and constructed, outside interference may cause the circuit to enter one of the
unused states. In that case, it is necessary to ensure that the circuit eventually goes into one of
the valid states so that it can resume-normal operation. Otherwise, if the sequential ¢ircuit cir-
culates among unused states, there will be no way to bring it back to its intended sequence of
state transitions. If the unused states are treated as don’t-care conditions, then once the circuit
is designed, it must be investigated to determine the effect of the unused states. The next state
from an unused state can be determined from the analysis of the circuit after it is designed.

As an illustration, consider the counter specified in Table 6.7. The count has a repeated sequence
of six states, with flip-flops B and C repeating the binary count 00, 01, 10, and flip-flop A alter-
nating between 0 and | every three counts. The count sequence of the counter is not straight bi-
nary. and two states, 011 and 111, are not included in the count. The choice of JK flip-flops results
in the flip-flop input conditions listed in the table. Inputs K and K¢ have only 1's and X's in their

Table 6.7
State Table for Counter
Present State Next State Flip-Flop Inputs

A B C A B C Ja Ka Js Ks Jo Kc
0 0 0 0O 0 1 0o X 0 X 1 X
0 0 1 0o 1 0 0 X 1 X X 1
0o 1 0 I 0 0 1 X X I 0 X
I 0 0 I 0 1 X 0o 0 X I X
10 1 I 10 X 0 1 X X 1
1 1 0 0O 0 0 X 1 X | 0 X




(c) ketabton.com: The Digital Library

266

Chapter 6 Registers and Counters

Logic |

Clock
(a) Logic diagram (b) State diagram

FIGURE 6.16
Counter with unused states

columns, so these inputs are always equal to 1. The other flip-flop input equations can be sim-
plified by using minterms 3 and 7 as don't-care conditions, The simplified equations are
Jy =B Ky=B8B
Jp=0C Kg=1
Jc =B K(' =1
The logic diagram of the counter is shown in Fig. 6.16(a). Since there are two unused states,
we analyze the circuit to determine their effect. If the circuit happens to be in state 011 because
of an error signal, the circuit goes to state 100 after the application of a clock pulse. This action
may be determined from an inspection of the logic diagram by noting that when B = 1. the
next clock edge complements A and clears C to 0, and when C = 1, the next clock edge com-
plements B. In a similar manner, we can evaluate the next state from present state 111 to be 000.
The state diagram including the effect of the unused states is shown in Fig. 6.16(b). If the cir-
cuit ever goes to one of the unused states because of outside interference, the next count pulse
transfers it to one of the valid states and the circuit continues to count correctly. Thus, the counter
is self-correcting. In a self-correcting counter, if the counter happens to be in one of the unused
states, it eventually reaches the normal count sequence after one or more clock pulses. An
alternative design could use additional logic to direct every unused state to a specific next state.



(c) ketabton.com: The Digital Library

Section 6.5 Other Counters 267

Ring Counter

Timing signals that control the sequence of operations in a digital system can be generated by a
shift register or by a counter with a decoder. A ring counter is a circular shift register with only one
flip-flop being set at any particular time; all others are cleared. The single bit is shifted from one
flip-flop to the next to produce the sequence of timing signals. Figure 6.17(a) shows a four-bit

Shift
right

(a) Ring-counter (initial value = 1000)

wd LILTLTLTT
il | i

1 |

T“

T

{b) Sequence of four timing signals

Ly I) I; T;

Count
enable

(c) Counter and decoder

FIGURE 6.17
Generation of timing signals



(c) ketabton.com: The Digital Libra
268 hapter 6 Hegisters and Counters

shift register connected as a ring counter. The initial value of the register is 1000 and requires
Preset/Clear flip-flops. The single bit is shifted right with every clock pulse and circulates back
from 75 to 7. Each flip-flop is in the 1 state once every four clock cycles and produces one of
the four timing signals shown in Fig. 6.17(b). Each output becomes a 1 after the negative-edge
transition of a clock pulse and remains 1 during the next clock cycle.

For an alternative design, the timing signals can be generated by a two-bit counter that goes
through four distinct states. The decoder shown in Fig. 6.17(c) decodes the four states of the
counter and generates the required sequence of timing signals.

To generate 2" timing signals, we need either a shift register with 2" flip-flops or an n-bit binary
counter together with an n-to-2"-line decoder. For example, 16 timing signals can be generated
with a 16-bit shift register connected as a ring counter or with a 4-bit binary counter and a 4-to-16-
line decoder. In the first case, we need 16 flip-flops. In the second. we need 4 flip-flops and 16 four-
input AND gates for the decoder. Itis also possible to generate the timing signals with a combination
of a shift register and a decoder. That way, the number of flip-flops is less than that in a ring counter,
and the decoder requires only two-input gates. This combination is called a Johnson counter.

Johnson Counter

A k-bit ring counter circulates a single bit among the flip-flops to provide k distinguishable
states. The number of states can be doubled if the shift register is connected as a switch-tail ring
counter. A switch-tail ring counter is a circular shift register with the complemented output of
the last flip-flop connected to the input of the first flip-flop. Figure 6.18(a) shows such a shift

D7 —E
> C
£
CLK . ‘
(a) Four-stage switch-tail ring counter
Flip-flop outputs )
Sequence —_— AND gate required
number A B € E for output

1 0 0 0 0 A'E

2 1 0 0 0 AB'

3 1 1 0 0 BC'

4 1 1 1 0 CE'

5 1 1 1 1 AE

6 0 1 1 1 A'B

7 0 0 1 1 B'C

8 o 0o 0 1 C'E

(b) Count sequence and required decoding
FIGURE 6.18

Construction of a Johnson counter



(c) ketabton.com: The Digital Library

Section 6.6 HDL for Registers and Counters 269

register. The circular connection is made from the complemented output of the rightmost flip-
flop to the input of the leftmost flip-flop. The register shifts its contents once to the right with
every clock pulse, and at the same time, the complemented value of the E flip-flop is transferred
into the A flip-flop. Starting from a cleared state, the switch-tail ring counter goes through a
sequence of eight states, as listed in Fig. 6.18(b). In general, a k-bit switch-tail ring counter will
go through a sequence of 2k states. Starting from all 0's, each shift operation inserts 1's from
the left until the register is filled with all 1's, In the next sequences, 0's are inserted from the
left until the register is again filled with all 0's,

A Johnson counter is a k-bit switch-tail ring counter with 2k decoding gates to provide out-
puts for 2k timing signals. The decoding gates are not shown in Fig. 6.18, but are specified in the
last column of the table. The eight AND gates listed in the table, when connected to the circuit,
will complete the construction of the Johnson counter. Since each gate is enabled during one par-
ticular state sequence, the outputs of the gates generate eight timing signals in succession.

The decoding of a k-bit switch-tail ring counter to obtain 2k timing signals follows a regu-
lar pattern. The all-0’s state is decoded by taking the complement of the two extreme flip-flop
outputs. The all-1’s state is decoded by taking the normal outputs of the two extreme flip-flops.
All other states are decoded from an adjacent 1, 0 or 0. 1 pattern in the sequence. For exam-
ple, sequence 7 has an adjacent 0, 1 pattern in flip-flops B and C. The decoded output is then
obtained by taking the complement of B and the normal output of C, or B'C.

One disadvantage of the circuit in Fig. 6.18(a) is that if it finds itself in an unused state, it
will persist in moving from one invalid state to another and never find its way to a valid state.
The difficulty can be corrected by modifying the circuit to avoid this undesirable condition. One
correcting procedure is to disconnect the output from flip-flop B that goes to the D input of flip-
flop € and instead enable the input of flip-flop C by the function

De=(A+ C)B
where D¢ is the flip-flop input equation for the D input of flip-flop C.
Johnson counters can be constructed for any number of timing sequences. The number of

flip-flops needed is one-half the number of timing signals. The number of decoding gates is
equal to the number of timing signals, and only two-input gates are needed.

6.6 HDL FOR REGISTERS AND COUNTERS

Registers and counters can be described in Verilog at either the behavioral or the structural level.
Behavioral modeling describes only the operations of the register, as prescribed by a function
table, without a preconceived structure, A structural-level description shows the circuit in terms
of a collection of components such as gates. flip-flops, and multiplexers. The various compo-
nents are instantiated to form a hierarchical description of the design similar to a representation
of a logic diagram. The examples in this section will illustrate both types of descriptions.

Shift Register

The universal shift register presented in Section 6.2 is a bidirectional shift register with a par-
allel load. The four clocked operations that are performed with the register are specified in
Table 6.6. The register also can be cleared asynchronously. Our chosen name for a behavioral



(c) ketabton.com: The Digital Library

270

Chapter 6 Registers and Counters

description of the four-bit universal shift register shown in Fig. 6.7(a). the name
Shift_Register_4_beh, signifies the behavioral model of the internal detail of the top-level
block diagram symbol and distinguishes that model from a structural one. The behavioral
model is presented in HDL Example 6.1, and the structural model is given in HDL Example
6.2, The top-level block diagram symbol in Fig. 6.7(a) indicates that the four-bit universal shift
register has two selection inputs (s/, s0), two serial inputs (shift_left. shift_right). a four-bit par-
allel input (7_par), and a four-bit parallel output (A_par). The elements of vector /_par/3. 0}
correspond to the bits /5...., Iy in Fig. 6.7, and similarly for A_par/3: 0]. The always block
describes the five operations that can be performed with the register. The Clear input clears the
register asynchronously with an active-low signal. Clear must be high for the register to respond
to the positive edge of the clock. The four clocked operations of the register are determined from
the values of the two select inputs in the case statement. (s/ and s0 are concatenated into a
two-bit vector and are used as the expression argument of the case statement.) The shifting
operation is specified by the concatenation of the serial input and three bits of the register. For
example, the statement

A_par <= {MSB_in, A_par [3: 1]}

specifies a concatenation of the serial data input for a right shift operation (MSB_in) with bits
A_par(3: 1] of the output data bus. A reference to a contiguous range of bits within a vector
is referred to as a part select. The four-bit result of the concatenation is transferred to register
A_par [3: 0] when the clock pulse triggers the operation. This transfer produces a shift-right
operation and updates the register with new information. The shift operation overwrites the
contents of A_par{(0] with the contents of A_par[]]. Note that only the functionality of the
circuit has been described, irrespective of any particular hardware. A synthesis tool would cre-
ate a netlist of ASIC cells to implement the shift register.

HDL Example 6.1

/I Behavioral description of a 4-bit universal shift register
/ Fig. 8.7 and Table 6.3

module Shift_Register_4_beh ( /1 V2001, 2005
output reg [3:0] A_par, // Register output
input [3:0] |_par, /I Parallel input
input s1, s0, /I Select inputs

MSB_in, LSB_in, /I Serial inputs
CLK, Clear /i Clock and Clear
).

always @ (posedge CLK, negedge Clear) // V2001, 2005
if (~Clear) A_par <= 4'b0000;
else
case ({s1, s0})
2'b00: A_par <= A_par; /I No change
2'p01: A_par <= {MSB_in, A_par{3: 1]};  // Shift right



(c) ketabton.com: The Digital Library

Section 6.6 HDL for Registers and Counters 271

2'b10: A_par <= {A_par[2: 0], LSB_in}; /I Shift left
2'b11: A_par <= |_par,; /I Parallel load of input
endcase
endmodule

Variables of type reg retain their value until they are assigned a new value by an assignment
statement, Consider the following alternative case statement for the shift register model:

case ({s1, s0})

// 2'b00: A_par <= A_par; // No change

2'b01: A_par <= {MSB _in, A_par [3: 1]}; /1 Shift right

2'b10: A_par <= {A_par [2: 0], LSB_in}; /I Shift left

2'b11: A_par <= |_par; /Il Parallel load of input
endcase

Without the case item 2'b00, the case statement would not find a match between {s/, s0}
and the case items, so register A_par would be left unchanged.

A structural model of the universal shift register can be described by referring to the logic
diagram of Fig. 6.7(b). The diagram shows that the register has four multiplexers and four D flip-
flops. A mux and flip-flop together are modeled as a stage of the shift register. The stage is a
structural model, too, with an instantiation and interconnection of a module for a mux and another
for a D flip-flop. For simplicity, the lowest-level modules of the structure are behavioral models
of the multiplexer and flip-flop. Attention must be paid to the details of connecting the stages cor-
rectly. The structural description of the register is shown in HDL Example 6.2. The top-level
module declares the inputs and outputs and then instantiates four copies of a stage of the regis-
ter. The four instantiations specify the interconnections between the four stages and provide the
detailed construction of the register as specified in the logic diagram. The behavioral description
of the flip-flop uses a single edge-sensitive cyclic behavior (an always block). The assignment
statements use the nonblocking assignment operator (<=}, the model of the mux employs a
single level-sensitive behavior, and the assignments use the blocking assignment operator (=).

HDL Example 6.2
/I Structural description of a 4-bit universal shift register (see Fig. 6.7)
module Shift_Register_4_str ( // V2001, 2005

output [3: 0]A_par, // Parallel output

input [3: 0] |_par, 1l Parallel input

input s1, s0, /I Mode select

input MSB_in, LSB_in, CLK, Clear It Serial inputs, clock, clear

)

/! bus for mode control
assign [1:.0] select={s1, s0);

Il Instantiate the four stages
stage STO (A_par[0], A_par[1], LSB_in, |_par{0], A_par[0], select, CLK, Clear);
stage ST1 (A_par[1], A_par[2], A_par[0], |_par[1], A_par[1], select, CLK, Clear);



(c) ketabton.com: The Digital Library
272 Chapter 6 Registers and Counters
stage ST2 (A_par(2], A_par[3], A_par[1], |_par(2], A_par{2], select, CLK, Clear);

stage ST3 (A_par([3], MSB_in, A_par(2], |_par[3], A_par{3], select, CLK. Clear);
endmodule

/l One stage of shift register
module stage (i0, i1, i2, i3, Q, select, CLK, Cir);

input i0, 11 circulation bit selection
i1, /I data from left neighbor or serial input for shift-right
i2, /I data from right neighbor or serial input for shift-left
i3; // data from parallel input

output Q;

input [1: 0] select; /I stage mode control bus

input CLK, CIr; /I Clock, Clear for flip-flops

wire mux_out;

I/ instantiate mux and flip-flop
Mux_4_x_1 MO (mux_out, i0, i1, i2, i3, select);

D_flip_flop ™M1 (Q., mux_out, CLK, Cir);
endmodule

/I 4x1 multiplexer /f behavioral model
module Mux_4_x_1 (mux_out, i0, i1, i2, i3, select);
output mux_out;
input i0,i1, 12, i3;
input [1: 0] select;
reg mux_out,
always @ (select, i0, i1, i2, i3)
case (select)
2'b00: mux_out = i0;
2'b01: mux_out = i1;
2'b10: mux_out = i2;
2'h11: mux_out = i3;
endcase
endmodule

/I Behavioral model of D flip-flop
module D_flip_flop (Q, D, CLK, CIr);

output Q;
input D, CLK, CIr;
reg Q;

always @ (posedge CLK, negedge Cir)
if (~ClIr) Q <= 1'b0; else Q <= D,
endmodule




(c) ketabton.com: The Digital Library

Section 6.6 HDL for Registers and Counters 273

The above examples presented two descriptions of a universal shift register to illustrate
the different styles for modeling a digital circuit. A simulation should verify that the mod-
els have the same functionality. In practice, a designer develops only the behavioral model,
which is then synthesized. The function of the synthesized circuit can be compared with the
behavioral description from which it was compiled. Eliminating the need for the designer
to develop a structural model produces a huge improvement in the efficiency of the design
process.

Synchronous Counter

HDL Example 6.3 presents Binary_Counter_4_Par_Load, a behavioral model of the syn-
chronous counter with a parallel load from Fig. 6.14. Count, Load, CLK, and Clear are inputs
that determine the operation of the counter according to the function specified in Table 6.6. The
counter has four data inputs, four data outputs, and a carry output, The internal data lines (/3,
12, 11, 10) are bundled as Data_in{3: 0] in the behavioral model. Likewise, the register that holds
the bits of the count (A3, A2, Al, A0) is A_count[3: 0]. It is good practice to have identifiers
in the HDL model of a circuit correspond exactly to those in the documentation of the model,
That is not always feasible, however, if the circuit-level identifiers are those found in a hand-
book, for they are often short and cryptic and do not exploit the text that is available with an
HDL. The top-level block diagram symbol in Fig. 6.14(a) serves as an interface between the
names used in a circuit diagram and the expressive names that can be used in the HDL model.
The carry output C_out is generated by a combinational circuit and is specified with an assign
statement. C_out = 1 when the count reaches 15 and the counter is in the count state. Thus,
C_out = 1if Count = 1, Load = 0,and A = 1111; otherwise C_out = (. The always block
specifies the operation to be performed in the register, depending on the values of Clear, Load,
and Count. A O (active-low signal) at Clear resets A to 0. Otherwise, if Clear = 1, one out of
three operations is triggered by the positive edge of the clock. The if, else if, and else statements
establish a precedence among the control signals Clear, Load. and Count corresponding to the
specification in Table 6.6. Clear overrides Load and Count; Load overrides Count. A synthe-
sis tool will produce the circuit of Fig. 6.14(b) from the behavioral model,

HDL Example 6.3

/I Four-bit binary counter with parallel load (V2001, 2005)
/l See Figure 6.14 and Table 6.6
module Binary_Counter_4_Par_Load (

output reg [3: 0] A_count, /I Data output

output C_out, // Output carry

input [3: 0] Data_in, /I Data input

input Count, /I Active high to count
Load, /I Active high to load
CLK, /I Positive-edge sensitive

Clear /I Active low



(c) ketabton.com: The Digital Library

274 Chapter 6 Registers and Counters
assign C_out = Count & (~Load) & (A_count == 4'b1111);
always @ (posedge CLK, negedge Clear)
if (~Clear) A_count <= 4'b0000;
else if (Load) A_count <= data_in;
else if (Count) A_count <= A_count + 1'b1;
else A_count <= A_count; // redundant statement
endmodule
Ripple Counter

The structural description of a ripple counter is shown in HDL Example 6.4. The first module
instantiates four internally complementing flip-flops defined in the second module as
Comp_D_flip_flop (Q, CLK, Reset). The clock (input CLK) of the first flip-flop is connected
to the external control signal Count. (Count replaces CLK in the port list of instance F().) The
clock input of the second flip-flop is connected to the output of the first. (A0 replaces CLK in
instance F/.) Similarly, the clock of each of the other flip-flops is connected to the output of
the previous flip-flop. In this way, the flip-flops are chained together to create a ripple counter
as shown in Fig. 6.8(b).

The second module describes a complementing flip-flop with delay. The circuit of a com-
plementing flip-flop is constructed by connecting the complement output to the D input. A
reset input is included with the flip-flop in order to be able to initialize the counter: otherwise
the simulator would assign the unknown value (x) to the output of the flip-flop and produce use-
less results. The flip-flop is assigned a delay of two time units from the time that the clock is
applied to the time that the flip-flop complements. The delay is specified by the statement
Q <= #2 ~(Q. Notice that the delay operator is placed to the right of the nonblocking assign-
ment operator., This form of delay, called intra-assignment delay, has the effect of postponing
the assignment of the complemented value of Q to (. The effect of modeling the delay will be
apparent in the simulation results. This style of modeling might be useful in simulation, but it
is to be avoided when the model is to be synthesized. The results of synthesis depend on the
ASIC cell library that is accessed by the tool, not on any propagation delays that might appear
within the model that is to be synthesized.

HDL Example 6.4

/l Ripple counter (See Fig. 6.8(b))

‘timescale 1ns / 100 ps

module Ripple_Counter_4bit (A3, A2, A1, A0, Count, Reset);
output A3, A2, A1, AD;
input Count, Reset;

/l Instantiate complementing flip-flop
Comp_D_flip_flop FO (AQ, Count, Reset);
Comp_D_flip_flop F1 (A1, AO, Reset);
Comp_D_flip_flop F2 (A2, A1, Reset);




(c) ketabton.com: The Digital Library

Section 6.6 HDL for Registers and Counters

Comp_D_fiip_flop F3 (A3, A2, Reset);
endmodule
// Complementing fiip-flop with delay
// Input to D flip-flop = Q"
module Comp_D_flip_fiop (Q, CLK, Reset);

output  Q;
input CLK, Reset;
reg Q;

always @ (negedge CLK, posedge Reset)
if (Reset) Q <= 1'b0;
else Q <=#2~Q; // intra-assignment delay
endmodule
/I Stimulus for testing ripple counter
module t_Ripple_Counter_4bit;
reg Count;
reg Reset;
wire AO, A1, A2, A3;
/I Instantiate ripple counter
Ripple_Counter_4bit MO (A3, A2, A1, AQ, Count, Reset);

always
#5 Count = ~Count;
initial
begin
Count = 1'b0;
Reset = 1'b1;
#4 Reset = 1'b0;
end
initial #170 $finish;
endmodule

275

The test bench module in HDL Example 6.4 provides a stimulus for simulating and verify-
ing the functionality of the ripple counter. The always statement generates a free-running clock
with a cycle of 10 time units. The flip-flops trigger on the negative edge of the clock, which
occurs att = 10, 20, 30, and every 10 time units thereafter. The waveforms obtained from this
simulation are shown in Fig. 6.19. The control signal Count goes negative every 10 ns. A0 is
complemented with each negative edge of Count, but is delayed by 2 ns. Each flip-flop is com-
plemented when its previous flip-flop goes from 1 to 0. After r = 80 ns, all four flip-flops
complement because the counter goes from 0111 to 1000. Each output is delayed by 2 ns, and
because of that, A3 goes from O to | at + = 88 ns and from 1 to 0 at 168 ns. Notice how the
propagation delays accumulate to the last bit of the counter, resulting in very slow counter ac-
tion. This limits the practical utility of the counter.



(c) ketabton.com: The Digital Library
276  Chapter 6 Registers and Counters

0.0 ns 57.0ns 114.0 ns 1710 ns
IS LN N ) N[ (1N U (R ST W S T S S ) T S A G R Y S Y S [ R (N S N T P
Reset B
5 i o 19 o v M e B U B 1 O g (00 00 o 0 8 ) O 6 0
Count SRR
‘_
W a T BN o 0N o S o M ey I s [N s SO ot I
AD
Al | 1 = ] [ 1 [ ] J
e e i s i = e
A2
A3 ( 1\____
\
t =88 ns t=168ns
(a) From 0 to 180 ns
70.0 ns 77.0 ns 84.0 ns 91.0ns 98.0 ns
i S EES PP Lol S IR o [ [ A U VS0 IO VR VA T 1) [ N e U " Vo [ oy T Lo ey CHY (S YR TN SN Y TMHL ]
Reset
.| .
Count
A0 - I i
Al
A2 1
A3 [ |
{b) From 70 10 98 ns
FIGURE 6.19

Simulation output of HDL Example 6.4

PROBLEMS

Answers to problems marked with * appear at the end of the book. Where appropriate. a logic design
and its related HDL modeling problem are cross referenced.

Note: For each problem that requires writing and verifying a Verilog description. a test plan should
be written to identify which functional features are to be tested during the simulation and how they
will be tested. For example, a reset on the fly could be tested by asserting the reset signal while the
simulated machine is in a state other than the reset state. The test plan is to guide the development of
a test bench that will implement the plan. Simulate the model, using the test bench, and verify that
the behavior is correct. If synthesis tools and an ASIC cell library or a field-programmable gate array
(FPGA) are available, the Verilog descriptions developed for Problems 6.34-6.51 can be assigned as



(c) ketabton.com: The Digital Library

Problems 277

synthesis exercises. The gate-level circuit produced by the synthesis tools should be simulated and
compared with the simulation results for the presynthesis model, (Be aware that in some of the HDL
problems there may be a need to deal with the issue of unused states: see the discussion of the default
case item preceding HDL Example 4.8 in Chapter 4.)

6.1

6.2

6.3

6.4*

6.5

6.6

6.7

6.8*

6.9

Include a two-input NAND gate in the register of Fig. 6.1, and connect the gate output to the C
inputs of all the flip-flops. One input of the NAND gate receives the clock pulses from the clock
generator, and the other input of the NAND gate provides a parallel load control. Explain the
operation of the modified register. Explain why this circuit might have operational problems.

Include a synchronous clear input in the register of Fig. 6.2. The modified register will have a par-
allel-load capability and a synchronous clear capability. The register is cleared synchronously
when the clock goes through a positive transition and the clear input is equal to 1. (HDL—see
Problem 6.35(a), (b).)

What is the difference between serial and parallel transfer? Explain how to convert serial data to
paralle] and parallel data to serial. What type of register is needed?

The contents of a four-bit register are initially 1011. The register is shifted six times to the right,
with the serial input being 101101. What are the contents of the register after each shift?

The four-bit universal shift register shown in Fig. 6.7 is enclosed within one IC package.
(a) Draw a block diagram of the 1C, showing all inputs and outputs. Include two pins for the
power supply.

(b) Draw a block diagram, using two ICs, to produce an eight-bit universal shift register.
Design a four-bit shift register with a parallel load, using D flip-flops. There are two control in-
puts: shift and load. When shift = 1, the contents of the register are shifted by one position.
New data are transferred into the register when load = 1 and shift = 0. If both control inputs
are equal to 0, the contents of the register do not change, (HDL — see Problem 6.35(c), (d).)

Draw the logic diagram of a four-bit register with four D flip-flops and four 4 X 1 multiplexers with
mode selection inputs s; and s. The register operates according to the following function table
(HDL—see Problem 6.35(e), (f).)

5 S0 Register Operation

0 0 No change

0 1 Complement the four outputs

1 0 Clear register to 0 {synchronous with the clock)
1 1

Load parallel data

The serial adder of Fig, 6.6 uses two four-bit registers. Register A holds the binary number 0101
and register B holds 0111, The carry flip-flop is initially reset to 0. List the binary values in reg-
ister A and the carry flip-flop after each shift.

Two ways to implement a serial adder (A + B) are presented in Section 6.2. It is necessary to

modify the circuits to convert them to serial subtractors (A — B).

{a) Using the circuit of Fig. 6.5, show the changes needed to perform A + 2’s complement of
B. (HDL — see Problem 6.35(h).)

(b)* Using the circuit of Fig. 6.6, show the changes needed by modifying Table 6.2 from an adder
to a subtractor circuit. (See Problem 4.12.) (HDL — see Problem 6.35(i).)



(c) ketabton.com: The Digital Library

278

Chapter 6

6.10

6.11

6.12

6.13

6.14*

6.15*

6.16*

6.17*
6.18

6.19

6.20

6.21*

Registers and Counters

Design a serial 2's complementer with a shift register and a flip-flop. The binary number is shift-
ed out from one side and its 2's complement shifted into the other side of the shift register. (HDL
— see Problem 6.35(j).)

A binary ripple counter uses flip-flops that trigger on the positive edge of the clock. What will be
the count if

(a) the normal outputs of the flip-flops are connected to the clock and

(b) the complement outputs of the flip-flops are connected to the clock?

Draw the logic diagram of a four-bit binary ripple countdown counter, using
(a) flip-flops that trigger on the positive edge of the clock and
(b) flip-flops that trigger on the negative edge of the clock.

Show that a BCD ripple counter can be constructed from a four-bit binary ripple counter with asyn-
chronous clear and a NAND gate that detects the occurrence of count 1010, (HDL — see Prob-
lem 6.35(k).)

How many flip-flops will be complemented in a 10-bit binary ripple counter to reach the next count
after the following counts?

(a) 1001100111

(b) 0011111111

(c) LLTLELLIDD

A flip-flop has a 3-ns delay from the time the clock edge occurs to the time the output is com-
plemented. What is the maximum delay in a 10-bit binary ripple counter that uses this type of flip-
flop? What is the maximum frequency the counter can operate with reliably?

The BCD ripple counter shown in Fig. 6.10 has four flip-flops and 16 states, of which only 10
are used. Analyze the circuit, and determine the nexi state for each of the other six unused states.
What will happen if a noise signal sends the circuit to one of the unused states?

Design a four-bit binary synchronous counter with D flip-flops.

What operation is performed in the up-down counter of Fig. 6.13 when both the up and down in-
puts are enabled? Modify the circuit so that when both inputs are equal to 1, the counter does not
change state. (HDL — see Problem 6.35(1).)

The flip-flop input equations for a BCD counter using T flip-flops are given in Section 6.4. Ob-
tain the input equations for a BCD counter that uses (a) JK flip-flops and (b)* D flip-flops. Com-
pare the three designs to determine which one is the most efficient.

Enclose the binary counter with parallel load of Fig. 6.14 in a block diagram, showing all inputs
and outputs,

(a) Show the connections of four such blocks to produce a 16-bit counter with a parallel load.
{b) Construct a binary counter that counts from 0 through binary 64.

The counter of Fig, 6.14 has two control inputs—Load (L) and Count (C)—and a data input. ;.

(a) Derive the flip-flop input equations for J and K of the first stage in terms of L. C. and .

(b) The logic diagram of the first stage of an integrated circuit (74161) is shown in Fig. P6.21.
Verify that this circuit is equivalent to the one in (a).

For the circuit of Fig. 6.14, give three alternatives for a mod-12 counter
(a) using an AND gate and the load input.

(b) using the output carry.

{¢) using a NAND gate and the asynchronous clear input.



(c) ketabton.com: The Digital Library

Problems 279

Load (L)

Count (C)

Data (1)
FIGURE P6.21

6,23 Design a timing circuit which provides an output signal that stays on for exactly eight clock cy-
cles. A start signal sends the output to the | state, and after eight clock cycles the signal returns
to the 0 state, (HDL — see Problem 6.45.)

6.24* Design a counter with 7 flip-flops that goes through the following binary repeated sequence: 0,
L, 3,7, 6, 4. Show that when binary states 010 and 101 are taken to be don’t-care conditions, the
counter may nol operate properly. Find a way to correct the design, (HDL — see Problem 6.53.)

6.25 Itis necessary to generate six repeated timing signals 7, through Ts similar to the ones shown in
Fig. 6.17(c). Design the circuit. using (HDL — see Problem 6.46).

(a) flip-flops only.

(b) acounter and a decoder.

6.26% Adigital system has a clock generator that produces pulses at a frequency of 80 MHz. Design a
circuit that provides a clock with a cycle time of 50 ns.

6.27 Design a counter with the following repeated binary sequence: 0, 1, 2.3, 4, 5, 6. Use JK flip-flops.
(HDL — see Problem 6.51.)

6.28* Design a counter with the following repeated binary sequence: 0. 1. 2, 4, 6. Use D flip-flops.
(HDL — see Problem 6.51.)

6.29 List the eight unused states in the switch-tail ring counter of Fig, 6.18(a). Determine the next
state for each of these states. and show that if the counter finds itself in an invalid state, it does
not return to a valid state. Modify the circuit as recommended in the text, and show that the count-
er produces the same sequence of states and that the circuit reaches a valid state from any one of
the unused states.

6.30 Show that a Johnson counter with n flip-flops produces a sequence of 2 states. List the 10 states
produced with five flip-flops and the Boolean terms of each of the 10 AND gate outputs.

6.31  Write and verify the HDL behavioral and structural descriptions of the four-bit register of Fig. 6.1.

6.32 (a) Write and verify an HDL behavioral description of a four-bit register with parallel load and

asynchronous clear.

(b) Write and verify an HDL structural description of the four-bit register with parallel load
shown in Fig. 6.2. Usea 2 ¥ 1 multiplexer for the flip-flop inputs. Include an asynchronous
clear input.

(¢) Check both deseriptions, using a test bench.

6.33 The following program is used to simulate the binary counter with parallel load described in HDL
Example 6.3:

{f Stimulus for testing the binary counter of Example 6.3
module testcounter;



(c) ketabton.com: The Digital Library

280

Chapter 6

6.34*
6.35

6.36

6.37%

6.38

Registers and Counters

reg Count, Load, CLK, Clr;
reg (3: 0] IN;
wire CO;
wire [3: 0] A;
counter cnt (Count, Load, IN, CLK, Clr, A, CO);
always
#5 CLK = ~CLK;
Initial
begin
Cir=0;
CLK=1;
Load = 0; Count = 1;
#5 CIr=1;
#30 Load = 1; IN = 4'h1100;
#20 Load = 0;
#60 Count = 0;
#20 $finish;
end
endmodule

Go over the program and predict what would be the output of the counter and the carry output from
t =01t = 155ns.

Write and verify the HDL behavioral description of a four-bit shift register (see Fig. 6.3).
Write and verify

(a) a structural HDL model for the register described in Problem 6.2

(b)* a behavioral HDL model for the register described in Problem 6.2

(c) a structural HDL model for the register described in Problem 6.6

(d) a behavioral HDL model for the register described in Problem 6.6

(e) a structural HDL model for the register described in Problem 6.7

(f) a behavioral HDL model for the register described in Problem 6.7

(g) abehavioral HDL model of the binary counter described in Fig. 6.8(b)

(h) a behavioral description of the serial subtractor described in Problem 6.9(a)

(i) abehavioral description of the serial subtractor described in Problem 6.9(b)

(j) abehavioral description of the serial 2's complementer described in Problem 6.10
(k) a behavioral description of the BCD ripple counter described in Problem 6.13

(1) @& behavioral description of the up-down counter described in Problem 6.18

Write and verify the HDL behavioral and structural descriptions of the four-bit up—down counter
whose logic diagram is described by Fig. 6.13, Table 6.5, and Table 6.6.

Write and verify a behavioral description of the counter described in Problem 6.24.

(a) using an if ... else statement

(b) using a case statement

(c) a finite state machine,

Write and verify the HDL behavioral description of a four-bit up-down counter with parallel load

using the following control inputs:

(a)* The counter has three control inputs for the three operations Load, Up, and Down. The order
of precedence is Load, Up, and Down.



(c) ketabton.com: The Digital Library

6.39
6.40

6.41
6.42*

6.43

6.44

6.45*

6.46

6.47

6.48

6.49

6.50

6.51

Problems 281

(b) The counter has two selection inputs to specify four operations: Up, Down, Load, and no
change.
Write and verify HDL behavioral and structural descriptions of the counter of Fig. 6.16.
Write and verify an HDL description of an eight-bit ring counter similar to the one shown in
Fig. 6.17(a).
Write and verify the HDL description of a four-bit switch-tail ring (Johnson) counter (Fig. 6.18a).
The comment with the last clause of the if statement in Binary_Counter_4_Par_Load in HDL Ex-
ample 6.3 notes that the statement is redundant. Explain why this statement can be removed with-
out changing the behavior implemented by the description.
The scheme shown in Fig. 6.4 gates the clock to control the serial transfer of data from shift reg-
ister A to shift register B. Using multiplexers at the input of each cell of the shift registers, develop
a structural model of an alternative circuit that does not alter the clock path. The top level of the
design hierarchy is to instantiate the shift registers. The module describing the shift register is to
have instantiations of flip-flops and muxes. Describe the mux and flip-flop modules with behav-
ioral models. Be sure to consider reset. Develop a test bench to simulate the circuit and demon-
strate the transfer of data.
Modify the design of the serial adder shown in Fig, 6.5 by removing the gated clock to the D flip-
flop and supplying the clock signal to it directly. Augment the D flip-flop with a mux to recircu-
late the contents of the flip-flop when shifting is suspended and to provide the carry out of the full
adder when shifting is active. The shift registers are to incorporate this feature also, rather than
use a gated clock. The top level of the design is to instantiate modules using behavioral models
for the shift registers, full adder, D flip-flop, and mux. Assume asynchronous reset. Develop a test
bench 1o simulate the circuit and demonstrate the transfer of data.

Write and verify a behavioral description of a finite state machine to implement the counter de-
scribed in Problem 6.24.

Problem 6.25 specifies an implementation of a circuit to generate timing signals using

(a) only flip-flops and

(b) a counter and a decoder.

As an altemnative, write a behavioral description (without consideration of the actual hardware)
of a state machine whose output generates the timing signals T}, through Ts.

Write a behavioral description of the circuit shown in Fig. P6.47, and verify that the circuit’s out-
put is asserted if successive samples of the input have an odd number of 1's.

Write and verify a behavioral description of the counter shown in Fig. P6.48(a); repeat for the
counter in Fig. P6.48(b),

Write a test plan for verifying the functionality of the universal shift register described in HDL
Example 6.1. Using the test plan, simulate the model given in HDL Example 6.1.

Write and verify a behavioral model of the counter described in

(a) Problem 6.27

(b) Problem 6.28

Without requiring a state machine, and using a shift register and additional logic, write and ver-
ify a model of an alternative to the sequence detector described in Figure 5.27. Compare the
implementations.



Chapter 6 Registers and Counters

282

(c) ketabton.com: The Digital Library

= o o o e
o =] o o =
= o o (= =
oy
M_ S| e = o =] =
o &
w =] e o (] -]
S
21 r]
=] =} = | b= o
=
o | o e o
- = |f=]]| = =]
= pes

»

il s B
7l =2 = lz]| =

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

o Y ¢ U R R ﬂ%
0
o i
0
0
0

5 =y allelle]l = ellell=ll=sll=]ll=o]lle]le=
% =
& = iy
B o o = =] () s | = o o o o =
E = i |
-~ sllell=]le ollellelf=]|l=|l=|l=]|]=
Q o < 2
a sllellell=sll=sllell=llelle]lel]e= =
e
2
w (=] (=] o= = (=] =] =] = (= = (= (= L=

FIGURE P6.47

(b)

)

(

P6.48

Circuit for Problem 6.48




(c) ketabton.com: The Digital Library

References 283

REFERENCES
1. BHASKER, J. 1997. A Verilog HDL Primer. Allentown, PA: Star Galaxy Press.
2. BHASKER, J. 1998. Verilog HDL Synthesis. Allentown, PA: Star Galaxy Press.
3. Cukrm, M. D. 1999, Modeling, Synthesis, and Rapid Prototyping with Verilog HDL, Upper Sad-
dle River, NJ: Prentice Hall.
4.  Cierr, M. D. 2003. Advanced Digital Design with the Verilog HDL. Upper Saddle River, NJ:
Prentice Hall.
5. Cuwern, M. D. 2004. Starter’s Guide to Verilog 2001. Upper Saddle River, NJ: Prentice Hall.
6.  DIETMEYER, D. L. 1988. Logic Design of Digital Systems, 3d ed. Boston: Allyn Bacon,
7. Guskl, D. D. 1997, Principles of Digital Design. Upper Saddle River, NJ: Prentice Hall.
8. Haves, J. P. 1993, Introduction to Digital Logic Design. Reading, MA: Addison-Wesley.
9. Karz, R. H. 2005. Contemporary Logic Design. Upper Saddle River, NJ: Prentice Hall.
10.  Mano. M. M., and C. R. KIME. 2005. Logic and Computer Design Fundamentals & Xilinx 6.3
Student Edition, 3rd ed. Upper Saddle River, NJ: Prentice Hall.
11, Neson, V. P, H. T. NAGLE, 1. D. IRwiN, and B, D. CARROLL. 1993, Digital Logic Circuit Analy-
sis and Design. Englewood Cliffs, NJ: Prentice Hall.
12, PALNITKAR, S. 1996, Verilog HDL: A Guide to Digital Design and Synthesis. Mountain View,
CA: SunSoft Press (a Prentice Hall title).
13.  Rorn, C. H. 2004. Fundamentals of Logic Design, 5th ed. St. Paul, MN: Brooks/Cole.
14.  Tuomas, D. E., and P.R. Mooray. 2002. The VeriLog Hardware Description Language, 6th ed.
Boston: Kluwer Academic Publishers.
15, WaKERLY, J. F. 2006. Digital Design: Principles and Practices, 4th ed. Upper Saddle River, NI:

Prentice Hall.



(c) ketabton.com: The Digital Library

Chapter 7

Memory and Programmable Logic

23

INTRODUCTION

A memory unit is a device to which binary information is transferred for storage and from
which information is retrieved when needed for processing. When data processing takes place,
information from memory is transferred to selected registers in the processing unit. Interme-
diate and final results obtained in the processing unit are transferred back to be stored in mem-
ory. Binary information received from an input device is stored in memory, and information
transferred to an output device is taken from memory. A memory unit is a collection of cells
capable of storing a large quantity of binary information.

There are two types of memories that are used in digital systems: random-access memory
(RAM) and read-only memory (ROM). RAM stores new information for later use. The process
of storing new information into memory is referred to as a memory wrire operation. The process
of transferring the stored information out of memory is referred to as a memory read opera-
tion. RAM can perform both write and read operations. ROM can perform only the read op-
eration. This means that suitable binary information is already stored inside memory and can
be retrieved or read at any time. However, that information cannot be altered by writing.

ROM is a programmabile logic device (PLD). The binary information that is stored within such
a device is specified in some fashion and then embedded within the hardware in a process is
referred o as programming the device. The word “programming" here refers to a hardware pro-
cedure which specifies the bits that are inserted into the hardware configuration of the device.

ROM is one example of a PLD. Other such units are the programmable logic array (PLA),
programmable array logic (PAL), and the field-programmable gate array (FPGA). APLD is an
integrated circuit with internal logic gates connected through electronic paths that behave sim-
ilarly to fuses. In the original state of the device, all the fuses are intact. Programming the
device involves blowing those fuses along the paths that must be removed in order to obtain



(c) ketabton.com: The Digital Library

Section 7.2 Random-Access Memory 285

=D HHHD

(a) Conventional symbol (b) Array logic symbol

FIGURE 7.1
Conventional and array logic diagrams for OR gate

the particular contiguration of the desired logic function. In this chapter, we introduce the con-
figuration of PLDs and indicate procedures for their use in the design of digital systems. We
also present CMOS FPGAs, which are configured by downloading a stream of bits into the de-
vice to configure transmission gates to establish the internal connectivity required by a speci-
fied logic function (combinational or sequential).

Actypical PLD may have hundreds to millions of gates interconnected through hundreds to thou-
sands of internal paths. In order to show the internal logic diagram of such a device in a concise
form, it is necessary to employ a special gate symbology applicable to array logic. Figure 7.1 shows
the conventional and array logic symbols for a multiple-input OR gate. Instead of having multi-
ple input lines into the gate, we draw a single line entering the gate. The input lines are drawn per-
pendicular to this single line and are connected to the gate through internal fuses. In a similar
fashion, we can draw the array logic for an AND gate. This type of graphical representation for
the inputs of gates will be used throughout the chapter in array logic diagrams.

7.2 RANDOM-ACCESS MEMORY

A memory unit is a collection of storage cells, together with associated circuits needed to trans-
fer information into and out of a device. The architecture of memory is such that information
can be selectively retrieved from any of its internal locations, The time it takes to transfer in-
formation to or from any desired random location is always the same—hence the name random-
access memory, abbreviated RAM. In contrast, the time required to retrieve information that
is stored on magnetic tape depends on the location of the data.

A memory unit stores binary information in groups of bits called words. A word in memo-
ry is an entity of bits that move in and out of storage as a unit. A memory word is a group of
I's and 0’s and may represent a number, an instruction, one or more alphanumeric characters,
or any other binary-coded information. A group of 8 bits is called a byre. Most computer mem-
ories use words that are multiples of 8 bits in length, Thus, a 16-bit word contains two bytes,
and a 32-bit word is made up of four bytes. The capacity of a memory unit is usually stated as
the total number of bytes that the unit can store.

Communication between memory and its environment is achieved through data input and
output lines, address selection lines, and control lines that specify the direction of transfer. A
block diagram of a memory unit is shown in Fig. 7.2. The n data input lines provide the infor-
mation to be stored in memory, and the »n data output lines supply the information coming out
of memory. The k address lines specify the particular word chosen among the many available.
The two control inputs specify the direction of transfer desired: The Write input causes bina-
ry data to be transferred into the memory, and the Read input causes binary data to be trans-
ferred out of memory.



(c) ketabton.com: The Digital Library

286

Chapter 7 Memory and Programmable Logic

k address lines

n data output lines

FIGURE 7.2
Block diagram of a memory unit

The memory unit is specified by the number of words it contains and the number of bits
in each word. The address lines select one particular word. Each word in memory is assigned
an identification number, called an address, starting from 0 up to 2* — 1, where & is the
number of address lines. The selection of a specific word inside memory is done by apply-
ing the k-bit address to the address lines. An internal decoder accepts this address and opens
the paths needed to select the word specified. Memories vary greatly in size and may range
from 1,024 words, requiring an address of 10 bits, to 23? words, requiring 32 address bits. It
is customary to refer to the number of words (or bytes) in memory with one of the letters K
(kilo), M (mega), and G (giga). K is equal to 2'°, M is equal to 2°°, and G is equal to 2.
Thus, 64K = 2'%,2M = 2%! and 4G = 2*%2.

Consider, for example, a memory unit with a capacity of 1K words of 16 bits each. Since
1K = 1,024 = 2" and 16 bits constitute two bytes, we can say that the memory can accom-
modate 2,048 = 2K bytes. Figure 7.3 shows possible contents of the first three and the last

Memory address
Binary Decimal Memory content

0000000000 o [[ion1010101011101]

0000000001 1 Hiowto1110001001}

0000000010 2 O[KX]]IO]OTD%I’;(')]
- “? zﬁf#‘}’r
T i ; *.§”

1111111101 1021 E 10011 mwomoma

111111110 1022 ;mmuméoéiff:%

1 w023 [{1101111000100101

FIGURE 7.3
Contents of a 1024 X 16 memory



(c) ketabton.com: The Digital Library

Section 7.2 Random-Access Memory 287

three words of this memory. Each word contains 16 bits that can be divided into two bytes. The
words are recognized by their decimal address from 0 to 1,023. The equivalent binary address
consists of 10 bits. The first address is specified with ten 0's; the last address is specified with
ten 1's, because 1,023 in binary is equal to 1111111111. A word in memory is selected by its bi-
nary address. When a word is read or written, the memory operates on all 16 bits as a single unit.

The 1K X 16 memory of Fig. 7.3 has 10 bits in the address and 16 bits in each word. As
another example, a 64K X 10 memory will have 16 bits in the address (since 64K = 216y
and each word will consist of 10 bits. The number of address bits needed in a memory is de-
pendent on the total number of words that can be stored in the memory and is independent of
the number of bits in each word. The number of bits in the address is determined from the re-
lationship 2¥ = m, where m is the total number of words and & is the number of address bits
needed to satisfy the relationship.

Write and Read Operations

The two operations that RAM can perform are the write and read operations. As alluded to
earlier, the write signal specifies a transfer-in operation and the read signal specifies a transfer-
out operation, On accepting one of these control signals, the internal circuits inside the mem-
ory provide the desired operation,

The steps that must be taken for the purpose of transferring a new word to be stored into
memory are as follows:

1. Apply the binary address of the desired word to the address lines.
2. Apply the data bits that must be stored in memory to the data input lines.
3. Activate the write input,

The memory unit will then take the bits from the input data lines and store them in the word
specified by the address lines.

The steps that must be taken for the purpose of transferring a stored word out of memory
are as follows:

1. Apply the binary address of the desired word to the address lines.
2. Activate the read input.

The memory unit will then take the bits from the word that has been selected by the address
and apply them to the output data lines. The contents of the selected word do not change after
the read operation, i.e., the word operation is nondestructive.

Commercial memory components available in integrated-circuit chips sometimes provide
the two control inputs for reading and writing in a somewhat different configuration. Instead
of having separate read and write inputs to control the two operations, most integrated circuits
provide two other control inputs: One input selects the unit and the other determines the oper-
ation. The memory operations that result from these control inputs are specified in Table 7.1.

The memory enable (sometimes called the chip select) is used to enable the particular mem-
ory chip in a multichip implementation of a large memory. When the memory enable is inac-
tive, the memory chip is not selected and no operation is performed. When the memory enable
input is active, the read/write input determines the operation to be performed.



(c) ketabton.com: The Digital Library

288

Chapter 7 Memory and Programmable Logic

Table 7.1
Control Inputs to Memory Chip

Memory Enable  Read/Write =~ Memory Operation

0 X None
1 0 Write to selected word
1 1 Read from selected word

Memeory Description in HDL

Memory is modeled in the Verilog HDL by an array of registers. It is declared with a reg key-
word, using a two-dimensional array. The first number in the array specifies the number of
bits in a word (the word length) and the second gives the number of words in memory (mem-
ory depth). For example, a memory of 1,024 words with 16 bits per word is declared as

reg[15: 0] memword [0: 1023];

This statement describes a two-dimensional array of 1,024 registers, each containing 16 bits.
The second array range in the declaration of memword specifies the total number of words in
memory and is equivalent to the address of the memory. For example, memword[512] refers
to the 16-bit memory word at address 512.

The operation of a memory unit is illustrated in HDL Example 7.1. The memory has 64
words of four bits each. There are two control inputs: Enable and ReadWrite. The Dataln and
DataOut lines have four bits each. The input Address must have six bits (since 2° = 64). The
memory is declared as a two-dimensional array of registers, with Mem used as an identifier that
can be referenced with an index to access any of the 64 words. A memory operation requires
that the Enable input be active. The ReadWrite input determines the type of operation. If
ReadWrite is 1, the memory performs a read operation symbolized by the statement

DataOut « Mem [Address];

Execution of this statement causes a transfer of four bits from the selected memory word spec-
ified by Address onto the DataQOut lines. If ReadWrite is , the memory performs a write op-
eration symbolized by the statement

Mem [Address] « Dataln;

Execution of this statement causes a transfer from the four-bit Daraln lines into the memory word
selected by Address. When Enable is equal to 0, the memory is disabled and the outputs are assumed
to be in a high-impedance state, indicated by the symbol z. Thus, the memory has three-state outputs.

HDL Example 7.1

/I Read and write operations of memory
/l Memory size is 64 words of four bits each.

module memory (Enable, ReadWrite, Address, Dataln, DataOut);
input Enable, ReadWrite;
input [3: 0] Dataln;



(c) ketabton.com: The Digital Library

Section 7.2 Random-Access Memory 289

input [5: 0) Address;
output [3: 0) DataOut;
reg [3: 0] DataOut;

reg[3:0] Mem [0: 63]; // 64 x 4 memory
always @ (Enable or ReadWrite)
if (Enable)
if (ReadWrite) DataOut = Mem [Address]; // Read
else Mem [Address] = Dataln; Il Write
else DataOut = 4'bz; /i High impedance state
endmodule

Timing Waveforms

The operation of the memory unit is controlled by an external device such as a central processing
unit (CPU). The CPU is usually synchronized by its own clock. The memory, however, does
not employ an internal clock. Instead, its read and write operations are specified by control in-
puts. The access time of memory is the time required to select a word and read it. The cycle
time of memory is the time required to complete a write operation. The CPU must provide the
memory control signals in such a way as to synchronize its internal clocked operations with
the read and write operations of memory. This means that the access time and cycle time of
the memory must be within a time equal to a fixed number of CPU clock cycles.

Suppose as an example that a CPU operates with a clock frequency of 50 MHz, giving a pe-
riod of 20 ns for one clock cycle. Suppose also that the CPU communicates with a memory
whose access time and cycle time do not exceed 50 ns. This means that the write cycle termi-
nates the storage of the selected word within a 50-ns interval and that the read cycle provides
the output data of the selected word within 50 ns or less. (The two numbers are not always the
same.) Since the period of the CPU cycle is 20 ns, it will be necessary to devote at least two-
and-a-half, and possibly three, clock cycles for each memory request.

The memory timing shown in Fig. 7.4 is for a CPU with a 50-MHz clock and a memory with
50 ns maximum cycle time. The write cycle in part (a) shows three 20-ns cycles: T1, 72, and 7'3.
For a write operation, the CPU must provide the address and input data to the memory. This is done
at the beginning of 7'1. (The two lines that cross each other in the address and data waveforms des-
ignate a possible change in value of the multiple lines.) The memory enable and the read/write sig-
nals must be activated after the signals in the address lines are stable in order to avoid destroying
data in other memory words. The memory enable signal switches to the high level and the read/write
signal switches to the low level to indicate a write operation. The two control signals must stay active
for at least 50 ns. The address and data signals must remain stable for a short time after the con-
trol signals are deactivated. At the completion of the third clock cycle, the memory write operation
is completed and the CPU can access the memory again with the next 71 cycle.

The read cycle shown in Fig. 7.4(b) has an address for the memory provided by the CPU.
The memory-enable and read/write signals must be in their high level for a read operation.
The memory places the data of the word selected by the address into the output data lines with-
in a 50-ns interval (or less) from the time that the memory enable is activated. The CPU can
transfer the data into one of its internal registers during the negative transition of 7'3. The next
T1 cycle is available for another memory request.



(c) ketabton.com: The Digital Library
290 Chapter 7 Memory and Programmable Logic

-— 2lnsec —

Tl T2
Clock

Memory :>< :
address Address valid

Memory /

enable

Initiate writing
Read/ \ /

Write

Data :>< :
input Data valid

(a) Write cycle

- 5S0nsec ——

42! T2
Clock

Memory

address Address valid

Memory _____/ \

enable Initiate read

Read/

Write

Data
output

>< Data valid >C

(b) Read cycle

FIGURE 7.4
Memory cycle timing waveforms

Types of Memories

The mode of access of a memory system is determined by the type of components used. In a
random-access memory, the word locations may be thought of as being separated in space,
each word occupying one particular location. In a sequential-access memory, the information
stored in some medium is not immediately accessible, but is available only at certain intervals
of time. A magnetic disk or tape unit is of this type. Each memory location passes the read and
write heads in turn, but information is read out only when the requested word has been reached.



(c) ketabton.com: The Digital Library

Section 7.3 Memory Decoding 291

In a random-access memory, the access time is always the same regardless of the particular lo-
cation of the word. In a sequential-access memory, the time it takes to access a word depends
on the position of the word with respect to the position of the read head; therefore, the access
time is variable.

Integrated circuit RAM units are available in two operating modes: sratic and dynamic. Sta-
tic RAM (SRAM) consists essentially of internal latches that store the binary information. The
stored information remains valid as long as power is applied to the unit. Dynamic RAM
(DRAM) stores the binary information in the form of electric charges on capacitors provided
inside the chip by MOS transistors. The stored charge on the capacitors tends to discharge with
time, and the capacitors must be periodically recharged by refreshing the dynamic memory. Re-
freshing is done by cycling through the words every few milliseconds to restore the decaying
charge. DRAM offers reduced power consumption and larger storage capacity in a single mem-
ory chip. SRAM is easier to use and has shorter read and write cycles.

Memory units that lose stored information when power is turned off are said to be volatile.
CMOS integrated circuit RAMs, both static and dynamic, are of this category, since the binary
cells need external power to maintain the stored information, In contrast, a nonvolatile memo-
1y, such as magnetic disk, retains its stored information after the removal of power. This type of
memory is able to retain information because the data stored on magnetic components are rep-
resented by the direction of magnetization, which is retained after power is turned off. ROM is
another nonvolatile memory. A nonvolatile memory enables digital computers to store programs
that will be needed again after the computer is turned on, Programs and data that cannot be al-
tered are stored in ROM, while other large programs are maintained on magnetic disks. The lat-
ter programs are transferred into the computer RAM as needed. Before the power is turned off,
the binary information from the computer RAM is transferred to the disk so that the informa-
tion will be retained.

7.3 MEMORY DECODING

In addition to requiring storage components in a memory unit, there is a need for decoding cir-
cuits to select the memory word specified by the input address. In this section, we present the
internal construction of a RAM and demonstrate the operation of the decoder. To be able to in-
clude the entire memory in one diagram, the memory unit presented here has a small capacity
of 16 bits, arranged in four words of 4 bits each. An example of a two-dimensional coincident
decoding arrangement is presented to show a more efficient decoding scheme that is used in
large memories. We then give an example of address multiplexing commonly used in DRAM
integrated circuits,

internal Construction

The internal construction of a RAM of m words and » bits per word consists of m X n binary
storage cells and associated decoding circuits for selecting individual words. The binary stor-
age cell is the basic building block of a memory unit. The equivalent logic of a binary cell that
stores one bit of information is shown in Fig. 7.5. The storage part of the cell is modeled by an
SR latch with associated gates to form a D latch. Actually, the cell is an electronic circuit with



(c) ketabton.com: The Digital Library

292  Chapter 7 Memory and Programmable Logic

Select
) Select
Y
= Owput  Input —»{ BC — Outpui
Inpur — ) |
D' : ki Read Write
o] Read/Write
(a) Logic diagram (b) Block diagram

FIGURE 7.5
Memory cell

four to six transistors. Nevertheless, it is possible and convenient to model it in terms of logic
symbols. A binary storage cell must be very small in order to be able to pack as many cells
as possible in the small area available in the integrated circuit chip. The binary cell stores one
bit in its internal latch. The select input enables the cell for reading or writing. and the
read/write input determines the operation of the cell when it is selected. A 1 in the read/write
input provides the read operation by forming a path from the latch to the output terminal. A
0 in the read/write input provides the write operation by forming a path from the input terminal
to the latch.

The logical construction of a small RAM is shown in Fig. 7.6. This RAM consists of four
words of four bits each and has a total of 16 binary cells. The small blocks labeled BC repre-
sent the binary cell with its three inputs and one output, as specified in Fig. 7.5(b). A memory
with four words needs two address lines. The two address inputs go through a 2 X 4 decoder
to select one of the four words. The decoder is enabled with the memory-enable input. When
the memory enable is 0, all outputs of the decoder are 0 and none of the memory words are se-
lected. With the memory select at 1, one of the four words is selected, dictated by the value in
the two address lines. Once a word has been selected, the read/write input determines the op-
eration. During the read operation, the four bits of the selected word go through OR gates to
the output terminals. (Note that the OR gates are drawn according to the array logic estab-
lished in Fig. 7.1.) During the write operation, the data available in the input lines are trans-
ferred into the four binary cells of the selected word. The binary cells that are not selected are
disabled, and their previous binary values remain unchanged. When the memory select input
that goes into the decoder is equal to 0, none of the words are selected and the contents of all
cells remain unchanged regardless of the value of the read/write input.

Commercial RAMs may have a capacity of thousands of words. and each word may range
from 1 to 64 bits. The logical construction of a large-capacity memory would be a direct ex-
tension of the configuration shown here. A memory with 2* words of # bits per word requires
k address lines that go intoa k X 2* decoder. Each one of the decoder outputs selects one word
of n bits for reading or writing.



(c) ketabton.com: The Digital Library

Address
inputs

Memory EN

enable

Read/Write

Section 7.3 Memory Decoding 293

Input data

Word - 0

|-

P 1 |
tofae - tofpel tofmel~
= : |

-4
|

Vel 3 '

Y S

Word 1

Y
‘»r_{g 5 .
Y

Output data

FIGURE 7.6
Diagram of a 4 X 4 RAM

Coincident Decoding

A decoder with k inputs and 2* outputs requires 2* AND gates with k inputs per gate. The total
number of gates and the number of inputs per gate can be reduced by employing two decoders
in a two-dimensional selection scheme. The basic idea in two-dimensional decoding is to
arrange the memory cells in an array that is close as possible to square. In this configuration,
two k/2-input decoders are used instead of one k-input decoder. One decoder performs the row
selection and the other the column selection in a two-dimensional matrix configuration.

The two-dimensional selection pattern is demonstrated in Fig. 7.7 for a 1K-word memory.
Instead of using a single 10 X 1,024 decoder, we use two 5 X 32 decoders. With the single
decoder, we would need 1,024 AND gates with 10 inputs in each. In the two-decoder case, we
need 64 AND gates with 5 inputs in each. The five most significant bits of the address go to
input X and the five least significant bits go to input ¥. Each word within the memory array is
selected by the coincidence of one X line and one Y line. Thus, each word in memory is selected



(c) ketabton.com: The Digital Library

294  Chapter 7 Memory and Programmable Logic

7 binary address

01100 10100

X )

m

FIGURE 7.7
Two-dimensional decoding structure for a 1K-word memory

by the coincidence between | of 32 rows and 1 of 32 columns, for a total of 1.024 words. Note
that each intersection represents a word that may have any number of bits.

As an example, consider the word whose address is 404. The 10-bit binary equivalent of 404
is 01100 10100. This makes X = 01100 (binary 12) and ¥ = 10100 (binary 20). The n-bit
word that is selected lies in the X decoder output number 12 and the ¥ decoder output number
20. All the bits of the word are selected for reading or writing.

Address Multiplexing

The SRAM memory cell modeled in Fig. 7.5 typically contains six transistors. In order to build
memories with higher density, it is necessary to reduce the number of transistors in a cell. The
DRAM cell contains a single MOS transistor and a capacitor. The charge stored on the capac-
itor discharges with time, and the memory cells must be periodically recharged by refreshing
the memory. Because of their simple cell structure, DRAMs typically have four times the den-
sity of SRAMs. This allows four times as much memory capacity to be placed on a given size
of chip. The cost per bit of DRAM storage is three to four times less than that of SRAM stor-
age. A further cost savings is realized because of the lower power requirement of DRAM cells.
These advantages make DRAM the preferred technology for large memories in personal dig-
ital computers. DRAM chips are available in capacities from 64K to 256M bits. Most DRAMs
have a 1-bit word size, so several chips have to be combined to produce a larger word size,



(c) ketabton.com: The Digital Library

Section 7.3 Memory Decoding 295

Because of their large capacity, the address decoding of DRAMs is arranged in a two-
dimensional array, and larger memories often have multiple arrays. To reduce the number of pins
in the IC package. designers utilize address multiplexing whereby one set of address input pins
accommodates the address components. In a two-dimensional array. the address is applied in two
parts at different times, with the row address first and the column address second. Since the same
set of pins is used for both parts of the address. the size of the package is decreased significantly.

We will use a 64K-word memory to illustrate the address-multiplexing idea. A diagram of the
decoding configuration is shown in Fig. 7.8. The memory consists of a two-dimensional array of
cells arranged into 256 rows by 256 columns, for a total of 2° x 2% = 2'® = 64K words. There
is a single data input line, a single data output line, and a read/write control, as well as an eight-bit
address input and two address strobes, the latter included for enabling the row and column address
into their respective registers. The row address strobe (RAS) enables the eight-bit row register, and
the column address strobe (CAS) enables the eight-bit column register. The bar on top of the name
of the strobe symbol indicates that the registers are enabled on the zero level of the signal.

CAS
RAS
8-bit
address
Data Data
in out
FIGURE 7.8

Address multiplexing for a 64K DRAM



(c) ketabton.com: The Digital Library

296

Chapter 7 Memory and Programmable Logic

The 16-bit address is applied to the DRAM in two steps using RAS and CAS. Initially, both
strobes are in the | state. The 8-bit row address is applied to the address inputs and RAS is
changed to 0. This loads the row address into the row address register. RAS also enables the row
decoder so that it can decode the row address and select one row of the array. Afier a time equiv-
alent to the sertling time of the row selection, RAS goes back to the 1 level. The 8-bit column
address is then applied to the address inputs, and CAS is driven to the 0 state. This transfers the
column address into the column register and enables the column decoder. Now the two parts of
the address are in their respective registers, the decoders have decoded them to select the one cell
corresponding to the row and column address, and a read or write operation can be performed on
that cell. CAS must go back to the | level before initiating another memory operation.

7.4 ERROR DETECTION AND CORRECTION

The dynamic physical interaction of the electrical signals affecting the data path of a memory
unit may cause occasional errors in storing and retrieving the binary information. The reliability
of a memory unit may be improved by employing error-detecting and error-correcting codes.
The most common error detection scheme is the parity bit. (See Section 3.9.) A parity bit is gen-
erated and stored along with the data word in memory. The parity of the word is checked after
reading it from memory. The data word is accepted if the parity of the bits read out is correct.
If the parity checked results in an inversion, an error is detected, but it cannot be corrected.

An error-correcting code generates multiple parity check bits that are stored with the data
word in memory. Each check bit is a parity over a group of bits in the data word. When the word
is read back from memory, the associated parity bits are also read from memory and compared
with a new set of check bits generated from the data that have been read. If the check bits are
correct, no error has occurred. If the check bits do not match the stored parity, they generate a
unique pattern. called a syndrome, that can be used to identify the bit that is in error. A single
error occurs when a bit changes in value from 1 to 0 or from 0 to 1 during the write or read op-
eration. If the specific bit in error is identified, then the error can be corrected by comple-
menting the erroneous bit.

Hamming Code

One of the most common error-correcting codes used in RAMs was devised by R. W, Ham-
ming. In the Hamming code, k parity bits are added to an n-bit data word, forming a new word
of n + k bits. The bit positions are numbered in sequence from 1 to n + k. Those positions
numbered as a power of 2 are reserved for the parity bits. The remaining bits are the data bits.
The code can be used with words of any length. Before giving the general characteristics of the
code, we will illustrate its operation with a data word of eight bits.

Consider. for example, the 8-bit data word 11000100. We include 4 parity bits with the
8-bit word and arrange the 12 bits as follows:

Bitposion: 1 2 3 4 5 6 7 8 9 10 11 12
P 1 P 1 0O 0 AR 0 1 0 0



(c) ketabton.com: The Digital Library

Section 7.4 Error Detection and Correction 297

The 4 parity bits, Py, P, Py, and P, are in positions 1, 2, 4, and 8, respectively. The 8 bits of
the data word are in the remaining positions. Each parity bit is calculated as follows:

P, = XOR of bits (3.5,7,9,11) = 1® 18000 =0
P, = XOR of bits (3,6,7,10,11) = 190005160 = 0
P; = XOR of bits (5,6,7,12) = 190800 = ]

P; = XOR of bits (9, 10,11, 12) = 0818060 = 1

Remember that the exclusive-OR operation performs the odd function: It is equal to 1 for an odd
number of 1's in the variables and to 0 for an even number of 1's. Thus, each parity bit is set so
that the total number of 1’s in the checked positions, including the parity bit, is always even.

The 8-bit data word is stored in memory together with the 4 parity bits as a 12-bit compos-
ite word. Substituting the 4 P bits in their proper positions, we obtain the 12-bit composite
word stored in memory:

6o o 1 1t 10 0 1 0 1 0O O
Bitposition: 1 2 3 4 5 6 7 8 9 10 11 12

When the 12 bits are read from memory, they are checked again for errors. The parity is checked
over the same combination of bits, including the parity bit. The 4 check bits are evaluated as
follows:

C, = XOR of bits (1,3,5,7,9, 11)

C; = XOR of bits (2,3,6,7,10,11)

Cy = XOR of bits (4,5,6,7, 12)

Cg = XOR of bits (8,9, 10, 11, 12)

A 0 check bit designates even parity over the checked bits and a 1 designates odd parity. Since
the bits were stored with even parity, the result, C = CygC4C>C, = 0000, indicates that no error
has occurred. However, if C # 0, then the 4-bit binary number formed by the check bits gives
the position of the erroneous bit. For example, consider the following three cases:

Bit position: 2 3 4 5 6 7 8 9 10 11 12

I

0o 0 1 1 1 0 0 1 0 1 0 0 Noerror

1 0 1 1 1 0 0 1 0 1 0 O Emorinbitl
0O 0 1 1 0 0 0 1 0 1 0 0 Erorinbit5

In the first case, there is no error in the 12-bit word. In the second case, there is an error in bit
position number 1 because it changed from 0 to 1. The third case shows an error in bt posi-
tion 5, with a change from 1 to 0. Evaluating the XOR of the corresponding bits, we determine
the 4 check bits to be as follows:

Cyg Ci (i C,
For no error: 0o 0o 0 0
With error in bit 1: 0O 0 0 |
With error in bit 5: 0 | 0 1



(c) ketabton.com: The Digital Library

298

Chapter 7 Memory and Programmable Logic

Thus, for no error, we have C = 0000; with an error in bit 1, we obtain C = 0001: and with
an error in bit 5, we get C = 0101. When the binary number C is not equal to 0000. it gives
the position of the bit in error. The error can be corrected by complementing the corresponding
bit. Note that an error can occur in the data word or in one of the parity bits.

The Hamming code can be used for data words of any length. In general. the Hamming code
consists of & check bits and n data bits, for a total of n + k bits. The syndrome value C consists
of k bits and has a range of 2* values between 0 and 2¥ — 1. One of these values, usually zero,
is used to indicate that no error was detected, leaving 2% — 1 values to indicate which of the
n + k bits was in error, Each of these 2¢ — 1 values can be used to uniquely describe a bit in
error. Therefore, the range of k must be equal to or greater than n + k, giving the relationship

2 —1=n+k
Solving for n in terms of &, we obtain
¥ -1 —-k=n

This relationship gives a formula for establishing the number of data bits that can be used in
conjunction with & check bits. For example, when & = 3, the number of data bits that can be
usedisn = (2 — | — 3) = 4. Fork = 4, wehave2* — 1 — 4 = 11, givingn = 11. The
data word may be less than 11 bits, but must have at least 5 bits; otherwise, only 3 check bits
will be needed. This justifies the use of 4 check bits for the 8 data bits in the previous exam-
ple. Ranges of n for various values of k are listed in Table 7.2.

The grouping of bits for parity generation and checking can be determined from a list of the
binary numbers from 0 through 2° — 1. The least significant bit is a | in the binary numbers 1, 3,
5,7, and so on. The second significant bit is a 1 in the binary numbers 2, 3. 6. 7, and so on. Com-
paring these numbers with the bit positions used in generating and checking parity bits in the Ham-
ming code. we note the relationship between the bit groupings in the code and the position of the
1-bits in the binary count sequence. Note that each group of bits starts with a number that is a
power of 2: 1, 2,4, 8, 16, etc. These numbers are also the position numbers for the parity bits.

Single-Error Correction, Double-Error Detection

The Hamming code can detect and correct only a single error. By adding another parity bit to
the coded word, the Hamming code can be used to correct a single error and detect double
errors. If we include this additional parity bit, then the previous 12-bit coded word becomes
001110010100P,5, where Py is evaluated from the exclusive-OR of the other 12 bits. This

Table 7.2
Range of Data Bits for k Check Bits

Number of Check Bits, k Range of Data Bits, n

24
5-11
12-26
27-57
58-120

e = R




(c) ketabton.com: The Digital Library

Section 7.5 Read-Only Memory 299

produces the 13-bit word 0011100101001 (even parity). When the 13-bit word is read from
memory, the check bits are evaluated, as is the parity P over the entire 13 bits, If P = 0, the
parity is correct (even parity), but if P = 1, then the parity over the 13 bits is incorrect (odd
parity). The following four cases can arise:

If C = 0and P = 0, no error occurred.

If C # 0and P = 1, a single error occurred that can be corrected.

If C # Oand P = (), adouble error occurred that is detected, but that cannot be corrected.
If C = 0and P = 1, an error occurred in the P, bit.

This scheme may detect more than two errors, but is not guaranteed to detect all such errors.

Integrated circuits use a modified Hamming code to generate and check parity bits for
single-error correction and double-error detection. The modified Hamming code uses a
more efficient parity configuration that balances the number of bits used to calculate the
XOR operation. A typical integrated circuit that uses an 8-bit data word and a 5-bit check
word is IC type 74637. Other integrated circuits are available for data words of 16 and 32
bits, These circuits can be used in conjunction with a memory unit to correct a single error
or detect double errors during write and read operations.

7.5 READ-ONLY MEMORY

A ROM is essentially a memory device in which permanent binary information is stored. The
binary information must be specified by the designer and is then embedded in the unit to form
the required interconnection pattern. Once the pattern is established, it stays within the unit even
when power is turned off and on again.

A block diagram of a ROM consisting of k inputs and n outputs is shown in Fig, 7.9. The in-
puts provide the address for memory, and the outputs give the data bits of the stored word that is
selected by the address. The number of words in a ROM is determined from the fact that k address
input lines are needed to specify 2¥ words. Note that ROM does not have data inputs, because it
does not have a write operation, Integrated circuit ROM chips have one or more enable inputs and
sometimes come with three-state outputs to facilitate the construction of large arrays of ROM.

Consider, for example, a 32 X 8 ROM. The unit consists of 32 words of 8 bits each. There
are five input lines that form the binary numbers from 0 through 31 for the address. Figure 7.10
shows the internal logic construction of this ROM. The five inputs are decoded into 32 distinct
outputs by means of a5 X 32 decoder. Each output of the decoder represents a memory address.

k inputs (address) — +—>n outputs (data)

FIGURE 7.9
ROM block diagram



(c) ketabton.com: The Digital Library

300

Chapter 7 Memory and Programmable Logic

FIGURE 7.10
Internal logic of a 32 X 8 ROM

The 32 outputs of the decoder are connected to each of the eight OR gates. The diagram shows
the array logic convention used in complex circuits. (See Fig. 6.1.) Each OR gate must be con-
sidered as having 32 inputs. Each output of the decoder is connected to one of the inputs of each
OR gate, Since each OR gate has 32 input connections and there are 8 OR gates, the ROM con-
tains 32 X 8 = 256 internal connections. In general, a 2¥ X n ROM will have an internal
k % 2¥ decoder and n OR gates. Each OR gate has 2¥ inputs, which are connected to each of
the outputs of the decoder.

The 256 intersections in Fig. 7.10 are programmable. A programmable connection between
two lines is logically equivalent to a switch that can be altered to be either closed (meaning that
the two lines are connected) or open (meaning that the two lines are disconnected). The pro-
grammable intersection between two lines is sometimes called a crosspoint. Various physical
devices are used to implement crosspoint switches. One of the simplest technologies employs
a fuse that normally connects the two points, but is opened or “blown™ by the application of
a high-voltage pulse into the fuse.

The internal binary storage of a ROM is specified by a truth table that shows the word con-
tent in each address. For example, the content of a 32 X 8 ROM may be specified with a truth
table similar to the one shown in Table 7.3, The truth table shows the five inputs under which
are listed all 32 addresses. Each address stores a word of 8 bits, which is listed in the outputs
columns. The table shows only the first four and the last four words in the ROM. The complete
table must include the list of all 32 words.

The hardware procedure that programs the ROM blows fuse links in accordance with a
given truth table. For example, programming the ROM according to the truth table given by
Table 7.3 results in the configuration shown in Fig. 7.11. Every 0 listed in the truth table



(c) ketabton.com: The Digital Library

Section 7.5 Read-Only Memory 301

Table 7.3
ROM Truth Table (Partial)
inputs Outputs
Is I L L I A; A As Ay A A A A
0 0 0 0 0 1 0 1 1 0 1 1 0
0o 0 0 0 1 0 0 0 1 1 1 0 1
0o 0 0 1 0 1 1 0 0 0 1 0 1
0o 0o o0 1 1 | 0 1 1 0 0 1 0
1 1 1 0 0 0 0 0 0 1 0 0 1
1 ST O ¢ [ | 1 1 1 0 0 0 1 0
1 1 l 1 0 0 1 0 0 | 0 1 0
1 11 0 0 l 1 0 0 1 1
& & |

Iu 3 . T

I —7 A *

I L ....

Iy — o 24 !

!4 spm—— -' 29 3

30 x*
3
A5 A_] A_\ A: A] Aﬂ
FIGURE 7.11

Programming the ROM according to Table 7.3

specifies the absence of a connection, and every 1 listed specifies a path that is obtained by a
connection. For example, the table specifies the eight-bit word 10110010 for permanent stor-
age at address 3. The four 0's in the word are programmed by blowing the fuse links between
output 3 of the decoder and the inputs of the OR gates associated with outputs Ag. Aa, Ay, and
Ag. The four 1's in the word are marked witha X to denote a temporary connection, in place
of a dot used for a permanent connection in logic diagrams. When the input of the ROM is
00011, all the outputs of the decoder are 0 except for output 3, which is at logic 1. The signal



(c) ketabton.com: The Digital Library

302 Chapter 7 Memory and Programmable Logic

equivalent to logic | at decoder output 3 propagates through the connections to the OR gate out-
puts of A5, As. Ay, and A . The other four outputs remain at 0. The result is that the stored word
10110010 is applied to the eight data outputs.

Combinational Circuit Implementation

In Section 4.9. it was shown that a decoder generates the 2 minterms of the k input variables.
By inserting OR gates to sum the minterms of Boolean functions, we were able to generate any
desired combinational circuit. The ROM is essentially a device that includes both the decoder
and the OR gates within a single device to form a minterm generator. By choosing connections
for those minterms which are included in the function, the ROM outputs can be programmed
to represent the Boolean functions of the output variables in a combinational circuit.

The internal operation of a ROM can be interpreted in two ways. The first interpretation is that
of a memory unit that contains a fixed pattern of stored words. The second interpretation is that of
a unit which implements a combinational circuit. From this point of view, each output terminal is
considered separately as the output of a Boolean function expressed as a sum of minterms. For
example, the ROM of Fig. 7.11 may be considered to be a combinational circuit with eight outputs,
each a function of the five input variables. Output A4 can be expressed in sum of minterms as

A';(Iq,. 13., fz. II- ]0) = 2(0, Z: By 29)

(The three dots represent minterms 4 through 27, which are not specified in the figure,) A con-
nection marked with X in the figure produces a minterm for the sum. All other crosspoints
are not connected and are not included in the sum,

In practice, when a combinational circuit is designed by means of a ROM. it is not neces-
sary to design the logic or to show the internal gate connections inside the unit. All that the de-
signer has to do is specify the particular ROM by its IC number and provide the applicable truth
table. The truth table gives all the information for programming the ROM. No internal logic
diagram is needed to accompany the truth table.

EXAMPLE 7.1

Design a combinational circuit using a ROM. The circuit accepts a three-bit number and out-
puts a binary number equal to the square of the input number.

The first step is to derive the truth table of the combinational circuit. In most cases. this is
all that is needed. In other cases, we can use a partial truth table for the ROM by utilizing cer-
tain properties in the output variables. Table 7.4 is the truth table for the combinational circuit.
Three inputs and six outputs are needed to accommodate all possible binary numbers. We note
that output By is always equal to input Ag, so there is no need to generate By with a ROM,
since it is equal to an input variable. Moreover, output B, is always 0, so this output is a known
constant, We actually need 1o generate only four outputs with the ROM; the other two are read-
ily obtained. The minimum size of ROM needed must have three inputs and four outputs. Three
inputs specify eight words, so the ROM must be of size 8 X 4. The ROM implementation is
shown in Fig. 7.12. The three inputs specify eight words of four bits each. The truth table in
Fig. 7.12(b) specifies the information needed for programming the ROM. The block diagram




(c) ketabton.com: The Digital Library

Section 7.5 Read-Only Memory 303

Table 7.4
Truth Table for Circuit of Example 7.1
Inputs Outputs
Ay Ay A Bs By By By By By Decimal
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1
0 1 0 0 0 0 1 0O 0 4
0 1 | 0 0 1 o o 1 9
1 0 0 0 | 0 0 0 0 16
1 0 | 0 | 1 0 0 1 25
1 1 0 1 0 0 1 0o o0 36
1 1 | 1 | 0 0 0 1 49
By Ay Ay Ag Bs By By By
0— 8 00 0[l0 0 0 0©
B 0 06 1]0 0 0 O
A < 0 1 0[O0 0 0 1
M ATROM. : 1 0 0j0 1t 0 O
v o 4‘.13%-'{-. B, 1 0 1[0 1 1 0
Az o il I Ol @ B 1
/ : Bs S (T (N[5 VR S L
(a) Block diagram (b) ROM truth table
FIGURE 7.12

ROM implementation of Example 7.1

of Fig. 7.12(a) shows the required connections of the combinational circuit.

Types of ROMs

The required paths in a ROM may be programmed in four different ways. The first is called mask
programming and is done by the semiconductor company during the last fabrication process of
the unit. The procedure for fabricating a ROM requires that the customer fill out the truth table
he or she wishes the ROM to satisfy. The truth table may be submitted in a special form pro-
vided by the manufacturer or in a specified format on a computer output medium. The manu-
facturer makes the corresponding mask for the paths to produce the 1’s and (s according to the
customer's truth table. This procedure is costly because the vendor charges the customer a spe-
cial fee for custom masking the particular ROM. For this reason, mask programming is eco-
nomical only if a large quantity of the same ROM configuration is to be ordered.

For small quantities, it is more economical to use a second type of ROM called
programmable read-only memory, or PROM. When ordered, PROM units contain all the fuses
intact, giving all 1's in the bits of the stored words. The fuses in the PROM are blown by the



(c) ketabton.com: The Digital Library

304

Chapter 7 Memory and Programmable Logic

application of a high-voltage pulse to the device through a special pin. A blown fuse defines a bi-
nary 0 state and an intact fuse gives a binary |1 state. This procedure allows the user to program
the PROM in the laboratory to achieve the desired relationship between input addresses and
stored words. Special instruments called PROM programmers are available commercially to fa-
cilitate the procedure. In any case, all procedures for programming ROMs are hardware proce-
dures, even though the word programming is used.

The hardware procedure for programming ROMs or PROMs is irreversible. and once pro-
grammed, the fixed pattern is permanent and cannot be altered. Once a bit patiern has been es-
tablished, the unit must be discarded if the bit pattern is to be changed. A third type of ROM
is the erasable PROM, or EPROM, which can be restructured to the initial state even though
it has been programmed previously. When the EPROM is placed under a special ultraviolet light
for a given length of time, the shortwave radiation discharges the internal floating gates that
serve as the programmed connections. After erasure, the EPROM returns to its initial state and
can be reprogrammed to a new set of values.

The fourth type of ROM is the electrically erasable PROM (EEPROM or E*PROM). This
device is like the EPROM, except that the previously programmed connections can be erased
with an electrical signal instead of ultraviolet light. The advantage is that the device can be
erased without removing it from its socket.

Flash memory devices are similar to EEPROMs, but have additional built-in circuitry to
selectively program and erase the device in-circuit, without the need for a special programmer.
They have widespread application in modern technology in cell phones, digital cameras. set-
top boxes, digital TV, telecommunications, nonvolatile data storage. and microcontrollers.
Their low consumption of power makes them an attractive storage medium for laptop and note-
book computers. Flash memories incorporate additional circuitry, too, allowing simultaneous
erasing of blocks of memory, for example, of size 16 Kbytes to 64 Kbytes. Like EEPROMs,
flash memories are subject to fatigue, typically having about 10° block erase cycles.

Combinational PLDs

The PROM is a combinational programmable logic device (PLD)—an integrated circuit with
programmable gates divided into an AND array and an OR array to provide an AND-OR sum-
of-product implementation. There are three major types of combinational PLDs, differing in
the placement of the programmable connections in the AND-OR array. Figure 7.13 shows the
configuration of the three PLDs. The PROM has a fixed AND array constructed as a decoder
and a programmable OR array. The programmable OR gates implement the Boolean functions
in sum-of-minterms form. The PAL has a programmable AND array and a fixed OR array. The
AND gates are programmed to provide the product terms for the Boolean functions, which are
logically summed in each OR gate. The most flexible PLD is the PLA, in which both the AND
and OR arrays can be programmed. The product terms in the AND array may be shared by any
OR gate to provide the required sum-of-products implementation. The names PAL and PLA
emerged from different vendors during the development of PL.Ds. The implementation of com-
binational circuits with PROM was demonstrated in this section. The design of combinational
circuits with PLA and PAL is presented in the next two sections.



(c) ketabton.com: The Digital Library

Section 7.6 Programmable Logic Array 305

Inputs ———  “ANDarray »

B

(a) Programmable read-only memory (PROM})

‘programmable
. ANDamy

Inputs ——————» b Outpuis

(b) Programmable array logic (PAL)

pmgrammab]e /

Inputs ————— ]

(c) Programmable logic array (PLA)

FIGURE 7.13
Basic configuration of three PLDs

7.6 PROGRAMMABLE LOGIC ARRAY

The PLA is similar in concept to the PROM, except that the PLA does not provide full decod-
ing of the variables and does not generate all the minterms. The decoder is replaced by an array
of AND gates that can be programmed to generate any product term of the input variables.
The product terms are then connected to OR gates to provide the sum of products for the re-
quired Boolean functions.

The internal logic of a PLA with three inputs and two outputs is shown in Fig. 7.14. Such a
circuit is too small to be useful commercially, but is presented here to demonstrate the typical
logic configuration of a PLA. The diagram uses the array logic graphic symbols for complex cir-
cuits. Each input goes through a buffer-inverter combination, shown in the diagram with a com-
posite graphic symbol, that has both the true and complement outputs. Each input and its
complement are connected to the inputs of each AND gate, as indicated by the intersections be-
tween the vertical and horizontal lines. The outputs of the AND gates are connected to the in-
puts of each OR gate. The output of the OR gate goes to an XOR gate, where the other input
can be programmed to receive a signal equal to either logic 1 or logic 0. The output is inverted
when the XOR input is connected to 1 (since x & 1 = x’). The output does not change when
the XOR input is connected to 0 (since x @0 = x). The particular Boolean functions imple-
mented in the PLA of Fig. 7.14 are

F, = AB' + AC + A'BC’
B = (AC + BC)'



(c) ketabton.com: The Digital Library

306 Chapter 7 Memory and Programmable Logic

p—F
c—F
H— l AB’
— e W » £ AC
T *—— A'BC’
CCBBAA R A
1
AT Fis
l>—r
oo
FIGURE 7.14

PLA with three inputs, four product terms, and two outputs

The product terms generated in each AND gate are listed along the output of the gate in the
diagram. The product term is determined from the inputs whose crosspoints are connected and
marked with a X. The output of an OR gate gives the logical sum of the selected product terms,
The output may be complemented or left in its true form, depending on the logic being realized.

The fuse map of a PLA can be specified in a tabular form. For example. the programming
table that specifies the PLA of Fig. 7.14 is listed in Table 7.5. The PLA programming table con-
sists of three sections. The first section lists the product terms numerically. The second section
specifies the required paths between inputs and AND gates. The third section specifies the
paths between the AND and OR gates. For each output variable, we may have a T (for true) or
C (for complement) for programming the XOR gate. The product terms listed on the left are
not part of the table; they are included for reference only. For each product term. the inputs are
marked with 1, 0, or — (dash). If a variable in the product term appears in the form in which
it is true, the corresponding input variable is marked with a 1. If it appears complemented. the
corresponding input variable is marked with a 0. If the variable is absent from the product
term, it is marked with a dash.



(c) ketabton.com: The Digital Library

Section 7.6 Programmable Logic Array 307

Table 7.5
PLA Programming Table
Outputs
Inputs (M (©)
Product Term A B C F, F;
AB' 1 1 § — ——
AC 2 I — 1 1 1
BC 3 - 1 1 —_
A'BC' 4 0 1 0 (-

Note: See text for meanings of dashes.

The paths between the inputs and the AND gates are specified under the column head “In-
puts” in the programming table. A 1 in the input column specifies a connection from the input
variable to the AND gate. A 0 in the input column specifies a connection from the comple-
ment of the variable to the input of the AND gate. A dash specifies a blown fuse in both the
input variable and its complement. It is assumed that an open terminal in the input of an AND
gate behaves like a 1.

The paths between the AND and OR gates are specified under the column head “Outputs.”
The output variables are marked with 1's for those product terms which are included in the func-
tion, Each product term that has a 1 in the output column requires a path from the output of the
AND gate to the input of the OR gate. Those marked with a dash specify a blown fuse. It is as-
sumed that an open terminal in the input of an OR gate behaves like a 0. Finally, a T (true) out-
put dictates that the other input of the corresponding XOR gate be connected to 0, and a C
(complement) specifies a connection to 1.

The size of a PLA is specified by the number of inputs. the number of product terms, and
the number of outputs. A typical integrated circuit PLA may have 16 inputs, 48 product terms,
and eight outputs. For n inputs, & product terms, and m outputs, the internal logic of the PLA
consists of n buffer-inverter gates, k AND gates, m OR gates, and m XOR gates. There are
2n X k connections between the inputs and the AND array, k£ X m connections between the
AND and OR arrays, and m connections associated with the XOR gates.

In designing a digital system with a PLA, there is no need to show the internal connections
of the unit as was done in Fig. 7.14. All that is needed is a PLA programming table from which
the PLA can be programmed to supply the required logic. As with a ROM, the PLA may be mask
programmable or field programmable, With mask programming, the customer submits a PLA
program table to the manufacturer. This table is used by the vendor to produce a custom-made
PLA that has the required internal logic specified by the customer. A second type of PLA that
is available is the field-programmable logic array, or FPLA, which can be programmed by the
user by means of a commercial hardware programmer unit.

In implementing a combinational circuit with a PLA, careful investigation must be under-
taken in order to reduce the number of distinct product terms, since a PLA has a finite number
of AND gates. This can be done by simplifying each Boolean function to a minimum number
of terms. The number of literals in a term is not important, since all the input variables are



(c) ketabton.com: The Digital Library

308 Chapter 7 Memory and Programmable Logic

EXAMPLE 7.2

available anyway. Both the true value and the complement of each function should be simpli-
fied to see which one can be expressed with fewer product terms and which one provides prod-
uct terms that are common to other functions.

Implement the following two Boolean functions with a PLA:
Fi(A, B,C) = 2(0,1,2,4)

FZ(At Br C) = E(O' 5,6, ?)
The two functions are simplified in the maps of Fig. 7.15. Both the true value and the com-
plement of the functions are simplified into sum-of-products form. The combination that gives
the minimum number of product terms is

Fy = (AB + AC + BC)’
and

F> = AB + AC + A'B'C'
This combination gives four distinct product terms: AB, AC, BC, and A'B'C’". The PLA pro-
gramming table for the combination is shown in the figure. Note that output F; is the true out-
put, even though a C is marked over it in the table. This is because F, is generated with an

AND-OR circuit and is available at the output of the OR gate. The XOR gate complements the
function to produce the true F; output.

PLA programming table BC i BC —
Outpuls 00 01 11 10 AN 0 01 11 10
Hlu ml ﬂl, m ﬂlu m m, .
Product Inputs  (C) (T) ol 1 1 0 1 o] 1 0 0 0
em ABC B B
AB 1 11 11 M M [ | el e
== A 0 A 0
AC 2 1 -1 1 1 B | : ’ : : 1 :
BC 3 - 11 1 - —_— =
ABC 4 000 - 1 c €
FIGURE 7.15

Solution to Example 7.2
|

The combinational circuit used in Example 7.2 is too simple for implementing with a PLA.
It was presented merely for purposes of illustration. A typical PLA has a large number of inputs
and product terms, The simplification of Boolean functions with so many variables should be
carried out by means of computer-assisted simplification procedures. The computer-aided design
program simplifies each function and its complement to a minimum number of terms. The pro-
gram then selects a minimum number of product terms that cover all functions in the form in
which they are true or in their complemented form. The PLA programming table is then gener-
ated and the required fuse map obtained. The fuse map is applied to an FPLA programmer that
goes through the hardware procedure of blowing the internal fuses in the integrated circuit.



(c) ketabton.com: The Digital Library

Section 7.7 Programmable Array Logic 309

7.7 PROGRAMMABLE ARRAY LOGIC

The PAL is a programmable logic device with a fixed OR array and a programmable AND array.
Because only the AND gates are programmable, the PAL is easier to program than, but is not
as flexible as, the PLA, Figure 7,16 shows the logic configuration of a typical PAL with four in-
puts and four outputs. Each input has a buffer-inverter gate, and each output is generated by a
fixed OR gate. There are four sections in the unit, each composed of an AND-OR array that is
three wide, the term used to indicate that there are three programmable AND gates in each sec-
tion and one fixed OR gate. Each AND gate has 10 programmable input connections, shown in
the diagram by 10 vertical lines intersecting each horizontal line. The horizontal line symbaol-
izes the multiple-input configuration of the AND gate. One of the outputs is connected to a
buffer—inverter gate and then fed back into two inputs of the AND gates.

Commercial PAL devices contain more gates than the one shown in Fig. 7.16. A typical PAL
integrated circuit may have eight inputs, eight outputs. and eight sections, each consisting of an
eight-wide AND-OR array. The output terminals are sometimes driven by three-state bufters or
inverters.

In designing with a PAL, the Boolean functions must be simplified to fit into each section.
Unlike the situation with a PLA, a product term cannot be shared among two or more OR gates.
Therefore, each function can be simplified by itself, without regard to common product terms.
The number of product terms in each section is fixed, and if the number of terms in the func-
tion is too large, it may be necessary to use two sections to implement one Boolean function.

As an example of using a PAL in the design of a combinational circuit, consider the following
Boolean functions, given in sum-of-minterms form:

w(A, B,C, D) = 2(2, 12, 13)

x(A.B.C, D) = 3(7.8,9,10, 11, 12, 13, 14, 15)
¥(A.B,C.D) = £(0,2,3,4,5,6,7,8.10, 11, 15)
2(A,B.C,D) = 3(1,2,8,12,13)

Simplifying the four functions to a minimum number of terms results in the following Boolean

functions:

ABC' + A'R'CD'

A+ BCD

= A'B+ CD + B'D'

= ABC' + A'B'CD' + AC'D' + A'B'C'D

w + AC'D' + A'B'C'D

Note that the function for z has four product terms. The logical sum of two of these terms is

equal to w. By using w, it is possible to reduce the number of terms for z from four to three.
The PAL programming table is similar to the one used for the PLA, except that only the in-

puts of the AND gates need to be programmed. Table 7.6 lists the PAL programming table for
the four Boolean functions, The table is divided into four sections with three product terms in

w

gt -
Il

M

]



(c) ketabton.com: The Digital Library

310  Chapter 7 Memory and Programmable Logic

AND gates inputs

Product 1 2 3 4 5 6 7 8 9 10
term — |

1

2

3—
’:-[5

4

5

6
3

7

B

9

10

11

12
w1

1 2 3 4 5 6 7 8 9 10

FIGURE 7.16

PAL with four inputs, four outputs, and a three-wide AND-OR structure



(c) ketabton.com: The Digital Library

Section 7.8 Sequential Programmable Devices 31

Table 7.6
PAL Programming Table
AND Inputs
Product Term A B C D w Outputs

1 1 1 0 — — w= ABC' + A'B'CD’
z o 0 1 0 -
3 S —
- l — = = = x=A+ BCD
5 — 1 1 -
6 — w— am aoe i
7 0 1 — — — y=A'B+ CD+ B'D’
8 —_ - 1 —
9 - 0 - 0 -
10 _ - = = 1 z=w+ AC'D' + A'B'C'D
11 1 — 0 0 -
12 0o 0 0 1 —

each, to conform with the PAL of Fig. 7.16. The first two sections need only two product terms
to implement the Boolean function. The last section, for output z, needs four product terms.
Using the output from w, we can reduce the function to three terms.

The fuse map for the PAL as specified in the programming table is shown in Fig. 7.17. For
each 1 or 0 in the table, we mark the corresponding intersection in the diagram with the sym-
bol for an intact fuse. For each dash, we mark the diagram with blown fuses in both the true
and complement inputs. If the AND gate is not used, we leave all its input fuses intact. Since
the corresponding input receives both the true value and the complement of each input vari-
able, we have AA’" = 0 and the output of the AND gate is always 0.

As with all PLDs, the design with PALs is facilitated by using computer-aided design tech-
niques. The blowing of internal fuses is a hardware procedure done with the help of special elec-
tronic instruments,

7.8 SEQUENTIAL PROGRAMMARBLE DEVICES

Digital systems are designed with flip-flops and gates. Since the combinational PLD consists
of only gates, it is necessary to include external flip-flops when they are used in the design. Se-
quential programmable devices include both gates and flip-flops. In this way, the device can
be programmed to perform a variety of sequential-circuit functions. There are several types of
sequential programmable devices available commercially, and each device has vendor-specific
variants within each type. The internal logic of these devices is too complex to be shown here.
Therefore, we will describe three major types without going into their detailed construction:

1. Sequential (or simple) programmable logic device (SPLD)

2. Complex programmable logic device (CPLD)
3. Field-programmable gate array (FPGA)



(c) ketabton.com: The Digital Library

312

Chapter 7 Memory and Programmable Logic

AND gates inputs
Product A A" B B CC DD ww
term _l
L= * *
2 » *—x% L
3
x r,
4 —¥
5 o ¥ ¥
6
> . All fuses intact
B :? (always = 0)
T —T—¥KF
S T T
9 % x
10 x
11 —% x* -
12 - T K
b D X Fuse intact
+ Fuse blown
A A B B CC DD w w
FIGURE 7.17

Fuse map for PAL as specified in Table 7.6



(c) ketabton.com: The Digital Library

Section 7.8 Sequential Programmable Devices 313

-

Inputs o K R
AND-OR-array
(PAL or PLA) *

12 Ourputs
- Hip-flops >

FIGURE 7.18
Sequential programmable logic device

The sequential PLD is sometimes referred to as a simple PLD to differentiate it from the com-
plex PLD. The SPLD includes flip-flops, in addition to the AND-OR array, within the integrated
circuit chip. The result is a sequential circuit as shown in Fig. 7.18. A PAL or PLA is modified
by including a number of flip-flops connected to form a register. The circuit outputs can be taken
from the OR gates or from the outputs of the flip-flops. Additional programmable connections
are available to include the flip-flop outputs in the product terms formed with the AND array,
The flip-flops may be of the D or the JK type.

The first programmable device developed to support sequential circuit implementation is
the field-programmable logic sequencer (FPLS). A typical FPLS is organized around a PLA
with several outputs driving flip-flops. The flip-flops are flexible in that they can be pro-
grammed to operate as either the JK or the D type. The FPLS did not succeed commercially,
because it has too many programmable connections. The configuration mostly used in an
SPLD is the combinational PAL together with D flip-flops. A PAL that includes flip-flops is
referred to as a registered PAL, to signify that the device contains flip-flops in addition to the
AND-OR array. Each section of an SPLD is called a macrocell, which is a circuit that contains
a sum-of-products combinational logic function and an optional flip-flop. We will assume an
AND-OR sum-of-products function, but in practice, it can be any one of the two-level im-
plementations presented in Section 3.7,

Figure 7.19 shows the logic of a basic macrocell. The AND-OR array is the same as in the
combinational PAL shown in Fig. 7.16. The output is driven by an edge-triggered D flip-flop
connected to a common clock input and changes state on a clock edge. The output of the flip-
flop is connected 1o a three-state buffer (or inverter) controlled by an output-enable signal
marked in the diagram as OE. The output of the flip-flop is fed back into one of the inputs of
the programmable AND gates to provide the present-state condition for the sequential circuit.
A typical SPLD has from 8 to 10 macrocells within one IC package. All the flip-flops are con-
nected to the common CLK input, and all three-state buffers are controlled by the OE input.

In addition to programming the AND array. a macrocell may have other programming features.
Typical programming options include the ability to either use or bypass the flip-flop, the selection
of clock edge polarity, the selection of preset and clear for the register, and the selection of the true
value or complement of an output. An XOR gate is used to program a true/complement condition.
Multiplexers select between two or four distinct paths by programming the selection inputs.

The design of a digital system using PLDs often requires the connection of several devices
to produce the complete specification. For this type of application, it is more economical to use
a complex programmable logic device (CPLD), which is a collection of individual PLDs on a
single integrated circuit. A programmable interconnection structure allows the PLDs to be con-
nected to each other in the same way that can be done with individual PLDs.



(c) ketabton.com: The Digital Library

314 Chapter 7 Memory and Programmable Logic
CLK OE
=
S
FIGURE 7.19
Basic macrocell logic

FIGURE 7.20
General CPLD configuration

Figure 7.20 shows the general configuration of a CPLD. The device consists of multiple
PLD:s interconnected through a programmable switch matrix. The input—output (1/O) blocks pro-
vide the connections to the IC pins. Each I/O pin is driven by a three-state buffer and can be
programmed to act as input or output. The switch matrix receives inputs from the I/O block and



(c) ketabton.com: The Digital Library

Section 7.8 Sequential Programmable Devices 315

directs them to the individual macrocells. Similarly, selected outputs from macrocells are sent
to the outputs as needed. Each PLD typically contains from 8 to 16 macrocells, usually fully
connected. If a macrocell has unused product terms, they can be used by other nearby macro-
cells. In some cases the macrocell flip-flop is programmed to act as a D, JK, or T flip-flop.

Different manufacturers have taken different approaches to the general architecture of CPLDs.
Areas in which they differ include the individual PLDs (sometimes called function blocks), the
type of macrocells, the I/O blocks, and the programmable interconnection structure. The best way
to investigate a vendor-specific device is to look at the manufacturer’s literature.

The basic component used in VLSI design is the gare array, which consists of a pattern of
gates, fabricated in an area of silicon, that is repeated thousands of times until the entire chip is cov-
ered with gates. Arrays of one thousand to several hundred thousand gates are fabricated within a
single IC chip, depending on the technology used. The design with gate arrays requires that the cus-
tomer provide the manufacturer the desired interconnection pattern. The first few levels of the fab-
rication process are common and independent of the final logic function. Additional fabrication steps
are required to interconnect the gates according to the specifications given by the designer.

A field-programmable gate array (FPGA) is a VLSI circuit that can be programmed at the
user's location. A typical FPGA consists of an array of hundreds or thousands of logic blocks,
surrounded by programmable input and output blocks and connected together via program-
mable interconnections. There is a wide variety of internal configurations within this group of
devices. The performance of each type of device depends on the circuit contained in its logic
blocks and the efficiency of its programmed interconnections.

A typical FPGA logic block consists of lookup tables, multiplexers, gates, and flip-flops. A
lookup table is a truth table stored in an SRAM and provides the combinational circuit functions
for the logic block. These functions are realized from the lookup table, in the same way that com-
binational circuit functions are implemented with ROM, as described in Section 7.5. For exam-
ple,a 16 X 2 SRAM can store the truth table of a combinational circuit that has four inputs and
two outputs, The combinational logic section, along with a number of programmable multiplex-
ers, is used to configure the input equations for the flip-flop and the output of the logic block.

The advantage of using RAM instead of ROM to store the truth table is that the table can
be programmed by writing into memory. The disadvantage is that the memory is volatile and
presents the need for the lookup table's content to be reloaded in the event that power is dis-
rupted. The program can be downloaded either from a host computer or from an onboard
PROM. The program remains in SRAM until the FPGA is reprogrammed or the power is turned
off. The device must be reprogrammed every time power is turned on. The ability to reprogram
the FPGA can serve a variety of applications by using different logic implementations in the
program.

The design with PLD, CPLD. or FPGA requires extensive computer-aided design (CAD)
tools to facilitate the synthesis procedure. Among the tools that are available are schematic
entry packages and hardware description languages (HDLs), such as ABEL, VHDL, and Ver-
ilog. Synthesis tools are available that allocate, configure, and connect logic blocks to match
a high-level design description written in HDL, As an example of CMOS FPGA technology,
we will discuss the Xilinx FPGA.'

' See www.Altera.com for an alternative CMOS FPGA architecture.



(c) ketabton.com: The Digital Library

316  Chapter 7 Memory and Programmable Logic

Xilinx FPGAs

Xilinx launched the world's first commercial FPGA in 1985, with the vintage XC2000 device
family.” The XC3000 and XC4000 families soon followed, setting the stage for today’s Spar-
tan™, and Virtex™ device families. Each evolution of devices brought improvements in den-
sity, performance. power consumption, voltage levels, pin counts. and functionality. For
example, the Spartan family of devices initially offered a maximum of 40K system gates. but
today's Spartan-3E offers 1.6M gates plus block RAM.

Basic Xilinx Architecture

The basic architecture of Spartan and earlier device families consists of an array of config-
urable logic blocks (CLBs), a variety of local and global routing resources, and input—output
(1/0) blocks (10Bs). programmable I/O buffers, and a SRAM-based configuration memory. as
shown in Fig. 7.21.

\ Vertical
long line

Mt

- rd

7.

R

Horizontal
long line

FIGURE 7.21
Basic architecture of Xilinx Spartan and predecessor devices

*See www.Xilinx.com for up-to-date information about Xilinx products.



(c) ketabton.com: The Digital Library

Section 7.8 Sequential Programmable Devices 317

Configurable Logic Block (CLB)

Each CLB consists of a programmable lookup table, multiplexers, registers, and paths for con-
trol signals, as shown in Fig. 7.22. Two of the function generators (F and G) of the lookup
table can generate any arbitrary function of four inputs, and the third (H) can generate any
Boolean function of three inputs. The H-function block can get its inputs from the F and G
lookup tables or from external inputs. The three function generators can be programmed 1o
generate (1) three different functions of three independent sets of variables (two with four in-
puts and one with three inputs—one function must be registered within the CLB), (2) an arbi-
trary function of five variables, (3) an arbitrary function of four variables together with some
functions of six variables, and (4) some functions of nine variables.

Each CLB has two storage devices that can be configured as edge-triggered flip-flops with
a common clock, or, in the XC4000X, they can be configured as flip-flops or as transparent
latches with a common clock (programmed for either edge and separately invertible) and an
enable. The storage elements can get their inputs from the function generators or from the D,
input. The other element can get an external input from the H/ input, The function generators
can also drive two outputs (X and Y) directly and independently of the outputs of the storage
elements. All of these outputs can be connected to the interconnect network. The storage ele-
ments are driven by a global set/reset during power-up: the global set/reset is programmed to
match the programming of the local S/R control for a given storage element.

Distributed RAM

The three function generators within a CLB can be used as either a 16 X 2 dual-port RAM or a
32 X 1 single-port RAM. The XC4000 devices do not have block RAM, but a group of their CLBs
can form an array of memory. Spartan devices have block RAM in addition to distributed RAM.

interconnect Resources

A grid of switch matrices overlays the architecture of CLBs to provide general-purpose inter-
connect for branching and routing throughout the device. The interconnect has three types of
general-purpose interconnects: single-length lines, double-length lines, and long lines. A grid
of horizontal and vertical single-length lines connects an array of switch boxes that provide a
reduced number of connections between signal paths within each box, not a full crossbar switch.
Each CLB has a pair of three-state buffers that can drive signals onto the nearest horizontal lines
above or below the CLB.

Direct (dedicated) interconnect lines provide routing between adjacent vertical and hori-
zontal CLBs in the same column or row. These are relatively high speed local connections
through metal, but are not as fast as a hardwired metal connection because of the delay in-
curred by routing the signal paths through the transmission gates that configure the path. Di-
rect interconnect lines do not use the switch matrices, thus eliminating the delay incurred on
paths going through a matrix.’

! See Xilinx documentation for the pin-out conventions to establish local interconnects between CLBs,



(c) ketabton.com: The Digital Library

Chapter 7 Memory and Programmable Logic

318

“Lowaw unudoad oy Ag paaniyuod aae
UL 1A B INOYIM SOXN (ON

asnpayyde g
T L 3ENOu

(201))

o |




(c) ketabton.com: The Digital Library

Section 7.8 Sequential Programmable Devices 319

Interconnect path = [ .
FIGURE 7.23

RAM cell controlling a PIP transmission gate

Double-length lines traverse the distance of two CLBs before entering a switch matrix, skip-
ping every other CLB. These lines provide a more efficient implementation of intermediate-length
connections by eliminating a switch matrix from the path, thereby reducing the delay of the path.

Long lines span the entire array vertically and horizontally. They drive low-skew, high-fan-
out control signals. Long vertical lines have a programmable splitter that segments the lines and
allows two independent routing channels spanning one-half of the array, but located in the
same column. The routing resources are exploited automatically by the routing software. There
are eight low-skew global buffers for clock distribution.

The signals that drive long lines are buffered. Long lines can be driven by adjacent CLBs
or IOBs and may connect to three-state buffers that are available to CLBs. Long lines provide
three-state buses within the architecture and implement wired-AND logic. Each horizontal
long line is driven by a three-state buffer and can be programmed to connect to a pull-up re-
sistor, which pulls the line to a logical 1 if no driver is asserted on the line.

The programmable interconnect resources of the device connect CLBs and IOBs, either di-
rectly or through switch boxes. These resources consist of a grid of two layers of metal seg-
ments and programmable interconnect points (PIPs) within switch boxes. A PIP is a CMOS
transmission gate whose state (on or off) is determined by the content of a static RAM cell in
the programmable memory, as shown in Fig. 7.23. The connection is established when the
transmission gate is on (i.e., when a | is applied at the gate of the n-channel transistor), and a
0 is applied at the gate of the p-channel transistor. Thus, the device can be reprogrammed sim-
ply by changing the contents of the controlling memory cell.

The architecture of a PIP-based interconnection in a switch box is shown in Fig. 7.24,
which shows possible signal paths through a PIP. The configuration of CMOS transmission
gates determines the connection between a horizontal line and the opposite horizontal line
and between the vertical lines at the connection. Each switch matrix PIP reguires six pass
transistors to establish full connectivity.



(c) ketabton.com: The Digital Library

320 Chapter 7 Memory and Programmable Logic

FIGURE 7.24
Circuit for a programmable PIP

1/0 Block (I0B)

Each programmable 1/0 pin has a programmable IOB having buffers for compatibility with TTL
and CMOS signal levels. Figure 7.25 shows a simplified schematic for a programmable IOB.
It can be used as an input, an output, or a bidirectional port. An IOB that is configured as an
input can have direct, latched, or registered input. In an output configuration, the IOB has di-
rect or registered output. The output buffer of an [OB has skew and slew contral. The regis-
ters available to the input and output path of an IOB are driven by separate, invertible clocks.
There is a global set/reset.

Internal delay elements compensate for the delay induced when a clock signal passes through
a global buffer before reaching an IOB. This strategy eliminates the hold condition on the data
at an external pin. The three-state output of an I0B puts the output buffer in a high-impedance
state. The output and the enable for the output can be inverted. The slew rate of the output
buffer can be controlled to minimize transients on the power bus when noncritical signals are
switched. The IOB pin can be programmed for pull-up or pull-down to prevent needless power
consumption and noise.

The devices have embedded logic to support the IEEE 1149.1 (JTAG) boundary scan stan-
dard. There is an on-chip test access port (TAP) controller, and the I/O cells can be configured
as a shift register. Under testing, the device can be checked to verify that all the pins on a PC
board are connected and operate properly by creating a serial chain of all of the I/O pins of the
chips on the board. A master three-state control signal puts all of the IOBs in high-impedance
mode for board testing.

Enhancements

Spartan chips can accommodate embedded soft cores, and their on-chip distributed. dual-port.
synchronous RAM (SelectRAM) can be used to implement first-in, first-out register files



(c) ketabton.com: The Digital Library

Section 7.8 Sequential Programmable Devices

’\|

e Slew .ra'i:'__-.-'-' & Passive .

Vee

Input
buffer

Input R
clock D :

FIGURE 7.25

XC4000 series 10B

Aln=1:0]

Output
buffer

WE

DO or DI

CWrite row
i

WCLK

FIGURE 7.26

Distributed RAM cell formed from a lookup table

321

(FIFOs), shift registers, and scratchpad memories. The blocks can be cascaded to any width and
depth and located anywhere in the part, but their use reduces the CLBs available for logic.
Figure 7.26 displays the structure of the on-chip RAM that is formed by programming a lookup



(c) ketabton.com: The Digital Library
322 Chapter 7 Memory and Programmable Logic

table to implement a single-port RAM with synchronous write and asynchronous read. Each
CLB can be programmed as a 16 X 2 or 32 X 1 memory.

Dual-port RAMs are emulated in a Spartan device by the structure shown in Fig. 7.27, which
has a single (common) write port and two asynchronous read ports. A CLB can form a mem-
ory having a maximum size of 16 X 1.

Xilinx Spartan XL FPGAs

Spartan XL chips are a further enhancement of Spartan chips, offering higher speed and density
(40,000 system gates, approximately 6,000 of which are usable) and on-chip, distributed SelectRAM
memory.” The lookup tables of the devices can implement 2" different functions of n inputs.

SPO

I(;.?o"
.

i | DPRA[3:0)
s 41 4

1
'

Lottty etgsies

SPO

FIGURE 7.27
Spartan dual-port RAM

4 The maximum number of logic gates for a Xilinx FPGA is an estimate of the maximum number of logic gates that
could be realized in a design consisting of only logic functions (no memory). Logic capacity is expressed in terms
of the number of two-input NAND gates that would be required to implement the same number and type of logic
functions (Xilinx App. Note).



(c) ketabton.com: The Digital Library

Section 7.8 Sequential Programmable Devices 323

Table 7.7
Attributes of the Xilinx Spartan XL Device Family
| Spartan XL | XCSO5/XL | XCS10/XL | XCS20/XL | XCS30/XL| XCS40/XL
Sys.léﬁi('.iaiés.-‘ - 2K-5K 3K-10K TK-20K 10K-30K 13K—<40K
LogicCells® | 238 466 950 1,368 1,862
‘Max Logic Gates 3,000 5,000 10,000 13,000 20,000
Flip-Flops 360 616 1,120 1,536 2,016
Max M'Bits’ % 3,200 6,272 12,800 18,432 25,088
Max Avail /0. 77 112 160 192 224

! 20-30% of CLBs as RAM.,
? 1 Logic cell = four-input lookup table + flip-flop.

The XL series is targeted for applications for which low cost, low power, low packaging,
and low test cost are important factors constraining the design. Spartan XL devices offer up to
80-MHz system performance, depending on the number of cascaded lookup tables, which re-
duce performance by introducing longer paths. Table 7.7 presents significant attributes of de-
vices in the Spartan XL family.

The architecture of the Spartan XL and earlier devices consists of an array of CLB tiles
mingled within an array of switch matrices, surrounded by a perimeter of I0Bs. These de-
vices support only distributed memory, whose use reduces the number of CLBs that could
be used for logic. The relatively small amount of on-chip memory limits the devices to ap-
plications in which operations with off-chip memory devices do not compromise perform-
ance objectives, Beginning with the Spartan Il series, Xilinx supported configurable
embedded block memory, as well as distributed memory in a new architecture.

Xilinx Spartan Il FPGAs

Aside from improvements in speed (200-MHz I/O switching frequency), density (up to 200,000
system gates) and operating voltage (2.5 V), four other features distinguish the Spartan II
devices from the Spartan devices: (1) on-chip block memory, (2) a novel architecture, (3) sup-
port for multiple I/O standards, and (4) delay locked loops.”

The Spartan I device family, manufactured in 0.22/0,18-pm CMOS technology with six
layers of metal for interconnect, incorporates configurable block memory in addition to the dis-
tributed memory of the previous generations of devices, and the block memory does not reduce
the amount of logic or distributed memory that is available for the application. A large on-chip
memory can improve system performance by eliminating or reducing the need to access off-chip
storage.

* Spartan 1 devices do not support low-voltage differential signaling (LVDS) or low-voltage positive emitter-coupled
logic (LVPECL) IO standards,



(c) ketabton.com: The Digital Library

324

Chapter 7 Memory and Programmable Logic

Reliable clock distribution is the key to the synchronous operation of high-speed digital cir-
cuits. If the clock signal arrives at different times at different parts of a circuit, the device may
fail to operate correctly. Clock skew reduces the available time budget of a circuit by lengthen-
ing the setup time at registers. It can also shorten the effective hold-time margin of a flip-flop
in a shift register and cause the register to shift incorrectly. At high clock frequencies (shorter
clock periods), the effect of skew is more significant because it represents a larger fraction of
the clock cycle time. Buffered clock trees are commonly used to minimize clock skew in FPGAs.
Xilinx provides all-digital delay-locked loops (DLLs) for clock synchronization or manage-
ment in high-speed circuits. DLLs eliminate the clock distribution delay and provide frequency
multipliers, frequency dividers, and clock mirrors.

Spartan II devices are suitable for applications such as implementing the glue logic of a
video capture system and the glue logic of an ISDN modem. Device attributes are summarized
in Table 7.8, and the evolution of technology in the Spartan series is evident in the data in
Table 7.9.

Table 7.8
Spartan Il Device Attributes

-0
ér.mr- ¥ -‘Jﬁfﬂ

23K-50K | 37K-100K | 52K-150K | 71K-200K

13K-30K

972 1,728 2,700 3.888 5,292
24,576 32,768 40.960 49,152 57.344
132 176 196 260 284

1 20-30% of CLBs as RAM,
2 | Logic cell = four-input lookup table + fip-flop.

Table 7.9
Compar!son of rhe Spartan Device Fammes

Based Based
SK40K 15K-200K
Distributed Distributed Block +
RAM RAM Distributed
80 MHz 100 MHz 200 MHz
4 4 16
5V 33V 25V
No No Yes




(c) ketabton.com: The Digital Library

Section 7.8 Sequential Programmable Devices 325

000000000000 000000000000
ou J{ | | DD M:E: DD: :- bu |
AR RN
: E E iz I_CIIBln_l::E -—r:!lp :: 3 2
E“— § D:‘—H—] :E]I—,u:::: % -.
il nnnnn EnnEEEi:
e e TEE EREERRES

Spartan Il architecture

The top-level tiled architecture of the Spartan II device, shown in Fig. 7.28, marks a new
organization structure of the Xilinx parts. Each of four quadrants of CLBs is supported by a
DLL and is flanked by a 4,096-bit block® of RAM, and the periphery of the chip is lined
with IOBs.

Each CLB contains four logic cells, organized as a pair of slices. Each logic cell, shown
in Fig. 7.29, has a four-input lookup table, logic for carry and control, and a D-type flip-flop.
The CLB contains additional logic for configuring functions of five or six inputs.

The Spartan II part family provides the flexibility and capacity of an on-chip block RAM;
in addition, each lookup table can be configured as a 16 X 1 RAM (distributed), and the pair
of lookup tables in a logic cell can be configured as a 16 X 2 bit RAM or a 32 X 1 bit
RAM.

The 10Bs of the Spartan II family are individually programmable to support the refer-
ence, output voltage, and termination voltages of a variety of high-speed memory and bus

® Parts are available with up to 14 blocks (56K hits).



(c) ketabton.com: The Digital Library

326 Chapter 7 Memory and Programmable Logic

Logic Cell

o a——
G3

G2

Gl

F5IN

BY

LS

SR

BX
CIN

CLK
CE

FIGURE 7.29
Spartan Il CLB slice

standards. (See Fig. 7.30.) Each IOB has three registers that can function as D-type flip-
flops or as level-sensitive latches. One register (TFF) can be used to register the signal
that (synchronously) controls the programmable output buffer. A second register (OFF)
can be programmed to register a signal from the internal logic. (Alternatively, a signal from
the internal logic can pass directly to the output buffer.) The third device can register the
signal coming from the I/O pad. (Alternatively, this signal can pass directly to the internal



(c) ketabton.com: The Digital Library

Section 7.8 Sequential Programmable Devices 327

r - [
CLK |
ree OF
SR E}-
o Programmable
output buffer
OCE |
=B
1 e
Programmable
input buffer
ICE
To Other To Next
External 1/0
Vrer
Inputs of
Banks
FIGURE 7.30
Spartan Il I10B

logic.) A common clock drives each register, but each has an independent clock enable. A
programmable delay element on the input path can be used to eliminate the pad-to-pad
hold time.

Xilinx Virtex FPGAs

The Virtex device series’ is the leading edge of Xilinx technology. This family of devices ad-
dresses four key factors that influence the solution to complex system-level and system-on-chip
designs: (1) the level of integration, (2) the amount of embedded memory, (3) performance
(timing), and (4) subsystem interfaces. The family targets applications requiring a balance of
high-performance logic, serial connectivity, signal processing, and embedded processing (e.g.,
wireless communications). Process rules for leading-edge Virtex parts stand at 65 nm, with a

7 Virtex, Virtex-I1, II Platform, 1I-Pro/Pro X, and Virtex-S Multi-Platform FPGA.



(c) ketabton.com: The Digital Library

328 Chapter 7 Memory and Programmable Logic

§

DDy

T

|
]

Block Select RAM

B

INTRIN IR

Wi

/

B

-

f /s

A
]

. 'r'f

:
§
§

:'f'l‘ };’r"— 7 |
;/?/’// :(-'Mnh"r.','léﬂumruaf
4
/ |
z/;
}‘
4y

i

/ %
L
IH
mi

N
:

1-V operating voltage. The rules allow up to 330,000 logic cells and over 200,000 internal
flip-flops with clock enable, together with over 10 Mb of block RAM, and 550-MHz clock
technology packed into a single die.

The Virtex family incorporates physical (electrical) and protocol support for 20 different /0
standards, including LVDS and LVPECL, with individually programmable pins. Up to 12 dig-
ital clock managers provide support for frequency synthesis and phase shifting in synchronous
applications requiring multiple clock domains and high-frequency 1/O. The Vinex architec-
ture is shown in Fig. 7.31, and its IOB is shown in Fig. 7.32.



(c) ketabton.com: The Digital Library

Problems 329

FIGURE 7.32
Virtex 10B block
PROBLEMS
Answers to problems marked with * appear at the end of the book.
7.1 The memory units that follow are specified by the number of words times the number of bits per
word. How many address lines and input—output data lines are needed in each case?
(a) 8K X 16
(b) 2G X 8
(c) 16M X 32
(d) 256K X 64
7.2* Give the number of bytes stored in the memories listed in Problem 7.1.
7.3*  Word number 723 in the memory shown in Fig. 7.3 contains the binary equivalent of 3,451, List
the 10-bit address and the 16-bit memory content of the word,
7.4  Show the memory cycle timing waveforms for the write and read operations, Assume a CPU
clock of 100 MHz and a memory cycle time of 25 ns.
7.5  Write a test bench for the memory described in HDL Example 7.1, The test program stores

binary 5 in address 3 and binary 10 in address 43, Then the two addresses are read to verify
their stored contents.



(c) ketabton.com: The Digital Library

330

Chapter 7

7.6

7™

7.8*

7.9
7.10*

711
12

7.13*

7.14

7.15

7.16*

Memory and Programmable Logic

Enclose the 4 X 4 RAM of Fig. 7.6 in a block diagram showing all inputs and outputs. Assum-
ing three-state outputs, construct an 8 X 8 memory using four 4 X 4 RAM units.

A 16K X 4 memory uses coincident decoding by splitting the internal decoder into X-selection

and Y-selection.

(a) What is the size of each decoder, and how many AND gates are required for decoding the
address?

(b) Determine the X and Y selection lines that are enabled when the input address is the binary
equivalent of 6,000.

(a) How many 32K X 8 RAM chips are needed to provide a memory capacity of 256K bytes?
(b) How many lines of the address must be used to access 256K bytes? How many of these lines
are connected to the address inputs of all chips?

(c) How many lines must be decoded for the chip select inputs? Specify the size of the decoder.

ADRAM chip uses two-dimensional address multiplexing. It has 13 common address pins, with the
row address having one bit more than the column address. What is the capacity of the memory?

Given the 8-bit data word 01011011, generate the 13-bit composite word for the Hamming code
that corrects single errors and detects double errors.

Obtain the 15-bit Hamming code word for the 11-bit data word 11001001010.

A 12-bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What
was the original 8-bit data word that was written into memory if the 12-bit word read out is as follows:
(a) 000011101010
(b) 101110000110
(c) 101111110100

How many parity check bits must be included with the data word to achieve single-error correc-
tion and double-error detection when the data word contains

(a) 16 bits.

(b) 32 bits.

(c) 48 bits.

It is necessary to formulate the Hamming code for four data bits, D5, Ds, D, and Dy, together with

three parity bits, Py, P;, and Py.

(a)* Evaluate the 7-bit composite code word for the data word 0010.

(b) Evaluate three check bits, Cy, C, and C}, assuming no error.

(c) Assume an error in bit Ds during writing into memory. Show how the error in the bit is
detected and corrected.

(d) Add parity bit P to include double-error detection in the code. Assume that errors occurred
in bits P, and Ds. Show how the double error is detected.

Givena 64 X 8 ROM chip with an enable input, show the external connections necessary to con-
struct a 256 X 8 ROM with four chips and a decoder.

A ROM chip of 4,096 X 8 bits has two chip select inputs and operates from a 5-volt power sup-
ply. How many pins are needed for the integrated circuit package? Draw a block diagram, and label
all input and output terminals in the ROM.



(c) ketabton.com: The Digital Library

Problems 331

20

10°

10'

FIGURE P7.17

7.17 The 32 X 6 ROM, together with the 2° line, as shown in Fig. P7.17, converts a six-bit binary num-
ber to its corresponding two-digit BCD number. For example, binary 100001 converts to BCD
011 0011 (decimal 33). Specify the truth table for the ROM.

7.18* Specify the size of a ROM (number of words and number of bits per word) that will accommo-
date the truth table for the following combinational circuit components:
(a) a binary multiplier that multiplies two 4-bit binary words,
(b) a 4-bit adder—subtractor,
(c) aquadruple two-to-one-line multiplexer with common select and enable inputs, and
(d) a BCD-to-seven-segment decoder with an enable input.

7.19 Tabulate the PLA programming table for the four Boolean functions listed below. Minimize the
numbers of product terms.

Alx,y,z) = 2(1,2,4,6)
B(x,y,z) = 2(0,1,6,7)
Clx, 3 2) = 2(2.6)
D(x,y,z) = 2(1,2,3,5,7)

7.20 Tabulate the truth table for an 8 X 4 ROM that implements the Boolean functions
A(x,y,z) = 2(0,3,4,6)
B(x,y,z) = 2(0,1,3,7)
C{x,3.2) = 2(1,5)

D(x,y,z) = 2(0,1,4,5,7)
Considering now the ROM as a memory. Specify the memory contents at addresses 1 and 4.



(c) ketabton.com: The Digital Library

332

Chapter 7

.21
7.22
7.23

7.24
7.25*

7.26

7.27

7.28

7.29

Memory and Programmable Logic

Derive the PLA programming table for the combinational circuit that squares a three-bit number.
Minimize the number of product terms. (See Fig. 7.12 for the equivalent ROM implementation. )

Derive the ROM programming table for the combinational circuit that squares a 4-bit number. Min-
imize the number of product terms.

List the PLA programming table for the BCD-to-excess-3-code converter whose Boolean func-
tions are simplified in Fig. 4.3.

Repeat Problem 7.23, using a PAL.

The following is a truth table of a three-input, four-output combinational circuit:

Inputs Outputs
x y z A B C D
0o 0 0 0 1 0o o0
o 0 1 1 1 1 I
o 1 0 1 0 1 1
0 1 1 0 1 0 I
10 0 1 0 1 a
0 0 6 0 1
1 10 1 1 1 0
1 1 1 0 1 1 !

Tabulate the PAL programming table for the circuit, and mark the fuse map in a PAL diagram
similar to the one shown in Fig. 7.17.

Using the registered macrocell of Fig, 7.19, show the fuse map for a sequential circuit with two
inputs x and y and one flip-flop A described by the input equation
Dy=xBy®A

Modify the PAL diagram of Fig. 7.16 by including three clocked D-type flip-flops between the
OR gates and the outputs, as in Fig. 7.19. The diagram should conform with the block diagram
of a sequential circuit. The modification will require three additional buffer—inverter gates and six
vertical lines for the flip-flop outputs to be connected to the AND array through programmable
connections, Using the modified registered PAL diagram, show the fuse map that will implement
a three-bit binary counter with an output carry.
Draw a PLA circuit to implement the functions

Fy=AB+ AC' + A'BC

F, = (AC + AB + BC)
Develop the programming table for the PLA described in Problem 7.26,



(c) ketabton.com: The Digital Library

REFERENCES

References 333

1.

“ bW

N o

>

©

10.

Hamming, R. W. 1950, Error Detecting and Error Correcting Codes. Bell Syst. Tech. J. 29:
147-160.

Kitson, B. 1984. Programmable Array Logic Handbook. Sunnyvale, CA: Advanced Micro
Devices.

Liv, S., and D. J. CosTELLO, JR. 1983, Error Control Coding. Englewood Cliffs, NJ: Prentice-Hall.
Memory Components Handbook. 1986. Santa Clara, CA: Intel.

NELsON, V. P, H. T. NacGLE, J. D. Irwix, and B. D. CarroLL. 1995, Digiral Logic Circuit Analy-
sis and Design. Upper Saddle River, NI: Prentice Hall.

Programmable Logic Data Book. 1988, Dallas: Texas Instruments,

The Programmable Logic Data Book, 2d ed. 1994, San Jose, CA: Xilinx, Inc.

Toccr, R. 1., and N. S, WinMmER., 2004, Digiral Systems Principles and Applications, 9th ed. Upper
Saddle River, NJ: Prentice Hall,

TRIMBERGER, S. M. 1994. Field Programmable Gate Array Technology. Boston: Kluwer Academic
Publishers.

WaKEeRrLY, J. F. 2006. Digital Design: Principles and Practices, 4th ed. Upper Saddle River, NJ:
Prentice Hall.



(c) ketabton.com: The Digital Library

Chapter 8
Design at the Register Transfer Level

8.1

INTRODUCTION

A digital system is a sequential logic system constructed with flip-flops and gates. Sequential
circuits can be specified by means of state tables as shown in Chapter 5. To specify a large dig-
ital system with a state table is very difficult, because the number of states would be enor-
mous. To overcome this difficulty, digital systems are designed via a modular approach. The
system is partitioned into modular subsystems, each of which performs some function. The
modules are constructed from such digital devices as registers, decoders, multiplexers, arith-
metic elements, and control logic. The various modules are interconnected with datapaths and
control signals to form a digital system. In this chapter, we will introduce a design methodol-
ogy for describing and designing large, complex digital systems.

8.2 REGISTER TRANSFER LEVEL (RTL) NOTATION

334

The modules of a digital system are best defined by a set of registers and the operations that are per-
formed on the binary information stored in them. Examples of register operations are shift, count,
clear, and load. Registers are assumed to be the basic components of the digital system. The in-
formation flow and processing performed on the data stored in the registers are referred 1o as register
transfer operations. We'll see subsequently how a hardware description language includes opera-
tors that correspond to the register transfer operations of a digital system. A digital system is rep-
resented at the register transfer level (RTL) when it is specified by the following three components:

1. The set of registers in the system.
2. The operations that are performed on the data stored in the registers.
3. The control that supervises the sequence of operations in the system.



(c) ketabton.com: The Digital Library

Section 8.2 Register Transfer Level (RTL) Notation 335

A register is a group of flip-flops that stores binary information and has the capability of per-
forming one or more elementary operations. A register can load new information or shift the
information to the right or the left. A counter is considered a register that increments a num-
ber by a fixed value (e.g., 1). A flip-flop is considered a one-bit register that can be set, cleared,
or complemented. In fact, the flip-flops and associated gates of any sequential circuit can be
called registers by this definition.

The operations executed on the information stored in registers are elementary operations that
are performed in parallel on a data word consisting of bits during one clock cycle. The data pro-
duced by the operation may replace the binary information that was in the register before the
operation executed. Alternatively, the result may be transferred to another register (i.e., an op-
eration on a register may leave its contents unchanged). The digital circuits introduced in
Chapter 6 are registers that implement elementary operations. A counter with a parallel load is
able to perform the increment-by-one and load operations. A bidirectional shift register is able
to perform the shift-right and shift-left operations.

The operations in a digital system are controlled by timing signals that sequence the oper-
ations in a prescribed manner. Certain conditions that depend on results of previous operations
may determine the sequence of future operations. The outputs of the control logic are binary
variables that initiate the various operations in the system's registers.

Information transfer from one register to another is designated in symbolic form by means
of a replacement operator. The statement

R2<RI

denotes a transfer of the contents of register R/ into register R2—that is, a replacement of the
contents of register R2 by the contents of register R/. By definition, the contents of the source
register R/ do not change after the transfer. They are merely copied to R/. The arrow symbol-
izes the transfer and its direction; it points from the register whose contents are being transferred
and towards the register that will receive the contents. A control signal would determine when
the operation actually executes.

The controller in a digital system is a finite state machine whose outputs are the control
signals governing the register operations. In synchronous machines, the operations are syn-
chronized by the system clock.

A statement that specifies a register transfer operation implies that a datapath (i.e., a set of
circuit connections) is available from the outputs of the source register to the inputs of the des-
tination register and that the destination register has a parallel load capability. Data can be
transferred serially between registers, too, by repeatedly shifting their contents along a single
wire, one bit at a time, Normally, we want a register transfer operation to ocecur, not with every
clock cycle, but only under a predetermined condition. A conditional statement governing a reg-
ister transfer operation is symbolized with an if-then statement such as

If (T! = 1) then (R2«—R1)

where T/ is a control signal generated in the control section. Note that the clock is not includ-
ed as a variable in the register transfer statements. It is assumed that all transfers occur at a clock-
edge transition (i.e., a transition from 0 to 1 or from | to 0). Although 4 control condition such
as T1 may become true before the clock transition, the actual transfer does not occur until the
clock transition does.



(c) ketabton.com: The Digital Library

336

8.3

Chapter 8 Design at the Register Transfer Level

A comma may be used to separate two or more operations that are executed at the same
time (concurrently). Consider the statement

If (T3 = 1) then (R2<— RI, Rl < R2)
This statement specifies an operation that exchanges the contents of two registers: moreover.
the operation in both registers is triggered by the same clock edge, provided that 73 = |. This
simultaneous operation is possible with registers that have edge-triggered flip-flops con-

trolled by a common clock (synchronizing signal). Other examples of register transfers are as
follows:

Rl< Rl + R2  Add contents of R2to R! (R] gets Rl + R2)
R3«<R3 + 1 Increment R3 by 1 (count upwards)

R4 «—shr R4 Shift right R4
R5«—0 Clear R510 0

In hardware, addition is done with a binary parallel adder, incrementing is done with a count-
er, and the shift operation is implemented with a shift register. The type of operations most
often encountered in digital systems can be classified into four categories:

1. Transfer operations, which transfer (i.e., copy) data from one register to another.
2. Arithmetic operations, which perform arithmetic on data in registers.

3. Logic operations, which perform bit manipulation (e.g., logical OR) of nonnumeric data
in registers.

4. Shift operations, which shift data between registers.

The transfer operation does not change the information content of the data being moved from
the source register to the destination register. The other three operations change the informa-
tion content during the transfer. The register transfer notation and the symbols used to repre-
sent the various register transfer operations are not standardized. In this text, we employ two
types of notation. The notation introduced in this section will be used informally to specify and
explain digital systems at the register transfer level. The next section introduces the RTL sym-
bols used in the Verilog HDL.

REGISTER TRANSFER LEVEL IN HDL

Digital systems can be described at the register transfer level by means of a hardware de-
scription language (HDL). In Verilog, descriptions of RTL operations use a combination of
behavioral and dataflow constructs and are employed to specify the register operations and the
combinational logic functions implemented by hardware. Register transfers are specified by
means of procedural assignment statements within an edge-sensitive cyclic behavior, Combi-
national circuit functions are specified at the RTL level by means of continuous assignment state-
ments or by procedural assignment statements within a level-sensitive cyclic behavior. The
symbol used to designate a register transfer is either an equals sign (=) or an arrow (<=); the
symbol used to specify a combinational circuit function is an equals sign. Synchronization



(c) ketabton.com: The Digital Library

Section 8.3 Register Transfer Level in HDL 337

with the clock is represented by associating with an always statement an event control ex-
pression in which sensitivity to the clock event is qualified by posedge or negedge. The always
keyword indicates that the associated block of statements will be executed repeatedly, for the
life of the simulation. The @ operator and the event control expression preceding the block of
statements synchronize the execution of the statements to the clock event.

The following examples show the various ways to specify a register transfer operation in

Verilog:
(a) assign S=A+B, /I Continuous assignment for addition operation
(b) always @ (A, B) Il Level-sensitive cyclic behavior
S=A+B; /I Combinational logic for addition operation
(c) always @ (negedge clock) // Edge-sensitive cyclic behavior
begin
RA = RA + RB; I/ Blocking procedural assignment for addition
RD = RA, /! Register transfer operation
end
(d) always @ (negedge clock) // Edge-sensitive cyclic behavior
begin
RA <= RA + RB; // Nonblocking procedural assignment for addition
RD <= RA; I/l Register transfer operation
end

Continuous assignments are used to represent and specify combinational logic circuits. In
simulation, a continuous assignment statement executes when the expression on the right-hand
side changes. The effect of execution is immediate. (The variable on the left-hand side is up-
dated.) Similarly, a level-sensitive cyclic behavior executes when a change is detected by its
event control expression (sensitivity list). The effect of assignments made by the = operator
are immediate. The continuous assignment statement (assign) describes a binary adder with in-
puts A and B and output S. The target operand in a continuous assignment statement (S in this
case) cannot be a register data type, but must be a type of net. for example, wire. The proce-
dural assignment made in the level-sensitive cyclic behavior in the second example shows an
alternative way of specifying a combinational circuit for addition. Within the cyclic behavior,
the mechanism of the sensitivity list ensures that the output, S, will be updated whenever A, or
B, or both change.,

There are two kinds of procedural assignments: blocking and nonblocking. The two are dis-
tinguished by the symbols that they use and by their operation. Blocking assignments use the
equals symbol (=) as the assignment operator, and nonblocking assignments use the left arrow
(< =) as the operator. Blocking assignment statements are executed sequentially in the order
that they are listed in a sequential block; when they execute, they have an immediate effect on
the contents of memory before the next statement can be executed. Nonblocking assignments
are made concurrently. This feature is implemented by evaluating the expression on the right-
hand side of each statement in the list of statements before making the assignment to their left-
hand sides. Consequently, there is no interaction between the result of any assignment and the
evaluation of an expression affecting another assignment. Also, the statements associated with
an edge-sensitive cyclic behavior do not execute until the indicated edge condition occurs.



(c) ketabton.com: The Digital Library

338

Chapter 8 Design at the Register Transfer Level

Consider the two examples given. In the blocking procedural assignment, the first statement
transfers the sum to RA and the second statement transfers the new value of RA into RD. At the
completion of the operation, both RA and RD have the same value. In the nonblocking proce-
dural assignment, the two operations are performed concurrently, so that RD receives the orig-
inal value of RA. The activity in both examples is launched by the clock undergoing a falling
edge transition.

The registers in a system are clocked simultaneously (concurrently). The D-input of each
flip-flop determines the value that will be assigned to its output, independently of the input to
any other flip-flop. To ensure synchronous operations in RTL design, and to ensure a match be-
tween an HDL model and the circuit synthesized from the model, it is necessary that non-
blocking procedural assignments be used for all variables that are assigned a value within an
edge-sensitive cyclic behavior (always clocked). The nonblocking assignment that appears in
an edge-sensitive cyclic behavior models the behavior of the hardware of a synchronous se-
quential circuit accurately,

HDL Operators

The Verilog HDL operators and their symbols used in RTL design are listed in Table 8.1. The
arithmetic. logic, and shift operators describe register transfer operations. The logical and re-
lational operators specify control conditions and have Boolean expressions as their arguments.

The operands of the arithmetic operators are numbers. The +, —, *, and/ operators form the
sum, difference. product, and quotient, respectively, of a pair of operands. The exponentiation
operator (**) was added to the language in 2001 and forms a double-precision floating-point
value from a base and exponent having a real, integer, or signed value. Negative numbers are
represented in 2's-complement form. The modulus operator produces the remainder from the
division of two numbers. For example, 14 % 3 evaluates to 2.

There are two types of logic operators for binary words: bitwise and reduction. The bitwise
operators perform a bit-by-bit operation on two vector operands to form a vector result. They
take each bit in one operand and perform the operation with the corresponding bit in the other
operand. Negation (~ ) is a unary operator; it complements the bits of a single vector operand
to form a vector result. The reduction operators are also unary, acting on a single operand and
producing a scalar (one-bit) result. They operate pairwise on the bits of a word. from right to
left, and yield a one-bit result. For example, the reduction NOR (~|) results in 0 with operand
00101 and in 1 with operand 00000. The result of applying the NOR operation on the first two
bits is used with the third bit, and so forth. Negation is not used as a reduction operator. Truth
tables for the bitwise operators are the same as those listed in Table 4.9 in Section 4.12 for the
corresponding Verilog primitive (e.g., the and primitive and the & bitwise operator have the
same truth table). The output of an AND gate with two scalar inputs is the same as the result
produced by operating on the two bits with the & operator.

The logical and relational operators are used to form Boolean expressions and can take vari-
ables or expressions as operands. (Note: A variable is also an expression.) Used basically for de-
termining true or false conditions, the logical and relational operators evaluate to 1 if the condition
expressed is true and to 0 if the condition is false. If the condition is ambiguous, they evaluate
to X. An operand that is a variable evaluates to 0 if the value of the variable is equal to zero and



(c) ketabton.com: The Digital Library

Section 8.3 Register Transfer Level in HDL 339

Table 8.1
Verilog 2001 HDL Operators

Operator Type Symbol Operation Performed

Arithmetic + addition
- subtraction
* multiplication
/ division
% modulus

exponentiation

Logic = negation (complement)
(bitwise & AND
or | OR
reduction) A exclusive-OR (XOR)
Logical ! negation
8& AND
[l OR
Shift >> logical right shift
<< logical left shift
>>> arithmetic right shift
<<< arithmetic left shift
ik concatenation
Relational > greater than
< less than
== equality
I= inequality

=== case equality

== case inequality

>z greater than or equal
<= less than or equal

to 1 if the value is not equal to zero. For example, if A = 1010 and B = 0000, then the ex-
pression A has the Boolean value 1 (the number in question is not equal to 0) and the expres-
sion B has the Boolean value 0. Results of other operations with these values are as follows:

A&&B=0 // logical AND
AllB=1 /! logical OR
1A=0 /! logical complement

B=1 /f logical complement



(c) ketabton.com: The Digital Library

340

Chapter 8 Design at the Register Transfer Level

(A>B)=1 Il is greater than
(A==B)=0 /! identity (equality)
The relational operators === and !== test for bitwise equality (identity) and inequality in Ver-

ilog’s four-valued logic system. For example, if A = 0xx0 and B = 0xx0, the test A ===
would evaluate to true, but the test A == B would evaluate to x.

Verilog 2001 has logical and arithmetic shift operators. The logical shift operators shift a vec-
tor operand to the right or the left by a specified number of bits. The vacated bit positions are
filled with zeros. For example, if R = 11010, then the statement

R=R>>1;

shifts R to the right one position. The value of R that results from the logical right-shift operation
is 01101. In contrast, the arithmetic right-shift operator fills the vacated cell (the most significant
bit (MSB)) with its original contents when the word is shifted to the right. The arithmetic left-shift
operator fills the vacated cell with a 0 when the word is shifted to the left. The arithmetic right-
shift operator is used when the sign extension of a number is important. If R = 11010, then the
statement

R >>>1;

produces the result R = 11101; if R = 01101, it produces the result R = 00110. There is no
distinction between the logical left-shift and the arithmetic left-shift operators.

The concatenation operator provides a mechanism for appending multiple operands. It can
be used to specify a shift, including the bits transferred into the vacant positions. This aspect
of its operation was shown in HDL Example 6.1 for the shift register.

Expressions are evaluated from left to right, and their operators associate from left to right (with
the exception of the conditional operator) according to the precedence shown in Table 8.2. For
example, in the expression A + B — C, the value of B is added to A, and then C is subtracted
from the result. In the expression A + B/C, the value of B is divided by C, and then the result is
added to A because the division operator (/) has a higher precedence than the addition operator
(+). Use parentheses o establish precedence. For example, the expression (A + B)/C is not the
same as the expression A + B/C.

Loop Statements

Verilog HDL has four types of loops that execute procedural statements repeatedly: repeat, for-
ever, while, and for: All looping statements must appear inside an initial or always block.

The repeat loop executes the associated statements a specified number of times. The fol-
lowing is an example that was used previously:

initial
begin
clock = 1'b0;
repeat (16)
#5 clock = ~ clock;
end

This code produces eight clock cycles with a cycle time of 10 time units.



(c) ketabton.com: The Digital Library

Section 8.3 Register Transfer Level in HDL 341

Table 8.2
Verilog Operator Precedence

+ =~ &~ &|~| " ~N A~ (unary) Highest precedence

o

+— (binary)

<< > <<< >>>

| (binary)
&&
I

?: (conditional operator)

¥

{{{H} Lowest precedence

The forever loop causes unconditional, repetitive execution of a procedural statement or a
block of procedural statements, For example. the following loop produces a continuous clock
having a cycle time of 20 time units:

initial
begin
clock = 1'b0;
forever
#10 clock = ~ clock;
end

The while loop executes a statement or a block of statements repeatedly while an expres-
sion is true, If the expression is false to begin with, the statement is never executed. The fol-

lowing example illustrates the use of the while loop:

integer count;
initial
begin
count = 0;

while (count < 64)
#5 count = count + 1;
end



(c) ketabton.com: The Digital Library

342

Chapter 8 Design at the Register Transfer Level

The value of count is incremented from 0 to 63. Each increment is delayed by five time units,

and the loop exits at the count of 64.

In dealing with looping statements, it is sometimes convenient to use the integer data type
to index the loop. Integers are declared with the keyword integer, as in the previous example.
Although it is possible to use a reg variable to index a loop, sometimes it is more convenient 1o
declare an integer variable, rather than a reg, for counting purposes. Variables declared as data
type reg are stored as unsigned numbers. Those declared as data type integer are store as signed
numbers in 2°s-complement format. The default width of an integer is a minimum of 32 bits.

The for loop contains three parts separated by two semicolons:

* An initial condition.
* An expression to check for the terminating condition.
* An assignment to change the control variable.

The following is an example of a for loop:

for(j=0;j<8j=j+1)
begin
/I procedural statements go here
end

The for loop statement repeats the execution of the procedural statements eight times. The
control variable is j. the initial condition is j = 0, and the loop is repeated as long as j is less
than 8. After each execution of the loop statement, the value of j is incremented by 1.

A description of a two-to-four-line decoder using a for loop is shown in HDL Example 8.1.
Since output Y is evaluated in a procedural statement, it must be declared as type reg. The con-
trol variable for the loop is the integer k. When the loop is expanded (unrolled), we get the fol-
lowing four conditions (/N and Y are in binary, and the index for ¥ is in decimal):

if /N =00 then Y(0)=1; else Y(0)=0;
if IN=01then Y(1)=1; else Y(1)=0;
if IN=10then Y(2)=1; else Y(2)=0;
if IN=11then Y(3)=1; else Y(3)=0;

HDL Example 8.1

// Description of 2 x 4 decoder using a for loop statement

module decoder (IN, Y);

input [1: O] IN; // Two binary inputs

output [3:01Y; {/ Four binary outputs

reg [3:01 Y:

integer K; {l Control (index) variable for loop
always @ (IN)

for(k=0;k<=3;k=k+1)



(c) ketabton.com: The Digital Library

Section 8.3 Register Transfer Level in HDL 343

if IN==k)Y[k]=1;
else Y[k] = 0;
endmodule

Logic Synthesis

Logic synthesis is the automatic process by which a computer-based program (i.e., a synthesis
tool) transforms an HDL model of a logic circuit into an optimized netlist of gates that perform
the operations specified by the source code. There are various target technologies that implement
the synthesized design in hardware. The effective use of an HDL description requires that designers
adopt a vendor-specific style suitable for the particular synthesis tools. The type of I1Cs that im-
plement the design may be an application-specific integrated circuit (ASIC), a programmable
logic device (PLD), or a field-programmable gate array (FPGA). Logic synthesis is widely used
in industry to design and implement large circuits efficiently, correctly, and rapidly.

Logic synthesis tools interpret the source code of the hardware description language and
translate it into an optimized gate structure, accomplishing (correctly) all of the work that
would be done by manual methods using Karnaugh maps. Designs written in Verilog or a com-
parable language for the purpose of logic synthesis tend to be at the register transfer level. This
is because the HDL constructs used in an RTL description can be converted into a gate-level
description in a straightforward manner. The following examples discuss how a logic synthe-
sizer can interpret an HDL construct and convert it into a gate structure.

The continuous assignment (assign) statement is used to describe combinational circuits. In
an HDL, it represents a Boolean equation for a logic circuit. A continuous assignment with a
Boolean expression for the right-hand side of the assignment statement is synthesized into the
corresponding gate circuit implementing the expression. An expression with an addition operator
(-+) is interpreted as a binary adder with full-adder circuits. An expression with a subtraction
operator (—) is converted into a gate-level subtractor consisting of full adders and exclusive-
OR gates (Fig. 4.13). A statement with a conditional operator such as

assignY =S ?In_1:In_0;

translates into a two-to-one-line multiplexer with control input § and data inputs fn_1 and In_0,
A statement with multiple conditional operators specifies a larger multiplexer.

A cyclic behavior (always . ..) may imply a combinational or sequential circuit, depending
on whether the event control expression is level sensitive or edge sensitive. A synthesis tool will
interpret as combinational logic a level-sensitive cyclic behavior whose event control expression
is sensitive to every variable that is referenced within the behavior (e.g., by the variable’s appearing
in the right-hand side of an assignment statement). The event control expression in a description
of combinational logic may not be sensitive to an edge of any signal. For example,

always @ (In_1 or In_0 or S)
if(S)Y=In_1;
else Y=In_0;
translates into a two-to-one-line multiplexer. As an alternative, the case statement may be used

to imply large multiplexers. The casex statement treats the logic values x and z as don't-cares
when they appear in either the case expression or a case item.



(c) ketabton.com: The Digital Library
344  Chapter 8 Design at the Register Transfer Level

An edge-sensitive cyclic behavior (e.g., always @ (posedge clock)) specifies a synchro-
nous (clocked) sequential circuit. The implementation of the corresponding circuit consists of
D flip-flops and the gates that implement the synchronous register transfer operations specified
by the statements associated with the event control expression. Examples of such circuits are reg-
isters and counters, A sequential circuit description with a case statement translates into a con-
trol circuit with D flip-flops and gates that form the inputs to the flip-flops. Thus, each statement
in an RTL description is interpreted by the synthesizer and assigned to a corresponding gate
and flip-flop circuit. For synthesizable sequential circuits, the event control expression must be
sensitive to the positive or the negative edge of the clock (synchronizing signal), but not to both.

A simplified flowchart of the process used by industry to design digital systems is shown
in Fig. 8.1. The RTL description of the HDL design is simulated and checked for proper

FIGURE 8.1
A simplified flowchart for HDL-based modeling, verification, and synthesis



(c) ketabton.com: The Digital Library

Section 8.4 Algorithmic State Machines (ASMs) 345

operation. Its operational features must match those given in the specification for the behav-
ior of the circuit. The test bench provides the stimulus signals to the simulator. 1f the result of
the simulation is not satisfactory, the HDL description is corrected and checked again. After the
simulation run shows a valid design, the RTL description is ready to be compiled by the logic
synthesizer. All errors (syntax and functional) in the description must be eliminated before
synthesis. The synthesis tool generates a netlist equivalent to a gate-level description of the de-
sign as it is represented by the model. If the model fails to express the functionality of the spec-
ification, the circuit will fail to do so also. The gate-level circuit is simulated with the same set
of stimuli used to check the RTL design. If any corrections are needed, the process is repeat-
ed until a satisfactory simulation is achieved. The results of the two simulations are compared
to see if they match. If they do not, the designer must change the RTL description to correct any
errors in the design. Then the description is again compiled by the logic synthesizer to generate
a new gate-level description. Once the designer is satisfied with the results of all simulation
tests, the design of the circuit is ready for physical implementation in a technology. In practice,
additional testing will be performed to verify that the timing specifications of the circuit can be
met in the chosen hardware technology. That issue is not within the scope of this text.

Logic synthesis provides several advantages to the designer. It takes less time to write an
HDL description and synthesize a gate-level realization than it does to develop the circuit by man-
ual entry from schematic diagrams. The ease of changing the description facilitates exploration
of design alternatives. It is faster, easier, less expensive, and less risky to check the validity of
the design by simulation than it is to produce a hardware prototype for evaluation. A schemat-
ic and the database for fabricating the integrated circuit can be generated automatically by
synthesis tools. The HDL model can be compiled by different tools into different technologies
(e.g., ASIC cells or FPGAs), providing multiple returns on the investment to create the model.

8.4 ALGORITHMIC STATE MACHINES (ASMs)

The binary information stored in a digital system can be classified as either data or control in-
formation. Data are discrete elements of information (binary words) that are manipulated by per-
forming arithmetic, logic, shift, and other similar data-processing operations. These operations
are implemented with digital components such as adders. decoders, multiplexers, counters. and
shift registers. Control information provides command signals that coordinate and execute the var-
ious operations in the data section in order to accomplish the desired data-processing tasks.

The logic design of a digital system can be divided into two distinct parts. One part is con-
cerned with the design of the digital circuits that perform the data-processing operations. The
other part is concerned with the design of the control circuits that determine the sequence in
which the various actions are performed.

The relationship between the control logic and the data-processing operations in a digital sys-
tem is shown in Fig. 8.2. The data-processing path, commonly referred to as the datapath unit,
manipulates data in registers according to the system’s requirements. The control unit issues a
sequence of commands to the datapath unit. Note that an internal feedback path from the data-
path unit to the control unit provides status conditions that the control unit uses together with
the external (primary) inputs to determine the sequence of control signals (outputs of the control



(c) ketabton.com: The Digital Library

346  Chapter 8 Design at the Register Transfer Level

Input
data
Control
Inpur signals
signals
fexternal)
Status
signals
I
Output
data
FIGURE 8.2

Control and datapath interaction

unit) that direct the operation of the datapath unit. We'll see later that understanding how 1o
model this feedback relationship with an HDL is very important,

The control logic that generates the signals for sequencing the operations in the datapath unit
is a finite state machine (FSM), i.e., a synchronous sequential circuit. The control commands
for the system are produced by the FSM as functions of the primary inputs, the status signals,
and the state of the machine. In a given state, the outputs of the controller are the inputs to the
datapath unit and determine the operations that it will execute. Depending on status conditions
and other external inputs, the FSM goes to its next state to initiate other operations. The digi-
tal circuits that act as the control logic provide a time sequence of signals for initiating the op-
erations in the datapath and also determine the next state of the control subsystem itself.

The control sequence and datapath tasks of a digital system are specified by means of a
hardware algorithm. An algorithm consists of a finite number of procedural steps that specify
how to obtain a solution to a problem. A hardware algorithm is a procedure for solving the
problem with a given piece of equipment. The most challenging and creative part of digital de-
sign is the formulation of hardware algorithms for achieving required objectives. The goal to
implement the algorithms in silicon as an integrated circuit.

A flowchart is a convenient way to specify the sequence of procedural steps and decision paths
for an algorithm. A flowchart for a hardware algorithm translates the verbal instructions to an
information diagram that enumerates the sequence of operations together with the conditions nec-
essary for their execution. A flowchart that has been developed specifically to define digital
hardware algorithms is called an algorithmic state gnachine (ASM) chart. A state machine is
another term for a sequential circuit, which is the basic structure of a digital system.

ASM Chart

The ASM chart resembles a conventional flowchart, but is interpreted somewhat differently.
A conventional flowchart describes the procedural steps and decision paths of an algorithm in



(c) ketabton.com: The Digital Library

Section 8.4 Algorithmic State Machines (ASMs) 347

L Binary code ¢ 0101

FICURE 8.3
ASM chart state box

a sequential manner, without taking into consideration their time relationship. The ASM chart
describes the sequence of events. as well as the timing relationship between the states of a se-
quential controller and the events that occur while going from one state to the next (i.e., the
events that are synchronous with changes in the state), The chart is adapted to specify accurately
the control sequence and datapath operations in a digital system, taking into consideration the
constraints of digital hardware.

The ASM chart is composed of three basic elements: the state box, the decision box, and the
conditional box. The boxes themselves are connected by directed edges indicating the se-
quential precedence and evolution of the states as the machine operates. There are various
ways to attach information to an ASM chart. In one, a state in the control sequence is indicat-
ed by a state box, as shown in Fig. 8.3(a). The shape of the state box is a rectangle within
which are written register operations or the names of output signals that the control generates
while being in the indicated state. The state is given a symbolic name, which is placed within
the upper left corner of the box. The binary code assigned to the state is placed at the upper right
corner. (The state symbol and code can be placed in other places as well,) Figure 8.3(b) gives
an example of a state box. The state has the symbolic name S_pause, and the binary code as-
signed to it is 0101. Inside the box is written the register operation R < 0, which indicates
that register R is to be cleared to 0. The name Starr_OP_A inside the box indicates. for exam-
ple, a Moore-type output signal that is asserted while the machine is in state S_pause and that
launches a certain operation in the datapath unit.

The style of state box shown in Fig. 8.3(b) is sometimes used in ASM charts, but it can lead
to confusion about when the register operation R <— () is to execute. Although the operation is
written inside the state box, it actually occurs when the machine makes a transition from
S_pause to its next state. In fact, writing the register operation within the state box is a way (al-
beit possibly confusing) to indicate that the controller must assert a signal that will cause the
register operation to occur when the machine changes state. Later we'll introduce a chart and
notation that are more suited to digital design and that will eliminate any ambiguity about the
register operations controlled by a state machine.

The decision box of an ASM chart describes the effect of an input (i.e., a primary, or external,
input or a status, or internal, signal) on the control subsystem. The box is diamond shaped and has
two or more exit paths, as shown in Fig. 8.4. The input condition to be tested is written inside the
box. One or the other exit path is taken, depending on the evaluation of the condition. In the bi-
nary case, one path is taken if the condition is true and another when the condition is false. When
an input condition is assigned a binary value, the two paths are indicated by 1 and 0. respectively.



(c) ketabton.com: The Digital Library

348 Chapter 8 Design at the Register Transfer Level

Exit path Exit path

Exit path

FIGURE 8.4
ASM chart decision box

Reser_b Reser_b

Binary code

(a) (b) (<)

FIGURE 8.5
ASM chart conditional box

The state and decision boxes of an ASM chart are similar to those used in conventional
flowcharts. The third element, the conditional box, is unique to the ASM chart. The shape of
the conditional box is shown in Fig. 8.5(a). Its rounded corners differentiate it from the state
box. The input path to the conditional box must come from one of the exit paths of a decision
box. The outputs listed inside the conditional box are generated as Mealy-type signals during
a given state; the register operations listed in the conditional box are associated with a transi-
tion from the state. Figure 8.5(b) shows an example with a conditional box. The control gen-
erates the output signal Srart when in state S_/ and checks the status of input Flag. If Flag = 1,



(c) ketabton.com: The Digital Library

Section 8.4 Algorithmic State Machines (ASMs) 349

then R is cleared to 0; otherwise, R remains unchanged. In either case, the next state is §_2. A
register operation is associated with §_2. We again note that this style of chart can be a source
of confusion, because the state machine does not execute the indicated register operation R «— 0
when itis in S_/ or the operation F «— G when it is in S_2. The notation actually indicates that
when the controller is in S_/, it must assert a Mealy-type signal that will cause the register op-
eration R «<— 0 to execute in the datapath unit, subject to the condition that Flag = 0. Likewise,
in state §_2, the controller must generate a Moore-type output signal that causes the register
operation F «<— G to execute in the datapath unit. The operations in the datapath unit are syn-
chronized to the clock edge that causes the state to move from S_/ to §_2 and from §_2 to
§_3, respectively. Thus, the control signal generated in a given state affects the operation of a
register in the datapath when the next clock transition occurs. The result of the operation is
apparent in the next state.

The ASM chart in Fig. 8.5(b) mixes descriptions of the datapath and the controller. An ASM
chart for only the controller is shown in Fig. 8.5(c), in which the register operations are omit-
ted. In their place are the control signals that must be generated by the control unit to launch
the operations of the datapath unit. This chart is useful for describing the controller, but it does
not contain adequate information about the datapath. (We'll address this issue later.)

ASM Block

An ASM block is a structure consisting of one state box and all the decision and conditional
boxes connected to its exit path. An ASM block has one entrance and any number of exit paths
represented by the structure of the decision boxes. An ASM chart consists of one or more
interconnected blocks. An example of an ASM block is given in Fig. 8.6. Associated with state

Reset_b

FIGURE 8.6
ASM block



(c) ketabton.com: The Digital Library

350

Chapter 8 Design at the Register Transfer Level

S_0 are two decision boxes and one conditional box. The diagram distinguishes the block with
dashed lines around the entire structure, but this is not usually done, since the ASM chart
uniquely defines each block from its structure. A state box without any decision or condition-
al boxes constitutes a simple block.

Each block in the ASM chart describes the state of the system during one clock-pulse in-
terval (i.e., the interval between two successive active edges of the clock). The operations with-
in the state and conditional boxes in Fig. 8.6(a) are initiated by a common clock pulse when
the state of the controller transitions from S_0 to its next state, The same clock pulse transfers
the system controller to one of the next states, S_/, §_2, or S_3, as dictated by the binary val-
ues of £ and F. The ASM chart for the controller alone is shown in Fig. 8.6(b). The Moore-type
signal incr_A is asserted while the machine is in S_0; the Mealy-type signal Clear_R is gen-
erated conditionally when the state is S_0 and E is asserted. In general, the Moore-type outputs
of the controller are generated unconditionally and are indicated within a state box; the Mealy-
type outputs are generated conditionally and are indicated in the conditional boxes connected
to the edges that leave a decision box.

The ASM chart is similar to a state diagram. Each state block is equivalent to a state in a
sequential circuit. The decision box is equivalent to the binary information written along the
directed lines that connect two states in a state diagram. As a consequence, it is sometimes
convenient to convert the chart into a state diagram and then use sequential circuit procedures
to design the control logic. As an illustration, the ASM chart of Fig. 8.6 is drawn as a state di-
agram in Fig. 8.7. The states are symbolized by circles, with their binary values written inside.
The directed lines indicate the conditions that determine the next state. The unconditional and
conditional operations that must be performed in the datapath unit are not indicated in the state
diagram.

Simplifications

A binary decision box of an ASM chart can be simplified by labeling only the edge corre-
sponding to the asserted decision variable and leaving the other edge without a label. A further
simplification is to omit the edges corresponding to the state transitions that occur when a reset
condition is asserted. Output signals that are not asserted are not shown on the chart: the pres-
ence of the name of an output signal indicates that it is asserted.

FIGURE 8.7
State diagram equivalent to the ASM chart of Fig. 8.6



(c) ketabton.com: The Digital Library

Section 8.4 Algorithmic State Machines (ASMs) 351

Timing Considerations

The timing for all registers and flip-flops in a digital system is controlled by a master-clock gen-
erator. The clock pulses are applied not only to the registers of the datapath, but also to all the
flip-flops in the state machine implementing the control unit. Inputs are also synchronized to
the clock, because they are normally generated as outputs of another circuit that uses the same
clock signals. If the input signal changes at an arbitrary time independently of the clock, we
call it an asynchronous input. Asynchronous inputs may cause a variety of problems, as dis-
cussed in Chapter 9. To simplify the design, we will assume that all inputs are synchronized
with the clock and change state in response to an edge transition.

The major difference between a conventional flowchart and an ASM chart is in interpret-
ing the time relationship among the various operations. For example, if Fig. 8.6 were a con-
ventional flowchart, then the operations listed would be considered to follow one after another
in sequence: First register A is incremented, and only then is £ evaluated. If £ = 1, then reg-
ister R is cleared and control goes to state S_3. Otherwise (if £ = 0), the next step is to eval-
uate ¥ and go to state §_1 or §_2. In contrast, an ASM chart considers the entire block as one
unit. All the re